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Abstract

During the past decade, mutations a�ecting liability to human disease have been
discovered at a phenomenal rate, and that rate is increasing. For the most part,
however, those diseases have a relatively simple genetic basis. For diseases with a
complex genetic and environmental basis, new approaches are needed to pave the
way for more rapid discovery of genes a�ecting liability. One such approach exploits
large, population-based samples and large-scale genotyping to evaluate disease/gene
associations. A substantial drawback to such samples is the fact that population
heterogeneity can induce spurious associations between genes and disease. We de-
scribe a method called genomic control (GC), which obviates many of the concerns
about population substructure by using the features of the genomes present in the
sample to correct for strati�cation. Two general approaches to population-based
association studies are now available. The GC approach exploits the fact that
population substructure generates `overdispersion' of statistics used to assess asso-
ciation. By testing multiple polymorphisms throughout the genome, only some of
which are pertinent to the disease of interest, the degree of overdispersion generated
by population substructure can be estimated and taken into account. The other ap-
proach, called Structured Association (SA), assumes that the sampled population,
while heterogeneous, is composed of subpopulations that are themselves homoge-
neous. By using multiple polymorphisms throughout the genome, the SA method
probabilistically assigns sampled individuals to these latent subpopulations. We re-
view in detail GC. In addition to outlining the published ideas on this method, we
describe several extensions: quantitative trait studies; and case-control studies with
haplotypes and multiallelic markers. For each study design our goal is to achieve
control similar to that obtained for a family-based study, but with the convenience
found in a population-based design.
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1 Introduction

Five decades ago Sewell Wright (1951) introduced the formal concepts underlying what

geneticists term population structure. Wright argued that non-random and particularly

local mating, together with genetic drift, tended to form genetic subpopulations within

populations. Wright's substructure was a statistical concept, as it would be impossible

to delineate subpopulations except in terms of the greater probability of relatedness of

individuals drawn from within as opposed to between subpopulations. The signi�cance

of substructure, then as now, was its impact on evolutionary processes, although the

signi�cance of substructure for evolutionary processes was not and is not universally

recognized (Fisher and Ford 1950; Fisher 1953; Nei 1987).

During 1972, Ci Ci Li underscored for geneticists the importance of population sub-

structure for an entirely di�erent subject, the discovery of gene-disease associations through

the analysis of population samples. Li developed the concept for a particular case,

analagous to inbreeding, but his results extend easily to the more-widely known case.

Speci�cally, for two subpopulations with allele frequency p1 and p2 at one biallelic locus

and q1 and q2 at a second locus, there will be a statistical association among genotypes

in a sample from the whole population, whether the two loci were linked or not, as long

as p1 6= p2 and q1 6= q2. The degree of association is a function of the variances and

covariances of alleles in the subpopulations, as well as the fraction of the sample drawn

from each subpopulation. While these observations had population genetic signi�cance, Li

highlighted its importance for genetic association studies when disease and marker allele

frequencies varied among populations. Li's observations were important because it was

popular to relate the plethora of human diseases to the handful of genetic markers that

were available at the time. Most of the studies used a case-control design, a special form

of population sample in which `cases' or diseased individuals were oversampled relative to

their frequency in the population. While many studies yielded negative results, a surpris-

ing number of genetic diseases were found to be partly attributable to these handful of

markers, especially those associated with the HLA region on chromosome 6p (Thomson

1988; Risch 2000).

The explosion in the development of genetic markers since the mid 1980's tended to

change genetic epidemiolgical designs. Linkage analyses became prominent, particularly
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whole genome analyses (Ott 1991), and continue to this day. The success enjoyed by

linkage methods for Mendelian diseases { those for which the inheritance patterns within

families make a genetic model relatively obvious { has been nothing less than phenomenal.

Gene mutations underlying hundreds of simple genetic diseases have been uncovered, and

it is safe to say few such mutations will remain unknown a few years hence. For complex

diseases { those for which there is clearly a genetic basis, but for which the inheritance

pattern is fuzzy and the genetic model obscure { the picture is not so rosy. Despite

substantial e�ort during the past decade on complex diseases, such as schizophrenia, the

yield of disease-causing mutations has been small: none, in fact, for some common mental

disorders.

It now appears that the genetic variants relevant for most complex diseases have subtle

e�ect on liability, and hence most genetic linkage studies to date were underpowered. A

possible solution is to collect larger samples and implement more thoughtful linkage anal-

yses (Blangero et al., 2001); another solution is a back-to-the-future approach, a return

to association studies (Risch and Merikangas 1996). Evolutionary biologists will recog-

nize immediately that genetic association designs are only useful when the evolutionary

processes underlying the disease cause diseased individual to be more closely related than

individuals chosen at random from the population would be. This di�erential in degree-

of-relatedness, along with other design features, determines the power of the association

analysis. Pure linkage analysis, on the other hand, ignores `evolutionary' relatedness, us-

ing only the distribution of phenotypes and genotypes within narrowly-delimited families

to determine the location of disease genes (Ott 1991). Thus, under certain conditions,

which are more easily de�ned in theory than determined in practice, association analyses

can have far greater power than linkage analysis to determine the genetic underpinnings

of complex disease (Risch and Merikangas 1996; Knapp 1999a; Abel and Muller-Myhsok

1998).

Genetic association analysis also became more sophisticated in recent times. Boot-

strapping o� the widespread collection of families for whole genome linkage analysis,

especially the recruitment of a�ected sib-pairs and their parents, Spielman et al., (1993)

introduced the TDT test, a simultaneous test of linkage and association. By testing

both linkage and association using the transmission of alleles from parents to o�spring,

this `family-based' approach completely obviates concerns about population substructure.
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Since Spielman et al.'s seminal paper, and Ewens and Spielman's (1995) more rigorous

demonstration of its robustness to substructure, the number of family-based tests has

grown tremendously (e.g., Allison 1997; Spielman and Ewens 1998; Boehnke and Lange-

feld 1998; Knapp 1999b; Rabinowitz and Laird 2000; Horvath et al., 2000; Sinsheimer et

al., 2000; Zhu and Elston 2001; Seltman et al., 2001). In fact, the TDT and allied tests,

based on the recruitment of partial or entire nuclear families, has essentially supplanted

case-control as the method of choice for genetic epidemiological studies.

The degree of success of family-based studies could not have been anticipated by

its original proponents, and cogent arguments can be made that its success has been

unfortunate (Risch and Teng 1998; Morton and Collins 1998). As Risch and Teng (1998)

note, if individual genes have only a subtle impact on liability for complex disease, then

large samples will be required to identify even some of the variants a�ecting liability.

Family-based samples, by design, mitigate against large samples because of the diÆculty

and expense of collecting families. And, even for the same sample sizes, TDT is less

powerful than case-control for some { but not all { settings (Ewens and Spielman 1995;

Bacanu et al., 2000).

One could argue that what is required is some means of exploiting facile and powerful

case-control designs as an initial screen for liability genes, with more controlled family-

based follow-up studies. Indeed Spielman et al., (1993), the orginal proponents of the

TDT, suggested just such an approach. Still, the reality of population strati�cation and

the false positives it generates weighs against case-control designs.

Mulling over this rather interesting problem from our perspective, namely evolutionary

genetics, genetic epidemiology and statistics, we thougt there might be an alternative

path. Our thinking was aided by the revolution in molecular tools, especially the promise

of massive, inexpensive genotying. We reasoned it would be possible to account for the

impact of substructure by using the distribution of markers in the sampled genomes {

what we called Genomic Control or GC (Devlin and Roeder 1999). While it comes at

the obvious price of additional genotyping, speci�cally genotyping multiple loci unlikely

to a�ect liability, GC opens up the possibility of using population-based samples and

controlling the false positive rate.

For example, for a case-control analysis of candidate genes, one GC approach computes

chi-square test statistics for independence for both null and candidate loci. By using the
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variability and magnitude of the test statistics observed at the null loci, which are inated

by the impact of population strati�cation and cryptic relatedness, a multiplier is derived

to adjust the critical value for signi�cance tests for candidate loci (Devlin and Roeder

1999; Bacanu et al., 2000). In this way, GC permits analysis of strati�ed case-control

data without an increased rate of false positives. If population strati�cation and cryptic

relatedness are not detected from null loci, then GC is identical to a standard test of

independence for a case-control design.

Since we introduced the original concept of GC, we and others have developed the

approach in various ways. In this review, we outline the basic theory behind GC, describe

the various implementations to date, and then discuss some open questions regarding this

methodology.

2 Confounding

The case-control design oversamples `a�ected' individuals from the population and con-

trasts this sample with an undersampled set of controls, with the goal to determine if

a particular variable, such as counts of alleles at a locus, di�er between the two sam-

ples. Unobserved variables, such as membership in subpopulations, can create spurious

correlations between variables or confounding. Confounding can have two e�ects on test

statistics; they can be biased and/or overdispersed. While bias can be a critical fac-

tor for traditional epidemiological studies, we argue that overdispersion is the dominant

consequence of confounding in genetic studies.

In this section, we explore the impact of confounding due to population substructure

via a case-control study to assess association between alleles at a biallelic disease and

a linked or unlinked locus. To do so we de�ne several random variables that reect the

basic elements of a genetic study, albeit at a simpli�ed level to facilitate exposition. Let C

be an unobservable indicator of subpopulation membership, c = 1; : : : ; m; Y be a binary

indicator of disease status; X be a disease susceptability gene; and G be genotype, which is

reduced to two levels (A; a). This genotype notation is natural for recessive and dominant

models for e�ects of alleles on disease liability, but also applies to additive models if alleles

are treated as observations.
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2.1 Bias in Case-Control Studies

In a case-control setting the response is genotype and the covariate is disease status, Y .

We de�ne Æ to be the case-control e�ect

Æ = P (G = AjY = 1)� P (G = AjY = 0): (1)

Under the null hypothesis Æ is non-zero solely due to bias.

Figure 1 illustrates the situation of no confounding. The arrow from X to Y denotes

a causal relationship, and the circle around X indicates X is not directly observable. The

�rst graph in Figure 1 shows the null hypothesis that G and X are unlinked. The second

graph has a double-headed arrow between X and G to indicate that they are linked and

associated. (Technically, this is called a mixed ancestral graph (Richardson and Spirtes

2001) and the double-headed arrow actually represents the unobservable history that

created the association between X and G, but those details are unnecessary here.) In this

case, Y and G are associated if, and only if, X and G are associated. Since Y and G are

observable, this provides a way to check for linkage and association between G and the

unobservable X(ignoring the possibility of strong selection).

The situation is more complicated in the presence of substructure. Figure 2 shows

the graphs for this case with C representing subgroups. We initially assume that the

environmental component of the disease is small relative to the genetic component; hence

there is no arrow from C to Y . In this case, under the null hypothesis of no association

between X and G, it can be shown that G and Y are uncorrelated, given C, but that

they are correlated marginally. In other words, Æ 6= 0 even under the null hypothesis.

To model the e�ect of subpopulation strati�cation, let pc = P (G = AjC = c), rc =

P (Y = 1jC = c), and wc = P (C = c). It follows that

P (C = cjY = 1) =
rcwcP
l rlwl

;

and

P (C = cjY = 0) =
(1� rc)wcP
l(1� rl)wl

: (2)

Assume that G and Y are independent, conditional on C, under the null hypothesis. Let

dc = P (C = cjY = 1)� P (C = cjY = 0). It follows from equation (1) that,

Æ =
X
c

pc [P (C = cjY = 1)� P (C = cjY = 0)] =
X
c

pcdc: (3)
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In general Æ may be negative or positive for any locus under study, even under the null

hypothesis. Moreover, Æ does not decrease as the sample size increases. In the simplest

case, if there were only two subpopulations and both genotype A and disease (Y = 1)

were more prevalent in one subpopulation than the other, then Æ would be positive.

Next we seek to understand the behavior of Æ. We focus on a test statistic based on

an additive genetic model (i.e., G represents a single allele). We assume a substructured

population with allelic correlation de�ned by Fst (Wright 1969). Assume pc = P (AjC = c)

is an i.i.d. random variable, c = 1; : : : ; m, with mean p and variance Fstp(1 � p). It

follows that E[Æ] = p
P

c dc = 0; i.e., in expectation (averaged over randomly selected

subpopulations) the case-control bias has mean zero. The variance of the bias is

E[Æ2] = Var

"X
c

dcpc

#
= Fstp(1� p)

X
c

d2c: (4)

This quantity is zero if there is no variability in allele frequencies due to population

substructure.

In the remainder of this subsection we investigate E[Æ2] under a broad range of condi-

tions and �nd that, under certain conditions, it is of modest size even in the presence of

extreme population substructure. A key fact to note is that, regardless of the magnitude,

the variance of the bias is always proportional to p(1� p), where p is the allele frequency

under investigation. This fact will be important for the GC method described shortly

because bias due to genetic or environmental heterogeneity across subpopulations can be

estimated.

Consider a rare, dominant Mendelian disorder for which any individual with at least

one copy of the deleterious allele has the disease with probability one (see Fig. 3). In this

simple setting, rc is the probability an individual has at least one copy of the deleterious

allele, which is approximately equal to twice the frequency of the allele in the c'th sub-

population, 2qc. Assume that qc varies across subpopulations with mean q = 0:0005 and

variance Fstq(1� q). The distribution of rc across subpopulations follows directly. Allele

frequencies for A also vary across subpopulations and this determines the distribution

of pc for the locus under investigation. As with the disease gene, we consider a model

of variability across subpopulations determined by Fst. Let p = P (A) be the marginal

probability of A, with the variance across subpopulations equal to Fstp(1 � p). Setting

Fst = 0:01, we can investigate how large the bias might be and how it varies as a function
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of the allele frequencies of the genotype under study. Consider a sample of markers with

allele frequencies uniformly distributed in the interval [0:05; 0:50] and sample from two

subpopulations of equal size. For each of 1000 samples, we compute the bias of the test

statistic. From this experiment (Fig. 4), two points are evident: (i) the absolute bias can

be sizable; and, (ii), the variance of the bias is proportional to p(1� p). This experiment

provides a partial explanation for why association tests have fallen into disfavor.

By contrast, consider a complex disorder with an additive model for disease phe-

notypes, and Xi1; : : : ; XiL denoting the number of liability alleles possessed by the i'th

individual at locus l; l = 1; : : : ; L. Let qcl =
1
2
E(Xi`jC = c) be the frequency of liabil-

ity alleles at locus l. Assume for a moment that the combined e�ect of environmental

contributions to disease susceptibility do not di�er strongly across subpopulations (Fig.

5).

Regarding the rc's as random and from the de�nition of dc, the following is true:

Var[dc]! 0 as Var[rc]! 0. Furthermore, Æ converges in probability to 0 as Var[dc]! 0.

It follows that Æ will be near zero if rc does not vary appreciably across subpopulations.

We look to understand the conditions that determine the size of Æ. Consider a logistic

model for disease susceptability

P (Y = 1jX1; : : : ; XL) =
e�0+

P
L

`=1
�`Xi`

1 + e�0+
P

L

`=1
�`Xi`

:

Note that the distribution of Y jX1; : : : ; XL equals the distribution of Y jX1; : : : ; XL; C.

Now,

rc = E[P (Y = 1jX1; : : : ; XL; C = c]

= E

0
@ e�0+

P
L

`=1
�`Xi`

1 + e�0+
P

L

`=1
�`Xi`

1
A

�
e�0+2

P
L

`=1
�`E(Xi`jC=c)

1 + e�0+2
P

L

`=1
�`E(Xi`jC=c)

=
e�0+2

P
L

`=1
�`qc`

1 + e�0+2
P

L

`=1
�`qc`

:

For each locus l, assume that qcl is a random variable with mean ql and variance Fstql(1�

ql). Now consider the asymptotics in which, as L grows, the total e�ects of the disease

genes remains bounded and no one gene dominates. This implies that jj�jj = O(1)
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and �` = O(1=L) where jj�jj =
qP

` �
2
` . Taking the following expectation over this

distribution, it follows from the delta method that, for large L,

E(rc) =
e�0+2

P
L

`=1
�`E(qc`)

1 + e�0+
P

L

`=1
�`E(qc`)

+O
�
L�1=2

�

=
e�0+2

P
L

`=1
�`q`

1 + e�0+
P

L

`=1
�`q`

+O
�
L�1=2

�
= O(1):

Because �2` = O(L�2),
PL

`=1 q`(1� q`)�
2
` = O (L�1),

Var[rc] =
1

(1 + e�0+2
P

L

`=1
�`q`)2

V ar(�0 + 2
LX
`=1

�lqcl) +O
�
L�1

�

=
1

(1 + e�0+2
P

L

`=1
�`q`)2

4Fst
LX
`=1

q`(1� q`)�
2
` +O

�
1

L

�

= O
�
L�1

�
+O

�
L�1

�
= O

�
L�1

�
:

Consequently we can conclude that the bias is small for a complex disease when multiple

liability loci contribute to the probability of disease, and the total e�ect of the environ-

mental contributions to liability do not vary substantially across subpopulations.

While the conditions we have explored for obtaining a small bias are suÆcient, they

are by no means necessary. Other factors, such as many subpopulations each varying

by a small amount, can also lead to small bias terms. For instance, Wacholder et al.,

(2000) investigated the likely size of the bias for cancer studies, both empirically and

theoretically. They found that the bias is likely to be small, and it decreases as a function

of the number of subpopulations involved.

In the description of a complex disorder above, it is implicitly assumed that the en-

vironmental factors a�ecting susceptibility to disease are constant across subpopulations.

This need not be true in reality. Key environmental covariates can vary by culture and

hence by subpopulation. Such variability can create bias terms approaching the maximum

possible for a given level of substructure. Moreover, these environmental e�ects also may

interact with liability loci. However, these environmental e�ects do not a�ect the allele

frequency distribution of \null" loci. The key feature required in the upcoming section is

that
P

c d
2
c is constant across the genome for null loci and this is true regardless of whether

the disease is primarily heritable or not.

In summary, we conclude that the bias term is likely to be small for complex diseases

unless there are strong, subpopulation-speci�c environmental e�ects. Regardless of the
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size of the bias, its variance E[Æ2] is still proportional to p(1 � p). In other words, the

unknown contribution to bias from any environmental e�ects are constant across the null

regions of the genome.

2.2 Variance in Case-Control Studies

In a substructured population the proportion of genotypes AA, aa and Aa in the popula-

tion are described by Fstp+(1�Fst)p
2, Fst(1�p)+(1�Fst)(1�p)

2 and 2(1�Fst)p(1�p),

respectively. The Wahlund e�ect predicts the covariance between alleles within a subject

equals Fstp(1 � p), which inates the variance of the allele counts within an individual.

More troublesome, however, is the fact that the allelic correlation extends across individ-

uals from the same subpopulation. For a substructured population with no inbreeding,

Fst is also the correlation between alleles from members of the same subpopulation. As

a consequence of this correlation among the observations from a common subpopulation,

the usual statistical test for association can result in a rate of false positives exceeding

the nominal level.

For simplicity of exposition, assume that an equal number N of case and control

subjects have been sampled. Let Xi denote the number of A alleles in the i'th case subject

and Yj denote the same for the j'th control subject. In addition, let �c = P (C = cjY = 1)

and !c = P (C = cjY = 1) denote the expected sample size of cases and controls from

each of the c = 1; : : : ; m subpopulations. The variance of T =
P

iXi �
P

j Yj is highly

dependent on the similarity between �c and !c;

Var(T ) =
NX
i=1

Var(Xi) +
NX
j=1

Var(Yj)

+ 2
X
i<l

Cov(Xi; Xl) + 2
X
j<l

Cov(Yj; Yl)

� 2
X
i

X
j

Cov(Xi; Yj):

From above we have Var(Xi) = Var(Yj) = 2p(1� p)(1 + Fst). For any pair of genotypes

from the same subpopulation

Cov(Xi; Xl) = Cov(Yj; Yl) = Cov(Xi; Yj) = 4Fstp(1� p); i 6= l; j 6= l:

It follows that the variance of Æ̂ = T=2N equals

4Np(1� p)

"
1 + Fst +NFst

X
c

f�c(�c � 1) + !c(!c � 1)� 2�c!cg

#
; (5)
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in which �2 = p(1� p)=N .

The most extreme e�ect of substructure occurs if the cases and controls are drawn

from two distinct subpopulations. In this instance even small values of Fst can have a

large impact on the distribution of T . Alternatively, the variance is minimized when

disease status is independent of subpopulation membership. In this scenario population

admixture has essentially no impact on the distribution of the test statistic. Arguably

the situation most frequently encountered in practice is one for which the probability of

disease varies somewhat by subpopulation.

In a case-control study of a disease with a genetic basis, cases are likely to be related;

after all, they share a genetic disorder. By contrast, the controls are more likely to be inde-

pendent, but they too may be related to a minor degree. We generalize (5) to incorporate

cryptic relatedness. Fst is the probability that uniting gametes are identical-by-descent

or ibd when they are drawn from the same subpopulation. The kinship coeÆcient, fij,

gives a related quantity: for relatives i and j, it is the probability that an allele selected

randomly from i and a allele selected randomly from the same autosomal gene of j are

ibd. Both Fst and fij can be interpreted as the correlation between alleles. In fact, if i

and j are related only because they are in the same subpopulation, then fij = Fst and

the following equation reduces to (5).

De�ne fXij , f
Y
ij and fXY

ij as the kinship coeÆcient between cases, controls, and cases

and controls, respectively. Under the null hypothesis of no genetic association,

Var[Æ̂] = �2 �

8<
:1 + Fst +

2

N

NX
i<j

fXij +
2

N

NX
i<j

fYij �
2

N

NX
j=1

NX
i6=j

fXY
ij

9=
;

= �2 � � 2; (6)

where the �rst term is Var[Æ̂] assuming independent samples and � 2 is the ination of

variance due to correlated alleles. Because � 2 increases as a function of N it can be

sizable even for small allelic correlations.

2.3 Distribution Theory

From the results in the previous subsections it follows that, given Æ, Æ̂=� � N(Æ; � 2).

Hence, given Æ, (Æ̂=�)2 � � 2�21(Æ
2). But now consider multiple markers and let Æk =

P (Gk = AkjY = 1) � P (Gk = AkjY = 0) for marker k. De�ne Æ̂k and �2k analogously.

Hence, given Æk, Æ̂k � N(Æk; �
2). Now we investigate the marginal distribution of the
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(Æ̂k=�k)
2 over the markers. Recall that Æk =

P
c pckdc. If the number of subpopulations

is not too small, the central limit theorem implies that Æk � N(0; Vk
P

c d
2
c) where Vk =

V ar(pck) = Fstpk(1� pk). Note that �
2 = Vk

P
c d

2
c=�

2
k =

NFst
4

P
c d

2
c Hence, we can write

Æk
d
= (Vk

P
c d

2
c)

1=2
W where W � N(0; 1). Also, we can write Æ̂k

d
= Æk + �kZ where

Z � N(0; � 2). Thus we have

 
Æ̂k
�k

!2

d
=

 
Æk + �kZ

�k

!2

=
h
N
�
0; �2 + � 2

�i2
d
= (�2 + � 2)�21:

From this discussion we see that confounding can lead to bias and overdispersion, both

of which can produce excess false positives when testing for association, especially when

N is large.

3 Genomic Control

During the past few sections, we developed an intriguing connundrum. The impact of most

genes on complex disorders appears to be subtle, making the collection of large samples

highly desirable. Large, family-based samples, which are immune to the impact of sub-

structure, can be prohibitive in terms of time, money, and number of willing participants

and this fact motivates recruitment of population-based samples, such as case-control

data. Yet the impact of substructure and more direct relatedness on population-based

studies is to raise the false-positive rate, making it more diÆcult to separate the wheat

from the cha� in genetic studies.

An early approach to evaluating the results of population-based studies was to test

the samples for violations of Hardy-Weinberg (HW) equilibrium. Similarly Pritchard and

Rosenberg (1999) suggested evaluating a large number of loci unlinked to the candidate

gene of interest to determine if there is evidence of association indicating substructure.

These approaches have some drawbacks: (1) because all human populations are substruc-

tured to some degree, association will be detected, almost surely, as the sample size or the

number of loci tested increases; and, (2), when association is detected, how does one pro-

ceed with the study? The weaknesses of these approaches, however, can be ameliorated
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by using methods such as those developed by Devlin and Roeder (1999) and Pritchard

and colleagues (2000).

In 1999, we proposed an alternative approach { Genomic control or GC. Building on

standard results from evolutionary theory [e.g. Wright (1969), Lewontin and Krakaurer

(1973)], Devlin and Roeder (1999) demonstrated that the e�ects of cryptic relatedness

and population substructure on test statistics of interest are essentially constant across

the genome, under certain conditions. We suggested using \null" markers (e.g., polymor-

phisms unlikely to a�ect liability) across the genome to estimate the e�ect of confounding

and then removing the e�ect from the association test statistic.

The general principle of GC is to use individual genomes, as presented in the sample,

to account for the confounding due to substructure and more-direct relatedness. Since

the GC concept was introduced, the Structured Association or SA method has been

developed. Pritchard et al., (2000a) proposed using marker loci unlinked to the candidate

genes under study to infer subpopulation membership. The idea is that, conditional on

subpopulation, there is neither bias nor excess variance due to population substructure.

These authors construct a two-stage procedure: in the �rst stage each subject's probability

of membership in each subpopulation is estimated (see also Pritchard et al., 2000b); in

the next stage, a test of association is conducted within subpopulations. Pritchard et al.'s

(2000a) work, which falls under the rubric of latent class models (the subpopulations are

the unknown, latent classes), was taken further in recent work by Satten et al., (2001). For

related work, see Schork et al. (2001), who applied this general idea to 44 microsatellite

loci used in a renal failure study.

In what follows, we focus on the GC approach. For detailed development of the SA

models, see Pritchard and Donnelly (2001) in this volume.

We initially illustrate the GC approach for a biallelic marker and a case-control sample.

We then follow with an outline of how these results extend to some other experimental

designs. In each scenario population substructure introduces a bias and a variance ina-

tion factor, neither of which can be directly estimated for any particular locus. However,

because these nuisance parameters are approximately constant across the genome, they

can be estimated provided numerous `null' loci are sampled.

Before we delve too deeply into the GC approach, we reiterate that this approach will

only work when unknown constants, such as � 2 and �2, are approximately constant for
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all null markers. Importantly, for the model of cryptic relatedness, the variance ination

is due to correlations or kinship coeÆcients unrelated to properties of individual loci.

Therefore, under this model, the variance ination is the same for all markers throughout

the genome. For neutral alleles and equal mutation rates across loci, theory suggests Fst

is constant for alleles both within and between loci regardless of their frequencies (e.g.,

Wright 1969). Moreover, the variance in Fst is minimized if the subjects are drawn from

the same ethnic group [cf. Lewontin and Krakauer (1973) with Robertson (1975).] In real

populations, Fst does vary. Furthermore, it can vary as a function of allele frequencies,

depending on the populations examined. For example, when we �t a line to the data

on Fst and allele frequencies for worldwide populations reported in Cavalli-Sforza et al.,

(1994), we found a signi�cant relationship (Bacanu et al., 2000, Fig. 5); however, the

greatest change occurred for p < 0:1, and Fst did not vary with p thereafter. For a set of

European populations, there was no relationship between Fst and p (Bacanu et al., 2000,

Fig. 5), and the variability of Fst was small.

3.1 GC for Case-control Studies with Biallelic Markers.

Assume a set of biallelic loci are evaluated. We can test for association at any particular

locus using a �2 test based upon the 2 � 2 allelic table. This statistic, Sk, is directly

related to the statistic discussed previously: Sk =
�
Æ̂k=�̂k

�2
. Under the null hypothesis,

for large N , Sk is approximately distributed as a scaled, �21 random variable with scaling

parameter � = �2 + � 2. Provided � 2 and �2 are constant across the genome, � can be

estimated. Thus tests for association can be adjusted by dividing Sk by �̂. (see Devlin

and Roeder 1999; Bacanu et al. 2000).

To estimate � two choices are natural: a robust estimator such as the median of the

�2 test statistics, divided by 0.456 (Devlin and Roeder 1999), or the mean (Reich and

Goldstein 2001). Because there is sampling variability in �̂, it is natural to bound the

correction factor using max(�̂; 1) as in Bacanu et al. (2000). Reich and Goldstien (2001)

recommend a more conservative correction to account for the sampling variability in �̂;

in practice this leads to estimates for � that are substantially larger than the truth, on

average. In simulations, Bacanu et al. (2000) found that the bounded median estimator

performed well when 50 or more null loci were utilized, and that it was conservative, on

average, when only 20 null loci were available.
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3.2 GC for Quantitative Trait Studies.

Let Y be a quantitative outcome variable that is inuenced by the genotypes at numerous

loci. In general we can simultaneously test the e�ect of multiple loci (Bacanu et al., 2001),

but here we discuss only the simplest case. To test if a single locus is associated with the

phenotype, we work with the model

Yi = �0 + �1Xi1 + �i; (7)

where Xi1 is the number of A alleles minus the expected number in the i'th individual. We

test whether the slope is di�erent from zero. De�ne �2 = Var[Yi] and let � = Cov[Yi; Yj]

denote the covariance of phenotypes of individuals in the same subpopulation. Of the

N(N � 1)=2 pairs of individuals in the study, let R denote the number of pairs with

positive covariance.

The usual estimator of the parameter of interest is �̂1. Two factors perturb the dis-

tribution of �̂1 from that expected in the typical regression setting. (i) Due to positive

correlation among subjects within a subpopulation, the variance is increased over that

expected under the independence model. And, (ii), due to population substructure E[�̂1]

is not equal to zero under the null hypothesis.

De�ne SEind[�̂1] as the usual standard error term that would be obtained assuming

that the Yi's are independent, i.e., the term that would be obtained directly from any

statistical regression package. It can be shown that the actual variance of �̂1 is

Var[�̂1] �
�2

2N(1 + Fst)p1(1� p1)

"
1 +

4RFst�

N(1 + Fst)�2

#

= SE2
ind[�̂1]� � 2;

see Devlin et al., (2001) for details. The adjustment to the usual variance term, � 2, is

the ination factor due to correlation among the subjects in the study. If Fst = 0, then

� 2 = 1 and the variance reduces to �2=f2Np1(1� p1)g, which is estimated by SE2
ind[�̂1].

If R and F are large, then � 2 can be substantial. Alternatively, if there are many small

subpopulations, then R will be small and the impact of population substructure on the

variance will be small.

As discussed in the section on confounding, we also anticipate some bias in this test

so that E[�̂1] = Æ 6= 0, even under the null hypothesis. Using arguments analogous to
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those used to obtain E[Æ2] for case-control samples, we can show that: (i) E[Æ] = 0;

(ii)Var[Æ] = �2SE2
ind[�̂1], where �

2 is a constant function across the genome; and (iii) the

bias is typically small unless there is a strong subpopulation-speci�c environmental e�ect.

Consequently, as in the case-control setting, the test statistic QT = (�̂1=SEind(�̂))
2 is

approximately distributed (�2 + � 2)�21.

For any single locus, � = (�2 + � 2) cannot be directly estimated. It depends upon

unknown allele frequencies and allelic e�ects at unspeci�ed loci that drive the heritability

of the trait. However, both constants are approximately constant regardless of which

loci are under study. Thus QT is approximately distributed (�2 + � 2)�21 = ��21 and the

problem is amenable to the GC approach.

3.3 GC for Case-control Studies with Multiallelic Markers and

Haplotypes.

To have good power for modest sample sizes, the causal mutation must appear in combi-

nation with a relatively uncommon marker allele. Otherwise the increased risk associated

with the marker will be diÆcult to detect. This suggests that association studies based

upon multiallelic markers or haplotypes, which are treated as such, can be considerably

more informative than biallelic markers. Ideally a single polymorphism is suspected of

enhancing the risk of disease. However, when such a hypothesis is not available, the om-

nibus �2 test for association is the usual choice. This statistical test has many degrees of

freedom and hence can have small power even for substantial associations. Furthermore,

if susceptability alleles are not rare, there is no reason to expect strong associations with

any single marker allele or haplotype. To combat this problem several authors have sug-

gested measures of association that use a single degree of freedom (e.g., van der Meulen

et al., 1997, Bourgain et al., 2001). Here we consider one candidate among the many

possible statistics in this class.

Consider a certain segment of a chromosome: two haplotypes of that particular seg-

ment are de�ned as matching if all their alleles are the same. Next assume there are

Lk allele types for haplotype segment k, with corresponding allele relative frequency as

(pY 1(k); pY 2(k); :::pY Lk(k)) in cases and (pX1(k); pX2(k); :::pXLk(k)) in controls. The probability
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of two case haplotype segments matching is then

Pr(Hapi and Hapj match) =
LKX
l=1

p2Y l(k):

A suitable test statistic could be based upon the di�erence in the matching probability:

Tk =
LkX
l=1

p2Y l(k) �
LkX
l=1

p2Xl(k)

This test is sensitive to detecting excess matching in case subjects versus control subjects

and the sensitivity holds whether their are numerous small clusters or a few larger ones.

For this reason we expect this statistic to perform well even when susceptability alleles

are common.

For suÆciently large samples, Tk follows a normal distribution N(�k;Var(Tk)). The

null hypothesis of this test is the haplotype segment k is not proximate to the disease

gene; the alternative hypothesis supposes the segment k is close to the disease gene, which

produces extra \matchiness" in Tk. This statement can be summarized as H0 : �k = �0

vs. Ha : �k > �0. Any Tk's substantially di�erent from the alternative hypothesis are

de�ned as \outliers". The �rst step is to standardize Tk under the null hypothesis by

calculating the mean and variance of Tk to obtain Zk = (Tk � �0)=Var(Tk)
1=2.

De�ne Yi(k) = (Y 1
i(k); Y

2
i(k); :::; Y

Lk
i(k)) as the multinomial coding of the ith case's allele

type of haplotype segment k. For example, type 2 is coded as (0; 1; 0; :::; 0), and type Lk is

coded as (0; 0; :::; 0; 1). Under the null hypothesis, Yi(k) = (Y 1
i(k); Y

2
i(k); :::; Y

Lk
i(k)) and Xi(k) =

(X1
i(k); X

2
i(k); :::; X

Lk
i(k)) are identically, but not independently distributed as a Multinomial

with sample size one and probability vector (p1(k); :::; pLk(k)).

The correlation between two individuals fij is equal to the probability of two genes are

ibd; i.e., Corr(Y l
i ; Y

l
j ) = fij. By the same reasoning, we obtain Cov(Y l

i ; Y
h
j ) = �plph fij.

Given these two correlations it is possible to show that Var(Tk) = � 2�2k, where �
2 is of a

form similar to that seen in equation (6) and �2k is variance of Tk assuming all haplotypes

are independent; details of these calculations are given in Tzeng et al., (2001). Notice � 2

is a constant over k, that is, no matter which haplotype segment we are considering, the

correlation among individuals a�ects the variance of Tk multiplicatively in the same way.

To implement the GC procedure, all we require are robust estimates of �0 and � 2.
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3.4 Detecting Outliers.

For all the methods described so far, we require an estimate of one or two parameters,

such as � or �0 and �
2, which we assume are constant across the genome for all null loci.

Association studies are performed for both candidate genes and genome scan studies.

Because the bulk of the loci tested will naturally be null, provided a robust estimator

is chosen, the parameters can be estimated using all of the data. For more details, see

Devlin and Roeder (1999) and Tzeng et al., (2001).

For example, when the test statistics are distributed as ��21(0), a robust estimator of

� is:

�̂ = fmedian(Sc+1; Sc+2; : : : ; Sn)=0:456g:

More eÆcient estimators exist for �, but the median provides a reliable estimate of the

ination factor even if a small fraction of the null loci actually a�ect liability to the disease

or are linked to the gene under study. The e�ect of treating outliers as null loci in the

estimation of �̂ is a slight positive bias in the estimator, which has the e�ect of decreasing

both the power and the size of the test somewhat.

When examining g candidate genes, a Bonferroni correction provides the critical value

for the multiple testing problem. The signi�cant ones are the \outliers". Devlin and

Roeder (1999) present a Bayesian procedure for performing GC for a genome scan which

is more powerful, but also more complicated to implement. Tzeng et al., (2001) presents

a non-Bayesian method for outlier detection that is based upon the concept of limiting

the false discovery rate (Benjamini and Hochberg 1995) rather than limiting the Type I

error rate; that is, controlling the expected fraction of rejections that are false, rather than

controlling the probability of a false rejection. In exchange for rede�ning the criterion for

signi�cance, considerable power can be gained in some circumstances, while the fraction

of false positives is still controlled.

3.5 Methods for extremely dense markers.

Grant et al., (1999) and Devlin et al., (2000) present methods of genomic control for

very �ne scale data | either genome mismatch scanning data or genetic marker data

providing such a dense grid of markers that identity-by-descent is essentially apparent.

Both of these methods rely on comparing pairwise haplotypes of diseased individuals to
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�nd regions with usually long segments shared among individuals who are not obviously

related. The former determines signi�cance based on a complex permutation test. The

latter determines signi�cance using a score test for U-statistics. Both methods are similar

to the method of Tzeng et al., (2001), described above, in that they do not restrict the

association to be driven by a few ancestral haplotypes.

3.6 Concluding Remarks

Genomic Control (GC) is a new method for robust inference of association between alleles

at a disease and marker locus. When samples are drawn from heterogeneous human

populations, spurious associations between alleles at unlinked loci are generated. GC

attempts to eliminate these spurious associations. In this way, we hope GC will facilitate

the search for disease alleles a�ecting liability to human diseases that have complex genetic

and environmental bases. In this review we have described how GC can be applied to

case-control studies using biallelic (x3:1) and multiallelic (x3:3) loci , haplotypes (x3:3),

and quantitative traits (x3:2). Future research, both from ours and other groups, will

extend the potential applications of GC. For example, we have extended the methodology

to \pooled DNA", wherein DNA from many cases and many controls are mixed before

genotyping and only the allele frequencies for cases versus controls can be determined

(Roeder, Bacanu and Devlin, submitted).

GC, as we have developed it, is not without caveats. As we analyze extensively herein

(x2), we assume the impact of substructure, both in terms of variance and bias, is constant

across the genome. Devlin and Roeder (1999) show that some variability of Fst would not

be problematic, but substantial variability would seriously compromise the power of any

study if it were not accounted for a priori in the statistical model. For example, amal-

gamating samples from populations with distinct recent histories, such as sub-Saharan

Africans, Europeans, and Native Americans, without accounting for those histories in

the statistical model would be foolhardy. For more subtle situations, Chakraborty and

colleagues (R. Chakraborty, personal communication) have extended GC to the case of

variable Fst.

Another thorny issue for GC is strong selection. If loci were under strong, subpopulation-

speci�c selection, and these were the targeted loci for the association analysis (as opposed

to the null loci used to control for population substructure), then GC would fail to exert
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adequate control. Alternatively, the SA approaches (Pritchard et al., 2000; Satten et al.,

2001) to genomic control would be robust to some forms of selection if subpopulation

membership can be adequately reconstructed. While such selection cannot be ruled out,

we view strong selection to be unlikely for most loci that are candidates for complex

human disease.

The relative performance of GC versus family-based association methods has been

explored in Bacanu et al., (2000). By comparing GC and TDT in the case-control set-

ting, we conclude that GC is more powerful than TDT when population heterogeneity is

like that of European populations. GC and TDT have about similar power under more

extreme levels of substructure, such as a mixed sample of Caucasian and African Amer-

icans. Analyses by Ewens and Spielman (1995) show that TDT will outperform GC in

analyses of admixed populations, such as Africans Americans. Analyses by Pritchard et

al., (2000) suggest that their SA models perform similarly to TDT in many settings. The

relative performance of GC and SA approaches are compared in Pritchard and Donnelly

(this issue).
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Figure Legends

Figure 1. Relationship among variables Y , a binary indicator of disease status, X, a

disease susceptability gene, and G, the genotype. Both �gures represent the case of no

confounding. The leading graphic displays the relationships under the null hypothesis

(H0), with the arrow from X to Y denoting a causal relationship. The trailing graphic

displays the relationships under alternative hypotheses (H1), with the double-headed ar-

row between X and G indicating that they are related.

Figure 2. Relationship among the variables depicted in Figure 1 in the presence of a

confounding variable C. Confounding is due to subgroups. The circled variables are

unobservable.

Figure 3. Relationship among the variables depicted in Figure 1 in the presence of a con-

founding variable C, with confounding due to subgroups, for a simple Mendelian disease.

C is unobservable, pc is the probability of drawing a genotype and rc is the probability of

being a�ected with the disease, both probabilities conditional on C. The leading graphic

displays the relationships under the null hypothesis and the trailing graphic displays the

relationships under the alternative hypothesis.

Figure 4. The Bias in a Case-Control study with a rare Mendelian Disease. We simulated

an extreme case of population substructure: only two subpopulations and Fst = 0:01.

The top panel shows the distribution of the absolute magnitude of the bias, jÆj, for all

values of p. The bottom panel shows
q
Æ2=[p(1� p)] as a function of p, the marker allele

frequency.

Figure 5. Relationship among variables Y , a binary indicator of disease status, disease

susceptability genesX1; : : : ; XL and genotypes G1; : : : ; Gk in the presence of a confounding

variable C.
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