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Brownian motion in a granular gas
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James W. Dufty
Department of Physics, University of Florida, Gainesville, Florida 32611
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The dynamics of a heavy particle in a gas of much lighter particles is studied via the Boltzmann-Lorentz
equation with inelastic collisions among all particles. A formal expansion in the ratio of gas to tagged particle
mass transforms the Boltzmann-Lorentz equation into a Fokker Planck equation. The predictions of the latter
are tested here using direct Monte Carlo simulation of the Boltzmann-Lorentz equation. Excellent agreement is
obtained for the approach to a homogeneous cooling state, the temperature of that state, approach to diffusion,
and the dependence of the diffusion constant on dissipation parameters. Some results from molecular-dynamics
simulations are also presented and shown to agree with the theoretical predictions.@S1063-651X~99!08012-5#

PACS number~s!: 81.05.Rm, 05.20.Dd, 05.40.2a
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I. INTRODUCTION

The description of low-density, rapid granular flow b
Boltzmann kinetic theory has received much attention in
cent years@1,2#. A primary objective has been the derivatio
of hydrodynamic equations and expressions for the trans
coefficients appearing in them as functions of the coeffici
of restitution. The most accurate approach uses a genera
tion of the Chapman-Enskog method known from the cor
sponding analysis of the Boltzmann equation for elastic c
lisions @3,4#. This method assumes the existence of
‘‘normal’’ solution whose space and time dependence occ
only through the hydrodynamic fields. Implicit in this a
sumption is the rapid relaxation of nonhydrodynamic exc
tions so that the hydrodynamic description dominates o
longer time scale. Such a separation of time scales has
questioned in the case of granular flow, particularly for lar
degrees of inelasticity@5#. The basis for this concern seem
to be the additional time scale set by the cooling of
homogeneous reference state, such that the hydrodyn
time scales are not simply determined by the degree of
tial inhomogeneity. However, detailed study of self-diffusi
@6# and kinetic models based on the Boltzmann equation@7#
suggests this concern is not justified. For these cases
shown that the microscopic excitations always decay
times short compared to all hydrodynamic times, includ
that defined by the cooling rate.

To further reinforce the case for a hydrodynamic desc
tion, an exact analysis of the Boltzmann-Lorentz kine
equation for a tagged particle in a freely evolving gas h
been performed in the limit of asymptotically large relati
mass for the tagged particle@7#. In this limit, the Boltzmann-
Lorentz equation reduces to a Fokker-Planck equation.
exact analysis of the spectrum for this equation confirms
separation of time scales for all degrees of tagged par
inelasticity. It remains to confirm the validity of the forma
asymptotic analysis leading from the Boltzmann-Lore
equation to the Fokker-Planck equation. One objective h
is to provide this confirmation on the basis of direct Mon
Carlo simulation of the Boltzmann-Lorentz equation.
PRE 601063-651X/99/60~6!/7174~8!/$15.00
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In the next section the Boltzmann-Lorentz and its Fokk
Planck limit are recalled. A change of space and time va
ables provides an exact map of the Fokker-Planck equa
for inelastic collisions to that for elastic collisions. Cons
quently, all the known results from the latter case for velo
ity relaxation and the approach to a diffusive stage trans
exactly to the case of inelastic collisions. Several examp
are considered explicitly. The qualitative differences occ
only through the changes in space and time scales. Som
the most interesting differences are as follows.

~i! The renormalized time scale is related logarithmica
to real time. Accordingly, velocity relaxation and approa
to hydrodynamics is algebraic rather than exponential.

~ii ! The long time limit of the tagged particle distributio
for the homogeneous state is Gaussian, although the
particle distribution is non-Gaussian.

~iii ! The time-dependent temperature of the tagged p
ticle Gaussian differs from the temperature of the surrou
ing bath, although the cooling rates of both become the sa
at long times.

~iv! The mean-square displacement approaches lnt for
large times with a coefficient that determines the diffusi
coefficient.

~v! The diffusion equation at long times has the usu
form, although its solution is qualitatively different from tha
for the elastic case due to the time dependence of the t
perature in the diffusion coefficient.

In Sec. III the direct simulation Monte Carlo method
obtain numerical solutions of the Boltzmann equation is
scribed briefly. Comparisons are made between the sim
tions of the Boltzmann-Lorentz equation and the predictio
of the Fokker-Planck equation for a tagged particle who
mass is 100 times that of the surrounding gas particles.
Maxwellian distribution is confirmed, as is the approach
different temperatures for the bath and tagged particle at
same cooling rates. The mean-square displacement is m
sured and the diffusion coefficient extracted from its lo
time behavior to confirm the detailed dependence on ine
ticity as predicted by the Fokker-Planck equation. The res
provide strong support for the accuracy of the Fokker-Pla
7174 © 1999 The American Physical Society
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PRE 60 7175BROWNIAN MOTION IN A GRANULAR GAS
equation as a representation of the Boltzmann-Lorentz e
tion for large relative mass.

Of course, all the above discussion relies on the valid
of the ~inelastic! Boltzmann-Lorentz equation to describe
massive tagged particle in a freely evolving gas. While t
validity is well established for elastic collisions, it is som
times questioned for inelastic collisions. To provide supp
for this case, we have performed molecular-dynamics sim
lations for this system in two dimensions. The results p
sented in Sec. IV confirm the analysis based on the kin
equation, indicating clearly the validity of kinetic equatio
to study rapid granular flows. This section also include
summary and discussion of the main results in the pape

II. FOKKER-PLANCK EQUATION AND ITS SOLUTION

A tagged particle immersed in a low-density gas is co
sidered. The gas is formed by hard spheres (d53) or disks
(d52) of massmg and diametersg , and the tagged particle
is also a hard sphere or disk, but with massm and diameter
s. All particles are smooth and collide inelastically. Col
sions are characterized by velocity-independent coefficie
of normal restitution. For the collisions between the gas p
ticles it will be denoted byag , while that for collisions
between the tagged particle and gas particles will be re
sented bya.

The probability densityF(r ,v,t) describing the dynamics
of the tagged particle obeys the Boltzmann-Lorentz equa

~] t1v•“ !F5J@r ,v,tuF, f #. ~2.1!

The collision operatorJ is given by@7,8#

J@r ,v,tuF, f #5s0
d21E dv1E dŝ Q~g•ŝ!~g•ŝ!

3@a22F~r ,v8,t ! f ~r ,v18 ,t !

2F~r ,v,t ! f ~r ,v1 ,t !#, ~2.2!

where f (r ,v,t) is the corresponding distribution for the su
rounding gas particles,Q is the Heaviside step function,ŝ is
a unit vector pointing from the center of the gas particle 1
the center of the tagged particle at contact, ands05(s
1sg)/2. The precollisional or restituting velocitiesv8 andv18
are given by

v85v2
~11a!D

a~11D!
~g•ŝ!ŝ, v185v11

11a

a~11D!
~g•ŝ!ŝ,

~2.3!

with g5v2v1 the relative velocity andD5mg /m the ratio
of gas to tagged particle mass. The surrounding gas is ta
to be in its homogeneous cooling state~HCS! as determined
from the solution to the nonlinear Boltzmann equation.
distribution function has the scaling form@1#

f H~v,t !5ngvg
2d~ t !fS v

vg~ t ! D , ~2.4!

whereng is the constant number density of the gas,vg(t)
5@2kBTg(t)/mg#1/2 is the thermal velocity of the gas pa
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ticles at timet with kB being the Boltzmann constant, an
Tg(t) is the temperature of the gas which cools according
the equation

dTg~ t !

dt
52z~ t !Tg~ t !. ~2.5!

The cooling ratez(t) depends on time only throughTg(t)
and is determined from the second moment of the Boltzm
equation for the gas@8#,

z~ t !5~12ag
2!

ngsg
d21vg~ t !p~d21!/2

2dGS d13

2 D
3E dvE dv1g3f~v !f~v1!. ~2.6!

The solution to Eq.~2.5! is

Tg~ t !5Tg~0!F11
z~0!

2
t G22

, ~2.7!

showing that the temperature of the gas decreases ast22 for
large times if the system remains in the HCS. The expl
form of f will be not given here, but it is known in the
so-called first Sonine approximation@1,9#.

In Ref. @7# it was shown that the Boltzmann-Loren
equation reduces to a Fokker-Planck equation for asymp
cally smallD,

~] t1v•“ !F~r ,v,t !5ge~ t !a
]

]v
•Fv1

kBTg~ t !

m
a

]

]vGF~r ,v,t !,

~2.8!

where ge(t) is the same friction coefficient as for elast
collisions, except as a function of the time-dependent te
peratureTg(t),

ge~ t !5
4p~d21!/2s0

d21D

dG~d/2!
ngvg~ t !, ~2.9!

wherevg(t) is defined in terms ofTg(t) following Eq. ~2.4!
above. All effects of inelastic collisions among the gas p
ticles in Eq. ~2.8! appear through the time dependence
Tg(t), while the inelasticity of collisions between the tagg
particle and gas particles manifests itself only through
parametera5(11a)/2.

The Fokker-Planck equation~2.8! can be mapped onto th
corresponding equation for elastic collisions using the
mensionless variables

v* 5
v

v0~ t !
, r* 5a~12e!

ge~ t !

v0~ t !
r ,

t* 5a~12e!E
0

t

dt8ge~ t8!, ~2.10!

where we have introduced
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7176 PRE 60BREY, RUIZ-MONTERO, GARCI´A-ROJO, AND DUFTY
v0~ t !5S a

12e D 1/2F2kBTg~ t !

m G1/2

, e5
z~ t !

2age~ t !
.

~2.11!

Since bothz(t) andge(t) are proportional toTg
1/2(t), it fol-

lows thate is a time-independent quantity. The above de
nitions apply only fore,1, a point discussed further in th
final section. Here we only note that it is a necessary con
tion in the derivation of Eq.~2.8!. In terms of the new vari-
ables, the Fokker Planck equation~2.8! becomes

S ] t* 1v* •
]

]r*
D F* ~r* ,v* ,t* !

5
]

]v*
•S v* 1

1

2

]

]v*
D F* ~r* ,v* ,t* !, ~2.12!

with the scaled probability densityF* given by

F* ~r* ,v* ,t* !5
v0

2d~ t !

@a~12e!ge~ t !#d
F~r ,v,t !, ~2.13!

which is also normalized to unity. Equation~2.12! is the
same as the dimensionless form of the Fokker-Planck e
tion for elastic collisions (a5ag51). Consequently, the
physical properties of a massive tagged particle with ine
tic collisions moving in a gas in the HCS are the same
those for an elastic particle in an equilibrium gas; the o
differences are the relevant space and time scales. Fo
ample,t* 5get for elastic collisions while for inelastic col
lisions the relationship is

t* 5
12e

e
lnF11

z~0!

2
t G , ~2.14!

and the time scale is stretched logarithmically.
The general solution of Eq.~2.12! to the initial value

problem for an unbounded system is well known@10#:

F* ~r* ,v* ,t* !5E dr* 8E dv* 8G* ~r* ,v* ,t* ;r* 8,v* 8,0!

3F* ~r* 8,v* 8,0!, ~2.15!

with

G* ~r* ,v* ,t* ;r* 8,v* 8,0!

5Fe~ t* !b~ t* !

p2 G d/2

exp$2e~ t* !@r* 2r* 82c~ t* !

3~v* 1v* 8!#22b~ t* !~v* 2e2t* v* 8!2%. ~2.16!

In the above expressions we have defined

e~ t* !5
1

2@ t* 22c~ t* !#
, b~ t* !5

1

12e22t* ,

c~ t* !5
12e2t*

11e2t* . ~2.17!
-

i-

a-

s-
s
y
x-

Consider first a spatially homogeneous initial state for
tagged particleF* (r* 8,v* 8,0)5F* (v* 8,0). Then Eq.~2.15!
simplifies to

F* ~v* ,t* !5Fb~ t* !

p Gd/2E dv* 8exp@2b~ t* !

3~v* 2e2t* v* 8!2#F* ~v* 8,0!. ~2.18!

For t* @1, b(t* )→1 and, consequently,

F* ~v* ,t* !→FM* ~v* !5
1

V*
p2d/2e2v* 2

, ~2.19!

whereV* is the volume of the system measured in the
duced length scale defined in Eq.~2.10!. Thus, for general
homogeneous initial conditions, the distribution function a
proaches exponentially fast a stationary Maxwellian distrib
tion in the reduced units. In terms of the original variabl
this result is

F~v,t !→FM~v,t !5
1

V F m

2pkBT`~ t !G
d/2

e2mv2/2kBT`(t),

~2.20!

with the temperature parameterT`(t) given by

T`~ t !5Tg~ t !
a

12e
. ~2.21!

Interestingly, the tagged particle approaches a homo
neous cooling state with a scaling form similar to Eq.~2.4!
for the gas, but with two important differences. First, t
cooling state for the tagged particle is Gaussian while t
for the gas is not. Second, the cooling temperature for
tagged particle is different from that for the gas, although
cooling rates are the same. To elaborate on this latter fea
it is convenient to define more generally the kinetic tempe
ture for the tagged particle by

d

2
kBT~ t !5E drE dv

1

2
mv2F~r ,v,t !

5
kBTg~ t !a

12e E dr* E dv* v* 2F* ~r* ,v* ,t !.

~2.22!

Evaluating the integral using Eq.~2.15! gives

T~ t !

Tg~ t !
5

a

12e
1e22t* F T~0!

Tg~0!
2

a

12eG . ~2.23!

The approach of the tagged particle temperature to
asymptotic valueT`(t) is exponentially fast on the reduce
time scale. Note thatT`(t)ÞTg(t) even in the case of elasti
collisions for the tagged particle (a51), if the gas particle
collisions are inelastic. Conversely, if gas particle collisio
are elastic but the tagged particle collisions are inelastic, t
e50 and the tagged particle approaches the constant
perature of the gas, but still differs from it by a factor ofa.
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PRE 60 7177BROWNIAN MOTION IN A GRANULAR GAS
The result in Eq.~2.23! applies even for arbitrary inhomoge
neous states of the Brownian particle.

Consider next an initial state whose velocity distributi
is given by the homogeneous cooling Maxwellian but with
spatial inhomogeneity,

F* ~r* ,v* ,0!5n* ~r* ,0!p2d/2e2v* 2
, ~2.24!

where n* (r* ,0) is the probability density for finding the
tagged particle at positionr* at time t50. The correspond-
ing quantity at time t* is obtained by integration o
F* (r* ,v* ,t* ), as given in Eq.~2.15!, with respect tov* ,
giving

n* ~r* ,t* !5F d

2p l * 2~ t* !
G d/2E dr* 8

3exp@2d~r* 2r* 8!2/2l * 2~ t* !#n* ~r* 8,0!,

~2.25!

where

l * 2~ t* !5d~ t* 211e2t* !. ~2.26!

It is easily verified thatl * 2(t* ) is the mean-square displac
ment of the tagged particle in terms of the dimensionl
variables. Moreover, it follows directly from Eq.~2.25! that
n* (r* ,t* ) obeys the extended diffusion equation

] t* n* ~r* ,t* !5~12e2t* !D*“* 2n* ~r* ,t* !, ~2.27!

with D* 51/2. This equation is exact for all times if th
initial condition has the assumed form, and shows most
rectly the approach to a hydrodynamic stage, i.e., the u
diffusion equation applies exponentially fast fort* @1. The
valueD* 51/2 is consistent with the Einstein result

D* 5
1

2d
lim

t* →`

t* 21l * 2~ t* !. ~2.28!

In terms of the original variables, the asymptotic diffusi
equation is

] tn~r ,t !5D~ t !“2n~r ,t !, ~2.29!

with

D~ t !5
De~ t !

~12e!2
. ~2.30!

Here De(t)5kBTg(t)/mge(t) is the same as the diffusio
coefficient for elastic collisions, except as a function of t
time-dependent gas temperature. For a given tempera
the diffusion coefficient is seen to be enhanced by a facto
(12e)22, depending only on the inelasticity of gas col
sions.

For more general initial conditions, the dynamics is qua
tatively similar with rapid velocity relaxation followed b
spatial diffusion. In the next section, several predictions fr
s

i-
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re,
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-

this Fokker-Planck analysis are tested against direct sim
tion of the corresponding property from the Boltzman
Lorentz equation.

III. MONTE CARLO SIMULATION OF THE
BOLTZMANN-LORENTZ EQUATION

To test the formal analysis leading from the Boltzman
Lorentz equation to the Fokker-Planck, the direct simulat
Monte Carlo~DSMC! method@11# has been applied to th
former. Specifically, the predictions of velocity relaxation
a Maxwellian at a new temperature and the approach to
fusion with an enhanced diffusion coefficient have been
vestigated for a system of hard spheres with mass ratiD
51022, equal diameters for all particles, and a coefficient
normal restitution for collisions between gas particlesag
50.99. These values assure the necessary conditione,1 for
0,a<1, as shown in the Appendix. The DSMC for th
Boltzmann equation with elastic collisions is well describ
in Ref. @11#. Its adaptation to the Boltzmann-Lorentz equ
tion with inelastic collisions is straightforward. As indicate
in Eq. ~2.1!, the distribution function for the gas,f s , is re-
quired for input, and is taken here to be the homogene
cooling solution to the Boltzmann equationf H . It is known
that this solution is unstable to long-wavelength spatial p
turbations at sufficiently long times, so any possible interf
ence of relaxation processes by this instability is not
dressed. However, for the chosen value ofag the
homogeneous cooling state is stable on the time scales s
ied @12#.

In the simulations 105 trajectories of a tagged particl
have been generated. Independently of its position, collisi
of the tagged particle always took place with particles o
homogeneous gas whose velocity distribution was given
Eq. ~2.4!. As already mentioned, the exact form off is not
known, and the expression obtained in the first Sonine
proximation @1,9# was used to generate the velocity of th
colliding gas particles. Thus, the trajectories of the gas p
ticles are not required, which increases greatly the efficie
of the numerical simulation and avoids the introduction
specific boundary conditions—the system is formally cons
ered as infinite. A similar method already has been use
study self-difussion in a low-density granular flow@6#.

In a typical run, collisions between the tagged particle a
the fluid particles were considered as uncoupled durin
time stept0, chosen much smaller than the initial avera
collision time of the tagged particle. This means that t
position of the tagged particle was changed at constant
locity for an intervalt0 between every two applications o
the collision algorithm. For the collisions, the velocities
the particles were generated from the HCS distribution,
mentioned above, with a gas temperature determined f
the law given by Eq.~2.5! and considered to be constant
the time intervalt0. This implies thatt0 has to be chosen als
much smaller than the time characterizing the cooling of
gas, 2/z(0). In the simulations we report here we usedt0
.231024/z(0). Theinitial condition in all simulations was
a Gaussian velocity distribution with the same temperat
as the surrounding fluid.

As a first test of the Fokker-Planck limit, the predicte
approach to a Gaussian cooling state is studied. The as
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7178 PRE 60BREY, RUIZ-MONTERO, GARCI´A-ROJO, AND DUFTY
ated scaling velocity is defined in terms of the temperat
T(t) of the tagged particle, characterizing its kinetic ener
It is expected that this temperature approaches an asymp
value proportional to the gas temperatureTg(t), according to
Eq. ~2.23!. Figure 1 shows the time evolution of the rat
T(t)/Tg(t) as obtained from the numerical simulation of t
Boltzmann-Lorentz equation fora50.5, 0.7, and 0.99. In al
cases it is seen that the ratio evolves from the unit ini
condition until reaching a steady value. Also plotted is t
theoretical prediction. Figure 2 shows a detailed compari
of the numerical asymptotic values with Eq.~2.21! over this
range of values ofa. The agreement is very good conside
ing that corrections to the Fokker Planck limit are of ord

FIG. 1. Plot of the ratio of the tagged particle temperature to
surrounding gas temperature as a function of the dimensionles
duced timet* defined in Eq.~2.10!. The ratio of gas to tagged
particle mass is 1022 and the coefficient of restitution for the ga
collisions isag50.99. The solid lines are the predictions from t
Fokker-Planck equation and the symbols from the DSMC met
of the Boltzmann-Lorentz equation.

FIG. 2. Asymptotic value of the ratio between the tagged p
ticle temperatureT and the gas temperatureTg as a function of the
coefficient of normal restitutiona for collisions between the tagge
particle and the fluid particles. The mass ratio and the coefficien
restitution for gas collisions are the same as in Fig. 1. The solid
is from the Fokker-Planck equation and the dots from the numer
simulation of the Boltzmann-Lorentz equation.
e
.
tic

l
e
n

r

D1/2. Interestingly, we have found that the agreement
tween theory and simulations improves significantly if t
mass ratioD andag are changed to reduce the value ofe.

The Gaussian character of the tagged particle distribu
can be studied via its fourth moment, or the normalized
pression 3̂v4&/5^v2&2, which has the value unity for a
Gaussian. Here it is

^vn&5
1

VE drE dv vnF~r ,v,t !. ~3.1!

Figure 3 shows the simulation values for the normalized m
ment as a function of time fora50.5 and 0.99. Also shown
are the corresponding results for the gas distribution, i.e.,
the velocity distribution in Eq.~2.4!. The latter shows sig-
nificant deviations from unity whereas the tagged parti
results confirm the Gaussian even at strong dissipation.
though we have plotted in the figure the results correspo
ing to two extreme values ofa, a similar behavior has bee
obtained also for several intermediate values. It could
claimed that the Gaussian distribution observed in the sim
lations is in some way influenced by the initial Gaussi
distribution. To clarify this point we have also consider
initial distributions far from the Gaussian, namely a unifor
distribution with zero mean. It was observed that the dis
bution evolved towards a Gaussian very fast, indicating t
the use of an initial Gaussian does not limit at all the resu
presented here.

The approach to diffusion can be studied via the me
square displacement of the tagged particle. In Fig. 4, a c
parison of the simulations with the universal form given
Eq. ~2.26! for a50.5, 0.7, and 0.99 is presented. The resu
confirm both the approach to diffusion and the predicted li
iting form with D* 51/2. Figure 5 shows a more detaile
comparison with the predicted diffusion coefficient over
wide range ofa values. Again, the agreement is very goo
since the discrepancies are smaller than 2%.

e
re-

d

-

of
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FIG. 3. Time evolution of the reduced fourth velocity mome
of the tagged particle distribution. Here time is measured in units
l/v0, wherel is the mean free path. The continuous line cor
sponds toa50.95 and the dashed line toa50.5. The straight lines
represent the fourth moment of the HCS distribution for the fluid
a50.95 ~continuous! anda50.5 ~dashed!.
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IV. DISCUSSION

The Fokker-Planck equation, obtained from t
Boltzmann-Lorentz equation in the limit of a small ratio
gas to tagged particle massD, allows an exact analysis of th
tagged particle dynamics. The surrounding gas is assume
be in the homogeneous cooling state. In particular, the st
shows the clear separation of time scales required for a
drodynamic description. For tagged particle dynamics
latter refers to diffusion. The objective here has been to c
firm the validity of the asymptotic analysis leading to t
Fokker-Planck limit by direct Monte Carlo simulation of th
Boltzmann-Lorentz equation. The excellent agreement fo
for the various properties studied provides convincing e
dence for the validity of the Fokker-Planck equation and
exact consequences.

The separation of time scales between microscopic~ki-
netic! and diffusive modes is quite clear, once the compli
tions due to cooling have been suppressed by the chang

FIG. 4. Time evolution of the mean-square displacement of
tagged particle for three different values of the coefficient of re
tution a for collisions between the tagged particle and the gas p
ticles. Time and length are measured in the reduced dimension
units defined in the main text. The solid line is the theoretical p
diction given by Eq.~2.26!.

FIG. 5. Comparison between the numerical value of the redu
self-diffusion coefficient obtained from the Boltzmann-Loren
equation~dots! and the predicted valueD* 51/2 ~solid line!.
to
y

y-
e
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-
of

variables in Eq.~2.10!. In the new variables, the descriptio
is independent ofa and, therefore, applies for arbitrary de
gree of dissipation for the tagged particle. However, the
is implicitly restricted to weak dissipation due to the cond
tion e,1, wheree is defined by Eq.~2.11!. The explicit
form for e given in the Appendix shows that this conditio
requires 12ag

2}D. The origin of this condition is a require
ment that the ratio of tagged particle temperature to gas t
perature does not grow in time, since it appears as a facto
D in the asymptotic analysis@7#. The relevance of this con
dition for the Fokker-Planck limit is established in Fig.
showing the distribution functionF normalized by the
GaussianFM for stronger gas dissipation,ag50.95, and for
several values of the restitution coefficient for collisions b
tween the tagged particle and the fluid,a50.99, 0.9, and
0.8. The corresponding values fore are 1.73, 1.81, and
1.915, respectively. The deviations from Maxwellian a
now large and the Fokker-Planck description, which pred
a Maxwellian velocity distribution, is no longer valid. Let u
stress that the restrictione,1 affects only the Fokker-Planc
limit and not the more general picture of approach to dif
sion, as described by the Boltzmann-Lorentz equation. T
has been demonstrated in Ref.@6#, where the mean-squar
displacement has been simulated for mechanically ident
particles for 0.6<ag<1, which includes conditions o
strong gas particle dissipation and consequentlye,1.

All our previous analysis is based on the accuracy of
Boltzmann-Lorentz equation to describe the time evolut
of a tagged particle in a low-density gas, when all the co
sions are inelastic. For the particular case of self-diffus
the validity of the kinetic equation has been explicitly show
in Ref. @6#, by comparing its predictions with the resul
obtained from molecular-dynamics simulation of a system
inelastic disks. Here we present some additional evide
when the Brownian limit of a massive particle is considere
From a computational point of view, the study of time ev
lution of a massive particle in a bath, whose state must no
perturbed by the motion of the particle, is a very demand
simulation, requiring a lot of computing time in order to g

e
i-
r-
ss
-

d

FIG. 6. Distribution function of the tagged particle normalize
by the Gaussian for three different values of the restitution coe
cient a. For the three of them it ise.1, and the Fokker-Planck
equation is not expected to hold. The velocity is measured in
reduced units defined in Eq.~2.10!.
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a significant level of statistics.
We have simulated a system of hard disks in a squ

domain with periodic boundary conditions. The gas w
composed of 3025 particles and the results we present
averages over 500 trajectories of the Brownian particle, e
of them generated by a different computer run. Again
tagged and gas particles were of the same size. The in
condition was generated by running the gas, without tag
particle, for a period of time large enough to allow the sy
tem to reach the homogeneous cooling state. Then, on
the gas particles, randomly selected, was substituted by
tagged particle, i.e., its mass was changed to the new va
The simulation technique was based on the ‘‘event drive
algorithm @13#.

Figure 7 shows the results obtained for the time evolut
of the mean-square displacement of the tagged particle
system withag50.99 and a mass ratioD50.02. The density
of the gas isns251.32231023, which corresponds to a
solid fraction 1.03931023. Two values of the restitution co
efficient for collisions of the tagged particle have been c
sidered,a50.9 anda50.8. The solid line is the prediction
given by Eq.~2.26!. Again a good agreement is obtaine
providing a very strong test on the validity of the kinet
equation even before the system reaches the hydrodyn
regime. Similar results were obtained for other values of
parameters of the system, namely those considered in
DSMC results reported in the preceding section. In the fig
it is observed that the discrepancy between theory and s
lation increases with time. This is a statistics effect wh
decreases as the number of trajectories increases. Th
more clearly seen in Fig. 8, where we have represented
time evolution of the temperature of the tagged particle
the simulations corresponding toa50.9 in Fig. 7. Although
the results are consistent with the predictions from
Fokker-Planck equation, the fluctuations are too large
make a detailed quantitative comparison. This is not the c

FIG. 7. Time evolution of the mean-square displacement o
tagged disk in a low-density gas of inelastic particles, using m
lecular dynamics. The mass ratio isD5231022 and two values for
the coefficient of restitution for collisions of the tagged partic
have been considered:a50.9 ~squares! and a50.8 ~circles!. The
coefficient of restitution for collisions among fluid particles isag

50.99. Quantities are measured in the dimensionless reduced
defined in the main text. The solid line is the theoretical predict
from the Fokker-Planck description, Eq.~2.26!.
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for the mean-square displacement, as seen in Fig. 7. In
sense, when comparing the results obtained by using
DSMC method with those from MD, we must take into a
count that the number of trajectories we have considere
the former is 200 times larger than in the latter. Increas
the number of MD trajectories by such a factor would imp
a time too long for practical computer simulations.

In summary, a formal limit of the Boltzmann-Lorent
equation for a tagged particle with mass large compared
particles of the surrounding gas leads to a Fokker-Pla
kinetic equation. This equation can be mapped onto the
responding equation for elastic collisions by a change
space and time scales whose exact solution is known
particular, this equation demonstrates the separation of t
scales associated with the rapid transition from complex
tial transients to hydrodynamics~diffusion!. The property oc-
curs independent of the degree of dissipation in the collisi
between the heavy particle and surrounding gas particles
the present paper, the formal analysis leading to the Fok
Planck equation has been verified by direct simulation of
Boltzmann-Lorentz equation. Finally, the validity of th
Boltzmann-Lorentz equation itself has been confirmed by
lected molecular-dynamics simulations.
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APPENDIX: DETAILED FORM FOR e

The Fokker-Planck limit leading to Eq.~2.8! is restricted
to small mass ratioD and e,1. The parametere is defined
by Eq.~2.11!, with the cooling ratez and friction coefficient
ge given by Eqs.~2.6! and ~2.9!, respectively,

a
-

its
n

FIG. 8. Time evolution of the temperature of the Brownian p
ticle for the same system as considered in Fig. 7 witha50.9. The
temperature is scaled with the time-dependent temperature o
gas. The solid line is the theoretical prediction given by Eq.~2.23!.
Time is measured in the reduce unit defined in the text.
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e[
z~ t !

2age~ t !

5
~12ag

2!G~d/2!

16GS d13

2 DD

S sg

s0
D d21E dvE dv1 g3f~v !f~v1!

.
12ag

2

4A2aD
S sg

s0
D d21F11

3

32
c* ~ag!G . ~A1!

In the third line the integral has been performed using
approximate solution to the Boltzmann equation obtained
expandingf(v) in Sonine polynomials and retaining th
first correction to the Gaussian@1,9#. This approximation has
been tested via Monte Carlo simulation and is accurate
the relevant velocities within a few percent@12#. The contri-
bution c* (ag) above is due to this first correction and
given by

c* ~ag!5
32~12ag!~122ag

2!

9124d1~8d241!ag130ag
2~12ag!

.

~A2!

The conditione,1 restricts the range ofag to that for
weak dissipation in the gas sinceD must be small. The de
. E

jo
n
y

r

tailed values can be adjusted by considering particles of v
different sizes. For simplicity, the sizes have been tak
equal in the simulations reported in Sec. III. Then, for t
chosen values in the DSMC method in Sec. III,ag50.99 and
D51022, the above expression fore simplifies to

e.
0.704

11a
, ~A3!

where we have also particularized ford53. Clearlye,1 for
all 0<a<1 and the Fokker-Planck equation is expected
hold for arbitrary inelasticity of the collisions of the tagge
particle with the gas particles.

In the reported MD simulations, we used hard disksd
52), D5231022, andag50.99. This leads to

e.
0.351

11a
, ~A4!

and, again, the conditione,1 is fulfilled for arbitrary values
of a.

When carrying out the simulations, we have observed t
the agreement with the theoretical predictions inproves as
value ofe decreases, although the validity of the theory
quires juste,1.
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