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Abstract: An analytical uncertainty propagation method based on state transition tensors (STTs)

has been developed for satellite relative motion near J2-perturbed, elliptic orbits. The STTs used to

propagate the relative state uncertainty are derived by adding a correction into the original STTs for

propagating relative state. A new set of transitive STTs is further derived in order to propagate un-

certainties for relative motion with abrupt state jumps, e.g. impulsive maneuvers executing on any

of the two satellites. The nonlinear analytical solution for propagating the first two moments and the

probability density function are formulated by combining the STTs with a Gaussian mixture model.

Numerical results show that the proposed method outperforms the linear covariance method and

provides good agreement with Monte Carlo simulations on nonlinear, non-Gaussian uncertainty

propagation. Moreover, as the STTs can be analytically computed and account for the J2-perturbation,

the proposed uncertainty propagator is computationally efficient, which will be potentially useful

for onboard conjunction analysis in satellites formulation flying mission.

I. Introduction

Nowadays, increasing attentions have been paid to satellite formation flying, as that the use of

multiple satellites in a close formation can have numerous advantages over one single, larger space-

craft [1]. However, the formation flying introduces new problems in maintaining the formation ge-

ometry and in preventing inadvertent collisions between satellites as a result of uncertainties in

neighboring satellites’ states or possible failures of one of the satellite. The equation describing sat-

ellites relative motion is a theoretical basis to the issue of maintaining formation geometry, thus

numerous relative-motion equations have been studied in the past years. The first linear relative-

motion kinematics for near-circular and elliptic reference orbits are the well-known Clohessy-Wilt-

shire (C-W) equations [2] and Tschauner-Hempel (T-H) equations [3], respectively. Schweighart and

Sedwick [4] expanded on the C-W model by including first-order secular effects of J2-perturbation,
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and Yamanaka and Ankersen [5] improved the T-H equations by giving an unperturbed time-de-

pendent solution. These models [2-5] employed rectilinear coordinates to describe the satellites’

relative states. In contrast, more recent works have derived the relative-motion equations based on

the relative orbital elements (ROE), since the ROE varies slowly with the time and allows for in-

cluding perturbations more conveniently. Gim and Alfriend [6, 7] first developed a relative-motion

equation to include the first-order secular and osculating J2-perturbation in arbitrarily eccentric or-

bits, in which better accuracy were also obtained by synthetically using the ROE and curvilinear

coordinates, instead of using rectilinear coordinates. Recently, this J2-perturbed model had been ex-

tended to the complete zonal gravitational problem [8]. Moreover, D’Amico et al. [9] formulated the

relative motion of two spacecraft in arbitrarily eccentric orbits perturbed by J2 and differential drag

by using three different definitions of ROE, Schaub [10, 11] proposed a general method to the mod-

elling and control of relative orbit geometry through ROE, and Biria and Russell [12] derived an

analytical relative-motion equations including J2 and J3 via Vinti's Intermediary. Although the ef-

fects of orbital eccentricity and perturbation had been well-cooperated in these research efforts [4-

12], they were just linear approximations to the naturally-nonlinear orbital dynamics, which would

be insufficient for problems with large separation distance between satellites. To overcome this

shortcoming, additional works had been done to account for the effects of nonlinear terms. Gurfil

and Kasdin [13] established a methodology to obtain arbitrary high-order approximations to the

relative motion between spacecraft by utilizing the Cartesian configuration space in conjunction

with classical orbital elements. Sengupta and Vadali [14] developed a second-order analytical prop-

agation of relative motion near perturbed, elliptic orbits. To sum up, a comprehensive survey of these

relative models can be found in a recent work by Sullivan et al. [15].

On the other hand, for the problem of preventing inadvertent collisions among formation-flying

satellites, it is necessary to propagate the relative state uncertainty, for the objective of collision

probability computation [16, 17] or relative reachable domain analysis [18]. Orbital uncertainty

propagation was usually addressed by linear covariance (LinCov) analysis [19, 20] or nonlinear

Monte Carlo (MC) simulations [21, 22]. The linear methods are very efficient through simplifying

the problem, but their accuracy decreases in highly nonlinear systems or long-duration propagations.

Conversely, MC simulations provide high-precision statistics, but are computationally expensive.

To avoid these shortcomings, some nonlinear analytical or semi-analytical techniques had been de-

veloped in recent years, such as the unscented transformation (UT) method [23], the polynomial

chaos (PC) method [24, 25], the state transition tensors (STTs) method [26, 27], the differential

algebraic (DA) technique [28, 29], the Gaussian mixture model (GMM) [30-32], and the method of

solving Fokker–Planck equation (FPE) [33, 34]. The UT method [23] delivers an efficient, second-
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order approximation only for the first two moments of the mapped statistical distributions by using

less than 2n+1 sigma-points. In comparison to UT, the PC method [24, 25] can provide more accu-

rate information on higher-order moments and the entire PDF, however, it suffers from the problem

of dimensionality. The STTs-based methods [26, 27] can analytically propagate uncertainty and re-

quires no random samples once the STTs are integrated along the nominal trajectory. However,

high-order derivatives of the governing dynamics need to be computed for these methods, which

will be very complex for high-fidelity dynamic systems. Alternatively, the DA technique [28, 29]

supplies a tool to automatically compute the derivatives of functions within a computerized envi-

ronment. Recently, Sun and Kumar [33, 34] proposed a tensor decomposition method for orbital

uncertainty propagation, which is a numerical result for direct solution of FPE. However, solving

FPE is extremely difficult for high-dimension systems, e.g. the 6-dimensional orbital dynamics sys-

tem. Instead, the GMM method [30-32] tends to approximate a non-Gaussian PDF by using a finite

sum of weighted Gaussian density functions. It decouples a large uncertainty propagation problem

into many small problems, which is an effective methodology to represent a non-Gaussian distribu-

tion and to reduce the effects of nonlinearity in dynamics. Moreover, some hybrid methods had also

been developed through integrating the advantages of different uncertainty propagators, such as the

combined GMM and STTs method [35, 36], and the combined GMM and PC method [37]. Recently,

a detailed review of orbital uncertainty propagation was given by Luo and Yang [38].

The nonlinear uncertainty propagators mentioned above [23-34] mainly focus on the

propagation of absolute states uncertainties of satellites, which is usually performed by ground con-

trol centers. However, the uncertainty propagation for formation-flying satellites needs to be carried

out onboard [16]. Thus, analytical algorithms are required so that satellite onboard computers having

low computational capability can perform necessary computations efficiently. To address this issue,

linear analytical uncertainty propagators for satellite relative motion had been developed based on

the linearized relative motion and white Gaussian process noises [17, 39]. However, these ap-

proaches relied on an assumption of circular chief orbit so that the linear relative dynamic models

(e.g., C-W equations) can be used. As an improvement, Lee et al. [16] further proposed an analytical,

closed-form uncertainty propagation method for relative motion near general elliptic orbits. How-

ever, these analytical uncertainty propagators [16, 17, 39] did not account for any practical pertur-

bations (e.g. the Earth oblateness and atmospheric drag). In fact, based on the LinCov technique

[20], all the state transition matrices (STMs) employed in the linear relative-motion models [2-12]

can be directly used to propagate the relative state uncertainty. However, as will be revealed in this

study, the higher-order nonlinear solution for propagating relative state (e.g., [14]) cannot be directly

used for propagate the relative state uncertainty. In addition, the STMs-based LinCov methods are
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only defined to linearly compute the mean and covariance matrix of the relative state uncertainty,

which may be inadequate for long-duration, non-Gaussian uncertainty propagation problems.

Therefore, this study motivates to develop a nonlinear, analytical method for the long-duration,

non-Gaussian uncertainty propagation of satellite relative motion. Based on the analytical solutions

proposed by Sengupta et al. [14] and Gim and Alfriend [6], a set of second-order analytical STTs

for propagating the difference of relative motion is derived. These STTs are then applied to nonlin-

early propagate the mean and covariance matrix of relative state uncertainty. Considering the fact

that a Gaussian distribution will become non-Gaussian distribution when mapped by the inherently

nonlinear relative dynamics, a method combining the GMM and STTs is developed to analytically

propagate the PDF of the relative state uncertainty. Based on the proposed STTs and the library data

of splitting the univariate Gaussian distribution [32], we can analytically evaluate the uncertainty of

the relative state between two satellites at any time of interest without any numerical integration, in

which the effects of impulsive maneuvers and their uncertainties can also be taken into account.

This manuscript is organized as follows. Section II gives the basic dynamical models and in-

troduces the uncertainty propagation problem. Section III derives the second-order state transition

of relative state difference based on the nonlinear solution for satellite relative motion. In Sec. IV,

the nonlinear covariance propagation method is developed by using covariance analysis technique.

Section V investigates the nonlinear propagation of PDF using a method combining the GMM and

STTs. Numerical results and comparisons are presented in Sec. VI, and conclusions are finally drawn

in Sec. VII.

II. Problem Statement

In order to formulate the nonlinear analytical uncertainty propagator with J2-perturbation, the

stochastic orbital dynamics and a general uncertainty propagation problem are first introduced in

this section.

A. Orbital Dynamics

Orbital dynamic problem entailing uncertainty can be expressed by the Itô stochastic differen-

tial equation [40],

( ) ( , ) ( ) ( )d t t dt t d t= +x f x W β (1)

where x∈n is the random state vector, ( )tβ ∈m is a m-dimensional Brownian motion process with

zero mean and covariance ( )tΘ . The vector function ( , )tf x captures the deterministic part of the

dynamics, and W(t) is an n×m matrix characterizing the diffusion. The initial condition uncertainty

is determined by the probability density function (PDF) 0 0( , )p tx , assumed known.
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For the satellite’s motion concerned in this study, the deterministic part ( , )tf x of the dynam-

ics can be given by an ordinary differential equation (ODE) [19]

3
( , ) pert

r
µ= = − + +

r
f x r a u&& (2)

where n∈x  denotes the satellite’s state with a dimensionality of n=6, = [ , ]Tx r v , r and v

are the respective position and velocity vectors described in the central body’s inertial coordinate

system (ICS); μ is the central body’s gravitational constant, r = r , ||∙|| denotes the Euclid norm of 

a vector; pera is the perturbation acceleration caused by factors such as the non-spherical gravity

and the atmospheric drag, only J2-perturbation is considered in this study. u is the thrust acceler-

ation vector. If the impulsive maneuver is assumed, the thrust acceleration can be approximated in

terms of K impulses as follows:

1

( ) ( )
K

k k
k

t t t
=

= ∆ δ −∑u v (3)

where K is the number of impulses, tk is the kth maneuver time, and ( )kt tδ − is the Dirac delta

function.

Relative motion is conveniently described in a local vertical/local horizontal (LVLH) frame,

which is attached to the center of mass of the chief satellite (also called the leader or target), the x-

axis is aligned with the Chief orbit radius, the z-axis is along the orbit normal, and the y-axis com-

pletes the right-handed system. Let’s denote the position of the deputy satellite (also called the fol-

lower or chaser) in the Chief LVLH frame as = [ , , ]Tx y zδ δ δρ , where δx, δy, and δz denote the

components of the position vector along the radial, transverse, and normal directions, respectively.

Considering the central body’s J2-perturbation only, in the Chief LVLH frame, the relative mo-

tion of Deputy satisfies the following dynamics [14]
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(4)

where fθ ω= + is Chief’s argument of latitude, r is the distance from central gravity to Chief,

2Ja and u are the J2-perturbation and thrust acceleration described in the Chief LVLH frame.

Equation (4) has no analytical solution unless some approximations are assumed.

B. Uncertainty Propagation Problem
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Given an initial state 0( )tx and its associated uncertainty which is usually described by a

mean 0( )tm and a covariance matrix 0( )tC , or a PDF 0 0( , )p tx , the issue of uncertainty propa-

gation is to predict the state and its statistical properties (moments or PDF) at a future time, t.

For a given dynamical system that satisfies Eq. (1), the time evolution of a PDF ( , )p tx over

x at time t is described by the FPE [40]:

2

1 1 1

( , ) 1
[ ( , ) ( , )] { ( , )[ ( ) ( ) ( )] }

2

n n n
i T ij

i i j
i i j

p t
p t t p t t t t

t x x x= = =

∂ ∂ ∂
= − +

∂ ∂ ∂ ∂
∑ ∑∑

x
x f x x W WΘ (5)

The FPE is a partial differential equation that governs the time evolution of a PDF. Hence, the

solution of the FPE provides a complete statistical description of a trajectory depends on Eq. (1).

However, uncertainty propagation is always an extremely difficult process if we prefer to a complete

statistical description, because it generally requires one to solve partial differential equations such

as the FPE in Eq. (5) or to carry out particle-type studies such as MC simulations. The solving of

FPE in orbital mechanics is a difficult task, primarily because the underlying FPE is defined in a

relatively high dimensional state–space (6-D) and is driven by the nonlinear perturbed Keplerian

dynamics, as shown in Eq. (2). Moreover, although the MC method has high precision on uncer-

tainty propagation and is easy to implement, it requires a large number of random samples for ob-

taining convergent statistics, which makes it computationally expensive.

Therefore, in order to efficiently quantify uncertainty within given range of the accuracy re-

quirement, approximation methods are usually required, in which the Gaussian distribution assump-

tion of uncertainty and the local linearization of the dynamics are commonly used. The statistics of

a Gaussian distribution can be completely described by the first two moments, and the Gaussian

distribution structure will remain unchanged under linear mapping. Thus, only the first two moments

are required propagating under these assumptions. For a given uncertain state vector x, its mean (m)

and covariance matrix (C) can be defined as,

[ ]

( ) ( )
T T T

E

E E

=

   = − − = −  

m x

C x m x m xx mm
(6)

where E[∙] represents the expectation operator.  

Considering no process noise ( )d tβ in Eq. (1), linearizing the dynamics ( , )tf x along a

nominal trajectory ˆ( )tx , and assuming that the uncertain state ( )tx belongs to Gaussian distribu-

tion, then the uncertainty propagation problem can be simplified to propagate the mean and covari-

ance matrix only, i.e.,

( ) ( ) ( )
T

0 0 0 0 0( ) , , ( ) , ,t t t t t t t t= =m m C CΦ Φ Φ (7)
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where 0 0( )t=m m , 0 0( )t=C C , and Φ is the STM which can be analytically computed or numer-

ically integrated along the nominal trajectory ˆ( )tx , i.e.,

( )
( )0 0

ˆ

,
, ,

t
t t

=

∂
= =

∂
x x

f x
I

x
&Φ Φ Φ (8)

The linear uncertainty propagation in Eqs. (7) and (8) is well-known as linear covariance

(LinCov) analysis technique [20]. This technique is similar with the predict step of a Kalman filter

or an extent Kalman filter. It had been widely used in spaceflight missions [20] as it simplifies the

problem and has a high computation efficiency. However, its accuracy drops down for highly non-

linear dynamics and long-term uncertainty propagation. As shown in Eqs. (2) and (4), the orbital

dynamics is naturally nonlinear. The structure of Gaussian distribution will no longer be preserved

when mapping it through a nonlinear dynamical system. To solve this issue, this study investigates

a nonlinear analytical method for long-term, non-Gaussian orbital uncertainty propagation under J2-

perturbation. A nonlinear covariance propagation method is first formulated based on the analytical

solution of propagating relative state difference. This nonlinear covariance method is then incorpo-

rated into the GMM method to propagate the PDF of a non-Gaussian distribution.

III. State Transition Tensors for Relative Motion

Sengupta et al. [14] proposed a second order analytical solution for the relative motion near

elliptic orbits. Combining this nonlinear solution with Gim and Alfriend’s linear analytical solution

of relative motion near J2-perturbed, elliptic orbits [6], Sengupta et al. [14] further derived a second-

order analytical solution for the relative motion near J2-perturbed, elliptic orbits. However, this J2-

perturbed nonlinear solution only presented a nonlinear mapping from the mean relative orbital el-

ements to the normalized relative state, as shown in Eqs. (46-48) of [14], and we thought that a small

typo might exist in Eq. (46) of [14].

In this section, a more complete second-order analytical solution for the relative motion near

J2-perturbed, elliptical orbits is derived based on the similar concept in [14]. However, the second-

order analytical solution derived here is a little different from that in [14]. Furthermore, in order to

construct a nonlinear uncertainty propagation for satellite relative motion, the obtained second-order

analytical solution for relative motion has been revised and extended to propagate the relative state

difference in Sec. III.D.

A. STTs for Nonlinear, Unperturbed Relative Motion

Let E = [a, e, i, Ω, ω, f] denote the satellite’s classic orbital elements, where a is the semi-major

axis, e is the eccentricity, i is the inclination, Ω is the right ascension of the ascending node, ω is the
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argument of periapsis, and f is the true anomaly. The orbital elements-set E is singular for circular

orbits, e = 0. To avoid this singularity, a set of modified orbital elements can be defined as, e = [a,

θ, i, q1, q2, Ω], where 1 cosq e ω= , 2 sinq e ω= , and fθ ω= + is the argument of latitude. More-

over, it is defined that the relative orbital elements are: δe = [δa, δθ, δi, δq1, δq2, δΩ], and the nor-

malized relative orbital elements are δœ = [δa/a, δθ, δi, δq1, δq2, δΩ]. In the Chief LVLH frame, it

is defined that the time-dependent relative state is: ( ) = [ , ]Ttδ x &ρ ρ , and the normalized relative

state is: ( ) = [ , ]Tδ θ ′x ρ ρ , where the symbol (˙) denote the first derivative with respect to time, and 

the symbol ( )′ denote the first derivative with respect to θ. Based on these definitions, the relative

motion between two satellites can be described using the relative states: δx(t) and δx(θ), or using the

relative orbital elements: δe and δœ.

By considering no J2-perturbation ( 2J = 0a ) and no thrust acceleration ( = 0u ) in Eq. (4),

Sengupta et al. [14] proposed a second-order analytical propagation of the normalized relative or-

bital elements δœ, i.e.,

0 00 00

1
( ) ( , ) ( ) ( , ) ( ) ( )

2
f f fδ δ δθ θ θ θ θ θ θ δ θ= + ⊗ ⊗œ œ œH œG (9)

and a second-order analytical mapping from the normalized relative orbital elements δœ(θ) to the

normalized relative state δx(θ), i.e.,

1
( ) ( ) ( ) ( ) ( ) ( )

2
θ θδ δ δ δθ θ θ θ= + ⊗ ⊗œ œ œx P Q (10)

where 6 6×∈G  and 6 6×∈P  are STMs, 6 6 6× ×∈H  and 6 6 6× ×∈Q  are the third-order STTs,

and the operator ⊗ denotes the Kronecker tensor product. Since a matrix is also a second-order

STT, both the STM and the third-order STT will be denoted as STTs. The STTs (G, P, H, Q) were

given in [14]. Combining Eq. (9) with Eq. (10), a second-order analytical propagation of the nor-

malized relative state ( )δ θx was also derived in [14].

B. STM for Linear, Perturbed Relative Motion

Considering the J2-perturbation in Eq. (4), Gim and Alfriend [6] derived a linear solution of

propagating the mean relative orbital elements δ e ,

0 0( ) ( , ) ( )f ft t t tδ δ= ee eφ (11)

a linear mapping between the osculating relative orbital elements ( )tδ e and the mean relative or-

bital elements ( )tδ e ,

( ) ( ) ( )t t tδ δ=e D e (12)

and a linear mapping between the relative state δX(t) and the osculating relative orbital elements

( )tδ e ,
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( ) ( ) ( )t t tδ δ=X eΣ (13)

where δX(t) = [δx, δvx, δy, δvy, δz, δvz], a horizontal bar, i.e. , over a variable denotes that this

variable is calculated using Chief’s mean orbital elements ( )te , the STMs (Σ , D , eφ ) were given

in [6].

Specifically, the relative states (δx(t), δX(t), δx(θ)) and the relative orbital elements (δe(t), δœ(t))

satisfy the following equations,

( ) ( ) ( ) ( )

( ) ( ) ( )

t t

t t t

θ θδ δ δ

δ δ

= =

=

x Π X T x

œe Γ
(14)

where the transformation matrices, Π , T and Γ , were given in [14].

C. STTs for Relative State in J2-Perturbed, Elliptic Orbits

In the nonlinear solution of relative motion, in order to account for J2-perturbation, it is neces-

sary to use 0( , )fθ θeφ in Eq. (11) instead of 0( , )fθ θG in Eq. (9), and to use ( )θΣ in Eq. (13)

instead of ( )θP in Eq. (10). Considering the transformations in Eq. (14), 1−=e Gφ Γ Γ and

1 1− −=Σ Π TPΓ were satisfied in the absence of J2-perturbation.

Substituting Eqs. (11), (12) and (14) into Eq. (9), a nonlinear propagation from the mean

relative orbital elements to the osculating orbital elements under J2-perturbation can be obtained as,

0

0

1
0 0

1
0 0

( ) ( ) ( ) ( , ) ( ) ( )

1
( ) ( ) ( ) ( , ) ( ) ( )

2

f f f f

f f f f

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

δ δ

δ δ

−

−

=

+ ⊗ ⊗

eΓ D Γ

Γ D

œ

H œ œΓ

œ φ

(15)

By substituting Eq. (15) into Eq. (10), and comprising linear and quadratic terms only, then a

second-order propagation from the mean relative orbital elements 0( )δ θœ to the normalized rela-

tive state ( )fδ θx can be derived as

[ ] [ ]0 0 0 0

0 0

1 1
0

0

0

0

1
( ) ( , ) ( ) ( ) ( ) ( ) ( )

2

1
( ) ( , ) ( ) ( )

2

( ) ( ) ( ), ( ) ( ) ( , ) ( )

f f f

f f

f f f f f f

θ θ θ θ θ θ θ θ

θ θ θ

δ

θ θ

θ θ θ θ θ θ θ

δ δ δ

δ δ

θ− −

= + ⊗ ⊗

+ ⊗ ⊗

= =

e

e

x A Γ Q B B

A H

A T Π

œ œ œ

œ

Σ D

œ

D B

φ

Γ

Γ φ Γ

(16)

By considering only the average effect of J2-perturbation in the second-order terms of Eq. (16),

i.e. using the mean relative orbital elements in the last two terms of Eq. (16), Sengupta et al. [14]

presented another nonlinear propagation from the mean relative orbital elements 0( )δ θœ to the

normalized relative state ( )fδ θx , i.e.,

[ ] [ ]

1
0 0

0 0 0

0

00

( ) ( ) ( ) ( ) ( , ) ( ) ( )

1 1
( , ) ( ) ( ) ( ) ( ) ( )

2 2

f f f f f

f f

θ θ θ θ θ θ θ θδ δ

δ δ δ δθ θ θ θ θ θ θ

−=

+ ⊗ ⊗ + ⊗ ⊗

ex T ΠΣ D Γ œ

œ œH Ξœ œF Q Ξ

φ

(17)
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where 1
0 0( ) ( , ) ( )f fθ θ θ θ−= eΞ Γ φ Γ . It should be noted that, in the Eq. (46) of [14], the matrix F in

Eq. (17) was given as, ( )fθ=F Σ . We thought that this formulation of F matrix ( ( )fθ=F Σ ) was

incorrect, because some transformations between different relative orbital elements and relative

states were missed. This might be a small typo for the Eq. (46) of [14]. Considering the coordinate

transformations in Eq. (14), the correct expression of F matrix can be obtained as

1( ) ( ) ( )f f fθ θ θ−=F T ΠΣ Γ .

As illustrated in Sec. VI.A, the accuracy of Eq. (16) is slightly better than that of Eq. (17) in

satellite relative motion propagation. Therefore, in the following context, we only use Eq. (16) to

further derive a complete second-order state transition of relative motion by using the time-depend-

ent relative state ( )tx .

Rewriting Eq. (16) to be a brief expression, we obtain,

0 0

0 0

0 0

0 0 0

0

1
( ) ( , ) ( ) ( , ) ( ) ( )

2

( , ) ( , ) ( )

( , ) ( ) ( , ) ( )

f f f

f f

ijk il lm mjk ilm lj mk
f f f fQ A H Q B B

θ θ θ θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

δ δ

Γ θ

δ δ= + ⊗ ⊗

=

= +

e

œ œx Q

A

œP

P

%%

%

%

φ Γ (18)

where the Einstein summation notation is employed for all the dummy variables (i, j, k, l, m), e.g.,

for a dummy variable m,
6

1

im m im m

m
Φ x Φ x

=
=∑ .

Letting 0fθ θ= , the following approximate solution for a given relative state 0( )δ θx can be

obtained by applying a reversion of series on (18),

1 1
0 0 0 0 0 0 0 0

1 1
0 0 0 0 0 0

1
( ) ( , ) ( ) ( , ) ( , )

2

( , ) ( ) ( , ) ( )

δ θ θ θ δ θ θ θ θ θ

θ θ δ θ θ θ δ θ

− −

− −

= − ⊗

   ⊗   

P x P Qœ

P x P x

%% %

% %
(19)

where the initial conditions for calculating 0 0( , )θ θP% and 0 0( , )θ θQ% using Eq. (18) are:

00 6( , )θ θ = Ieφ and 0 0( , ) 0mjkH θ θ = , In is an n-dimension identical matrix.

Substituting Eq. (19) into Eq. (18), the analytical nonlinear propagation of the normalized

relative state ( )δ θx can be derived as,

0 0 0 0 0

1
0 0 0 0

1 1
0 0 0 0 0 0

1 1
0 0 0 0 0 0 0

1
( ) ( , ) ( )+ ( , ) ( ) ( )

2

( , ) ( , )[ ( , )]

( , ) ( , )[ ( , )] [ ( , )]

( , ) ( , )[ ( , )] [ ( , )]

f f f

ij il lj
f f

ijk ilm lj mk
f f

il lmn mj nk
f

Φ P

Ψ Q

Φ Q

δ θ θ θ δ θ θ θ δ θ δ θ

θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

−

− −

− −

= ⊗ ⊗

=

=

−

x Φ x x x

P

P P

P P

% %

% % %

%% % %

%% % %

Ψ

(20)

Moreover, substituting Eq. (14) into Eq. (20), the nonlinear analytical propagation of the time-

dependent relative state ( )tx can be finally obtained as
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0 0 0 0 0

1
0 0 0

1 1
0 0 0 0

1
( ) ( , ) ( )+ ( , ) ( ) ( )

2

( , ) ( ) ( , )[ ( )]

( , ) ( ) ( , )[ ( )] [ ( )]

f f f

ij il lm mj
f f f

ijk il lmn mj nk
f f f

t t t t t t t t

Φ t t T t Φ t t t

Ψ t t T t Ψ t t t t

δ δ δ δ

−

− −

= ⊗ ⊗

=

=

x Φ x x x

T

T T

%

%

Ψ

(21)

where the STTs ( ,Φ Ψ ) can be analytically calculated using Chief initial orbital element 0( )te and

the propagation time 0ft t t∆ = − .

D. STTs for Relative State Difference in J2-Perturbed, Elliptic Orbits

Denote Deputy’s nominal relative state as ˆ ( )tδ x , Eq. (21) gives an analytical, second-order

state transition of relative state ( )tδ x in J2-perturbed, elliptic orbits. However, it cannot be directly

used for propagating the relative state difference, i.e. ˆ( ) ( ) ( )d t t tδ δ= −x x x . In order to propagate

the satellite’s relative state uncertainty, we need to derive a nonlinear mapping of the relative state

difference which can be regarded as a random realization of the relative state uncertainty.

Assuming that there is a difference ( )d tx on the nominal relative state ˆ ( )tδ x , then its real

relative state ( )tδ x can be expressed as

ˆ( ) ( ) ( )t t d tδ δ= +x x x (22)

where the difference ( )d tx can be regarded as a random realization of Deputy’s relative state un-

certainty.

Substituting Eq. (22) into Eq. (21), we obtain

0 0

0 0

0 0

( , ) 0 ( , ) 0 0

( , ) 0 ( , ) 0 0

( , ) 0 0 ( , ) 0 0

1
ˆ ˆ ˆ ˆ+

2

1
+

2

1 1
ˆ ˆ

2 2

f f

f f

f f

f f t t t t

t t t t

t t t t

d

d d d

d d

δ δ δ δ

δ δ

+ = ⊗ ⊗

+ ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

x x Φ x x x

Φ x x x

x x x x

Ψ

Ψ

Ψ Ψ

(23)

where ˆ ˆ ( )i itδ δ=x x and ( )i id d t=x x for i = 0, f. Comparing Eq. (23) with the propagation of

0
ˆ ( )tδ x using Eq. (21), the propagation of relative state difference 0( )d tx can be expressed as

0 0

0 0 0 0

( , ) 0 ( , ) 0 0

( , ) ( , ) ( , ) ( , ) 0

1
+

2

1
ˆ( )

2

f f

f f f f

f t t t t

ij ij ikj ijk k
t t t t t t t t

d d d d

Φ Φ xΨ Ψ δ

= ⊗ ⊗

= + +

x Φ x x x
)

)

Ψ

(24)

Here, ,Φ
)
Ψ is the STTs for propagating the relative state difference. Comparing Eq. (24) with the

second-order solution in Eq. (21), the propagation of relative state difference depends on both the

relative state difference and the nominal relative state. That is, comparing to the propagation of

relative state, the propagation of relative state difference requires a correction on the first-order STT
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0( , )ft tΦ .

IV. Nonlinear Covariance Propagation of Relative State Uncertainty

This section develops a nonlinear method for propagating the first-two moments of relative

state uncertainty by using the derived STTs in Eq. (24). A nonlinear covariance propagation for free

relative motion (i.e., no maneuvers on both satellites) is first formulated in Sec. IV.A. Then, it is

extended to more complex scenarios that consider maneuvers executing on Deputy or Chief. For

these scenarios, a set of transitive STTs needs to be derived by considering the abrupt state jumps

caused by maneuvers, as shown in Secs. IV.B and IV.C.

A. Covariance Propagation for Free Relative Motion

Substituting Eq. (24) into Eq. (6), the nonlinear propagation of mean and covariance matrix

for the initial relative state uncertainty can be obtained as

0 0

0 0

0 0 0 0

0 0

( , ) 0 ( , ) 0 0

( , ) ( , ) 0 0

( , ) ( , ) ( , ) ( , ) 0 0 0

( , ) ( , ) 0 0 0 0

1
( ) [ ] [ ]

2

( ) [ ]

1
[ ]

2

1
[

4

f f

f f

f f f f

f f

i ia iab
f t t t t

ij ia jb
f t t t t

ia jbc jb ibc
t t t t t t t t

iab jcd b
t t t

a a b

a b

a b c

a c
t

m t Φ dx dx dx

C t Φ Φ dx dx

Φ Φ dx dx dx

dx dx

E E

E

E

dxE dx

Ψ

Ψ Ψ

Ψ Ψ

+

+

= +

=

 +
 

)

) )

) )

] ( ) ( )i j
f

d
fm t m t−

(25)

Assuming that the initial relative state uncertainty is Gaussian distribution, then the third and

fourth original moments can be computed using the mean and covariance matrix [26]:

0

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

0 0

0 0 0 0 0 0 0 0 0

0

0 0

0 0 0

0

0 0

0

0

0 0 0

0

[ ]

[ ]

[ ]

[ ]

a

a b

a b c

a b c d

a

ab a b

a b c a bc b ac c ab

a b c d ab cd ac bd ad bc

a b cd a c bd a d bc b c ad b d ac

E dx m

E dx dx C m m

E dx dx dx m m m m C m C m C

E dx dx dx dx m m m m C C C C C C

m m C m m C m m C m m C m m C m

+ + +

=

= +

= + + +

=

+ + + + + + 0 0
c d abm C

(26)

For the sake of simplicity, the nonlinear covariance propagation in Eqs. (25) and (26) is de-

noted as

0 00 0 0 0 ( , ) ( , )
ˆ ˆ, , ; , , ,

f ff f t t t tSTT δ   =   
m C m C e x Φ

)
Ψ (27)

where ( )i it=m m and ( )i it=C C for i = 0, f, 0 0
ˆ ˆ( )t=e e is Chief nominal orbital element, and

0
ˆδ x is the initial nominal relative state. 0ê and 0

ˆδ x are used to compute the STTs
0( , )ft tΦ

)
and

0( , )ft tΨ .

Equation (24) gives a nonlinear analytical propagation of relative state difference for “free

relative motion”, i.e., neither Deputy nor Chief executes any maneuver ( = 0u ) and thus the relative
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trajectory is consecutive. However, this consecutive mapping cannot be directly used to propagate

the relative state difference ( )d tx while there is an abrupt state jump in any of the satellites, e.g.,

the Deputy or Chief executes an impulsive maneuver at time t ( 0 ft t t< < ). If only the first-order

solution is considered in Eq. (24), the STM Φ
)

in (24) is naturally transitive, i.e.

0 0( , ) ( , ) ( , )f ft t t t t t=Φ Φ Φ
) ) )

. However, the STT Ψ is not transitive when the second-order solution is con-

sidered. In order to keep the second-order precision in the propagation of relative state uncertainty,

transitive STTs are derived in the following two sections for scenarios with Deputy and Chief ma-

neuvering, respectively.

B. Covariance Propagation with Deputy Maneuvering

We first consider the scenario with Deputy executing impulsive maneuvers, i.e. ,k kt ∆v (k = 1,

2, …, K, t0 ≤ t1 <…< tK ≤ tf), during the propagation period 0[ , ]ft t . Here, the impulses k∆v are

described in the Chief LVLH frame at kt . The relative trajectory is divided into (K+1) segments by

the K impulses on Deputy. Because an abrupt state jump exists in the relative trajectory at each kt ,

the STTs ,Φ
)
Ψ in Eq. (24) need to be computed independently for every segmented trajectory

after adding the impulse k∆v into Deputy velocity.

Let’s consider that the impulsive maneuver k∆v (k = 1, 2, …, K) is also uncertain, then the

real impulse can be written as: ˆ
k k kd∆ = ∆ +v v v . Here, ˆ

k∆v is the nominal impulse, and

k kd δ= ∆v v is a random realization of the impulse uncertainty. Thus, the post-maneuver nominal

relative state 1
ˆδ +x and the post-maneuver relative state difference 1d +x can be expressed as

1 1 1 1 3 1

1 1 1 1 3 1

ˆ ˆ ˆ ˆ ˆ, [ , ]

, [ , ]

T
v v

T
v vd d d d d

δ δ+

+

= + = ∆

= + =

0

0

x x x x v

x x x x v
(28)

where the superscript “+” denotes the state after an impulse.

Briefly, by substituting Eqs. (24) and (28) into Eq. (6) repeatedly, the relative state uncer-

tainty can be segmentally propagated to the final time along the (K+1) segments of relative trajec-

tories, i.e.,

1 1

1 1

1 1 1 1

1 ( , ) ( , )

1 ( , ) ( , )

( , ) ( , ) ( , ) ( , )

1
( ) ) ( ) ( )

2

) ( ) ( )

1
( [ ])

2

(

(

k k k k

k k k k

k k k k k k k k

i ia a iab ab a b
k t t k t t k k k

ij ia jb ab a b
k t t t t k k k

ia jbc jb ibc
t t t t t t t

a
t

c
k

b
k k

m Φ m C m m

C Φ Φ C m m

Φ Φ E dx dx dx

Ψ

Ψ Ψ

+ +

+ +

+ + + +

+ + + +
+

+ + +
+

+

 = + + 

 = + 

 +  +

)

) )

) )

1 1( , ) ( , ) 1 1

1
( [ ])

4 k k k k

iab jcd i j
t t t t k k k k k k

a b c dE dx dx dx dx m mΨ Ψ
+ +

+
+ ++ −

(29)
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where k = 0, 1, …, K, 1K ft t+ = ; 0 0d d+ =x x , k k vkd d d+ = +x x x and 3[ , ]T
vk kd d= 0x v ; 0 0

+ =m m ,

k k vk
+ = +m m m , 0 0

+ =C C , and k k vk
+ = +C C C . [ ]3, [ ]

T

vk kE d= 0m v , and [ ]kE dv is the mean of

the kth impulse uncertainty. Let ( )kdC v be the covariance matrix of the kth impulse uncertainty,

then vkC can be expressed as [ ]3 3 3 3 3 3, ; , ( )vk kd× × ×= 0 0 0C C v . In Eq. (26), let 0 k
+=m m and

0 k
+C = C , then the third and fourth moments at post-maneuver times, i.e. ( [ ])k k

a b c
kE dx dx dx + and

( [ ])k k k k
a b c dE dx dx dx dx + , can be calculated.

The uncertainty propagation in Eq. (29) is simple and easy-to-implement. However, as the

numerical results shown in Sec. VI, it is low-accuracy on propagating the relative state uncertainty,

because the relative state uncertainty ,k km C (k = 1, …, K) in Eq. (29) may become very large

when dispersed by the former segments of trajectories (e.g. k < 3), which makes the second-order

solution of Eq. (29) become insufficient to approximate the real solution for the latter segments of

trajectories (i.e. k > 3), and thus large truncation errors may be produced. To avoid this problem, a

set of transitive STTs is derived as follows.

For the sake of clearance, we first consider that only one impulsive maneuver 1t , 1∆v is exe-

cuted by Deputy, and the final time is set to be 2t . That is to propagate the initial relative state

difference 0( )d tx from 0t to 2t , during which the first impulse is performed at 1t .

According to Eq. (24), the propagation of relative state difference in the first segmented tra-

jectory can be expressed as

1 0 1 01 ( , ) 0 ( , ) 0 0

1
+

2
t t t td d d d= ⊗ ⊗x Φ x x x

)
Ψ (30)

Similarly with Eq. (30), the propagation of relative state difference in the second segmented

trajectory can be expressed as

2 1 2 1

2 1 2 1 2 1 2 1

2 ( , ) 1 ( , ) 1 1

( , ) ( , ) ( , ) ( , ) 1

1
+

2

1
ˆ

2

t t t t

kij ij ikj ijk
t t t t t t t t

d d d d dA dB dC

Φ Φ Ψ Ψ δ

+ + +

+

= ⊗ ⊗ = + +

   = + +   

x Φ x x x

x

)

)

Ψ

(31)

where the STTs ,Φ Ψ is computed based on Eq. (21) with the Chief’s nominal orbital element

1̂e , and the terms dA, dB and dC are obtained by substituting Eq. (28) into Eq. (31), i.e.,

2 1 2 1 2 0 2 0

2 1 2 1

2 1 1 0 2 1

( , ) 1 ( , ) 1 1 ( , ) 0 ( , ) 0 0

( , ) 1 ( , ) 1 1

( , ) 1 1 ( , ) ( , ) 0 1

1 1
+ +

2 2

1
+

2

t t t t t t t t

t t v t t v v

t t v t t t t v

dA d d d d d d

dB d d d

dC d d d d

= ⊗ ⊗ = ⊗ ⊗

= ⊗ ⊗

= ⊗ ⊗ = ⊗ ⊗ ⊗

Φ x x x Φ x x x

Φ x x x

x x Φ x x

) )

)

)

Ψ Ψ

Ψ

Ψ Ψ

(32)
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Here, 1dx is eliminated from the expression of 2dx by substituting Eq. (30) into Eq. (32) and

comprising linear and quadratic terms only. Let
2 0( , )t tΦ

)
and

2 0( , )t tΨ denote the transitive STTs from

0t to 2t , then they are expressed as

2 0 2 1 1 0

2 0 2 1 1 0 2 1 1 0 1 0

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

ij il lj
t t t t t t

ijk il ljk imn mj nk
t t t t t t t t t t t t

Φ Φ Φ

Φ Φ ΦΨ Ψ Ψ

=

= +

) ) )

) ) ) (33)

It is reasonable to assume that the initial relative state uncertainty 0 0( , )p d tx and the impulsive

maneuver uncertainty 1 1( , )vp d tx are independent random variables. Therefore, all the cross mo-

ments, such as 0 1[ ]vE d dx x , 0 0 1[ ]vE d d dx x x , 0 1 1[ ]v vE d d dx x x , 0 0 0 1[ ]vE d d d dx x x x ,

0 0 1 1[ ]v vE d d d dx x x x and 0 1 1 1[ ]v v vE d d d dx x x x , are zeros. In order to propagate both the initial relative

state uncertainty and the first impulsive maneuver uncertainty, substituting Eqs. (31) and (32) into

Eq. (6) and considering that the cross moments are zeros, then the mean and covariance matrix of

2dx can be obtained as

[ ]
0 0 2 1 2 12 2 0 0 0 0 ( , ) ( , ) 1 1 1 1 ( , ) ( , )

ˆ ˆ ˆ ˆ, , ; , , , , ; , , ,
f ft t t t v v t t t tSTT STTδ δ +   = +   

m C m C e x Φ m C e x Φ
) )

Ψ Ψ (34)

where the similar denotation of Eq. (27) is applied to describe the propagation of impulsive maneu-

ver uncertainty, and 1
ˆδ +x is the nominal relative state after 1∆v . 1vm and 1vC is the same with

those in (29). Assuming that the impulse uncertainty 1 1( , )vp d tx is Gaussian distribution, then the

third and fourth moments of 1vdx can also be computed using Eq. (26).

Equation (34) shows that the initial relative state uncertainty and the impulsive maneuver un-

certainty can be independently propagated and summed at the final time.

The process of deriving Eq. (34) can be recursively applied to problem with more than one

impulsive maneuvers, i.e. ,k kt ∆v (k = 1, 2, …, K, t0 ≤ t1 <…< tK ≤ tf). Considering that the impulses

uncertainties ( , )vk kp d tx and the initial relative state uncertainty 0 0( , )p d tx are pairwise inde-

pendent, then the first two moments of final relative state uncertainty can be obtained as

0 00 0 0 0 ( , ) ( , )

( , ) ( , )
1

ˆ ˆ, , ; , , ,

ˆ ˆ, ; , , ,

f f

f k f k

f f t t t t

K

vk vk k k t t t t
k

STT

STT

δ

δ +

=

   =   

 +
 ∑

m C m C e x Φ

m C e x Φ

)

)

Ψ

Ψ
(35)

where ˆ
ke is Chief nominal orbital element at kt , ˆ

kδ +x is the nominal relative state after impulse

k∆v . ˆ
ke and ˆ

kδ +x are used to compute the transitive STTs ( , ) ( , ),
f k f kt t t tΦ

)
Ψ , which can be computed

by recursively using Eq. (33). For example, replacing
2 1 2 1( , ) ( , ),t t t tΦ

)
Ψ and

1 0 1 0( , ) ( , ),t t t tΦ
)

Ψ with

3 2 3 2( , ) ( , ),t t t tΦ
)

Ψ and
2 0 2 0( , ) ( , ),t t t tΦ

)
Ψ , respectively; then the STTs

3 0 3 0( , ) ( , ),t t t tΦ
)

Ψ can be computed using
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Eq. (33).

As shown in Eq. (35), the first two moments of the initial relative state uncertainty and im-

pulses uncertainties can be independently propagated and summed at the final time, this is benefitted

from the fact that those input uncertainties are independent random variables and thus their cross-

moments are zeros. However, as shown in Eqs. (31) and (32), the initial relative state difference

0dx and the impulse difference vkdx can not be independently propagated and summed at the final

time, because the cross term dC in Eq. (32) is non-zero.

As shown in Eq. (35), the nominal relative state ˆ
kδ +x is required at each maneuver ,k kt ∆v , it

can be segmentally propagated using

3

1 1 1

ˆ ˆ ˆ ˆ ˆ, [ , ] , 0,1...

1
ˆ ˆ ˆ ˆ( , ) + ( , )

2

T
k k vk vk k

k k k k k k k k

k K

t t t t

δ δ

δ δ δ δ

+

+ + +
+ + +

= + = ∆ =

= ⊗ ⊗

0x x x x v

x Φ x x xΨ
(36)

where 0 0
ˆ ˆδ δ+ =x x and 1K ft t+ = , it is noted that the STM 1( , )k kt t+Φ (but not 1( , )k kt t+Φ

)
) is used

for propagating the nominal relative state.

C. Covariance Propagation with Chief Maneuvering

The problem considering maneuvers on Chief is different from that on Deputy, because the

LVLH frame used to describe the relative state is attached on Chief, thus the description of Deputy’s

relative state will be affected by Chief maneuvers.

Let’s consider that Chief performs K impulsive maneuvers ,k kt ∆v (k = 1, 2, …, K, t0 ≤ t1 <…<

tK ≤ tf) during the propagation period 0[ , ]ft t , then the relative trajectory is divided into (K+1) seg-

ments by K impulses. Denoting the real impulse as ˆ
k k kd∆ = ∆ +v v v , the post-maneuver nominal

relative state ˆ
kδ +x and the post-maneuver relative state difference kd +x can be expressed as

( )

( )
3

3

ˆ ˆ ˆ ˆ ˆ, [ , ]

, [ , ]

T
k k k vk vk k

T
k k k vk vk kd d d d d

δ δ+

+

= − = ∆

= − =

0

0

x M x x x v

x M x x x v
(37)

where k = 1, 2, …, K, kdx is the relative state difference at kt ; ( ) ( )k I k L kt t+=M M M , ( )L ktM is

a 6×6 matrix that transform a state (position and velocity) from the Chief LVLH frame to the ICS

frame, and ( )I ktM is a state transformation matrix from the ICS frame to the Chief LVLH frame.

It is noticed that, 1( ) [ ( )]I k L kt t+ −≠M M , because ( )I kt
+M is computed based on Chief post-maneu-

ver state at kt . The mathematic expression of LM and IM were given in [41].

In order to propagate the initial relative state uncertainty and Chief’s impulses uncertainties,

we first consider only one impulsive maneuver 1t , 1∆v on Chief, and the final time is set to be 2t .
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That is to propagate the initial relative state difference 0( )d tx from 0t to 2t , during which Chief

executes an impulse at 1t . Substituting Eq. (37) into Eq. (31), the relative state difference at 2t

was obtained as

( ) ( ) ( )
2 1 2 1

2 1 2 1 2 1 2 1

2 ( , ) 1 1 ( , ) 1 1 1 1

( , ) ( , ) 1 ( , ) ( , ) 1 1

1
+

2

,

t t v t t v v

ijk imn mj nk
t t t t t t t t

d d d d d d d

M Mψ Ψ

= − ⊗ − ⊗ −

= =

x x x x x x x

Φ M
)

ϕ ψ

ϕ

(38)

By substituting Eq. (30) into Eq. (38) and comprising linear and quadratic terms only, we

eliminate 1dx from the expression of 2dx and obtain

2 0 2 0

2 1 2 1 1 0 2 1

2 ( , ) 0 ( , ) 0 0

( , ) 1 ( , ) 1 1 ( , ) ( , ) 0 1

1
+

2

1
+

2

t t t t

t t v t t v v t t t t v

d d d d

d d d d d

= ⊗ ⊗

− ⊗ ⊗ − ⊗ ⊗ ⊗

x x x x

x x x x x

ϕ ψ

ϕ ψ ϕ ψ

(39)

where.
2 0( , )t tϕ and

2 0( , )t tψ are the transitive STTs from 0t to 2t , they are calculated as below,

2 0 2 1 1 0

2 0 2 1 1 0 2 1 1 0 1 0

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

ij il lj
t t t t t t

ijk il ljk imn mj nk
t t t t t t t t t t t t

ϕ ϕ ϕ

ψ ϕ ψ ψ ϕ ϕ

=

= +
(40)

Similarly with the derivation of Eq. (35), considering the fact that the impulses uncertainties

( , )vk kp d tx and the initial relative state uncertainty 0 0( , )p d tx are independent random variables,

we substitute Eq. (39) into Eq. (6) and extend it to the problem with multiple impulses executing

on Chief, then the mean and covariance matrix of final relative state uncertainty can be derived as

0 00 0 0 0 ( , ) ( , )

( , ) ( , )
1

ˆ ˆ, , ; , , ,

ˆ ˆ, ; , , ,

f f

f k f k

f f t t t t

K

vk vk k k t t t t
k

STT

STT

δ

δ+ +

=

   =   

 + −
 ∑

m C m C e x

m C e x

ϕ ψ

ϕ ψ
(41)

where ˆ
k
+e is Chief nominal orbital element after the impulse k∆v , and ˆ

kδ +x is the post-maneuver

nominal relative state, which can be computed using Eq. (36) by replacing ˆ ˆ ˆ
k k vkδ δ+ = +x x x with

( )ˆ ˆ ˆ
k k k vkδ δ+ = −x M x x .

It should be noted that, in comparison to Eq. (36), there are two differences in Eq. (41). First,

Chief post-maneuver orbital element ˆ
k
+e is used; Second, there is a minus “-” before the first-order

STT ( , )f kt tϕ . The relative state uncertainty can also be segmentally propagated to the final time using

Eq. (29) by replacing
1( , )k kt t+

Φ
)

and
1( , )k kt t+

Ψ with
1( , )k kt t+

−ϕ and
1( , )k kt t+

ψ .

Finally, let’s consider the problem that both Deputy and Chief have executed impulsive maneu-

vers during the period 0[ , ]ft t . This problem has two situations: 1) the maneuver time of Deputy is

different from that of Chief, and 2) Deputy and Chief independently execute a maneuver at the same
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time.

For the first situation, the final mean and covariance matrix can be computed by independently

applying the second terms of Eqs. (36) and (41) at Deputy maneuver time and Chief maneuver

time, respectively.

For the second situation, Eq. (41) can be used to compute the final mean and covariance matrix,

in which the terms ˆ
kδ +x , vkm and vkC should be replaced using

( )ˆ ˆ ˆ ˆ

,

D C
k k k vk vk

C D C D
vk vk vk vk vk vk

δ δ+ = + −

= − = +

x M x x x

m m m C C C
(42)

where the superscripts “C” and “D” denote Chief and Deputy, respectively. Combing Eq. (42) with

(41), the first two moments of final relative state uncertainty can be propagated for the scenario with

Deputy and Chief executing maneuvers simultaneously.

V. Nonlinear Propagation of Probability Density Function

Equations (27), (35) and (41) can be used to propagate the first two moments of relative state

uncertainty. However, the final relative state uncertainty may not keep Gaussian distribution even

though all the input uncertainties are assumed Gaussian distributions, because the Gaussian struc-

ture cannot be preserved after a nonlinear mapping such as the orbital dynamics in Eq. (4). For a

non-Gaussian distribution, the first two moments are insufficient to fully describe its statistical

properties. To address this problem, a method to propagate the non-Gaussian PDF is developed by

combing the nonlinear covariance propagation with a GMM approach.

A. Gaussian Mixture Model

The main idea of GMM approach is to approximate an arbitrary PDF using a finite sum of

weighted Gaussian density functions, i.e.,

( ) ( )
1

ˆ , ; ,
N

i g i i
i

p t p
=

=∑x x m Cω (43)

where N is the total number of Gaussian kernels, im and iC represent the mean and covariance

matrix of the ith Gaussian density function ( ); ,g i ip x m C , respectively; iω denotes the weight of

the ith Gaussian kernel, it is determined by minimizing the difference between the real PDF ( ),p t x

and the approximated PDF ( )ˆ ,p t x [30-32] under the positivity and normalization constraints, i.e,

1

1; 0, 1,2,...,
N

i i
i

i N
=

= ≥ =∑ω ω (44)

Theoretically, the mixture PDF, ( )ˆ ,p t x , approximates to the real PDF ( ),p t x by increasing
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the number of mixtures, N. There are several methods available to split the initial Gaussian distribu-

tion into a GMM [30-32], this study employs the splitting method proposed by DeMars et al. [30].

This method first splits a univariate Gaussian distribution ( );0,1gp x into N homoscedastic com-

ponents, i.e. ( , , )i imω σ% % % (i = 1, 2, …N); and then applies the univariate splitting parameters

( , , )i imω σ% % % to the multivariate case using an eigenvalue decomposition, where iω% , im% and σ% are

the weight, mean, and standard deviation for the ith univariate Gaussian mixture, respectively. An

advantage of this method is that the splitting process of univariate Gaussian is independent of the

user’s problem, thus it can be computed offline and saved as database. Vittaldev and Russell [32]

provided a library data of splitting the univariate Gaussian distribution up to 39 components, in

which the parameters ( , , , )i iN mσ ω%% % (i = 1, 2, …N) for different N (≤ 39) are provided. To apply 

this database to the user’s multivariate uncertainty propagation with PDF ( )0 0; ,gp x m C , a splitting

direction needs be selected first. Generally, the direction with the largest nonlinearity is selected, for

the orbital uncertainty propagation problem, the radial position or transverse velocity [30, 42, 43]

usually has a larger nonlinearity than the other components. If the multivariate input uncertainty

( )0 0; ,gp x m C is split along the jth dimensionality of x, then the mean and covariance matrix for

the ith Gaussian mixture can be expressed as [30]

0

2
1 2 0

, ,

diag{ , ,..., ,..., },

T
i i i j i j i i

T
i j n

mω ω λ

λ λ σ λ λ

 = = + =


= =

m m C V V

C V V

% %

%

υ Λ

Λ Λ
(45)

where diag{}⋅ denotes to construct a matrix with the given diagonal elements, V and Λ are the

eigenvalue matrix and the eigenvector matrix of 0C , respectively. jλ is the jth eigenvalue in Λ,

and jυ is the jth column of V.

Once the N Gaussian mixtures ( , , )i i iω m C (i = 1, 2, …N) are obtained using Eq. (45), the

analytical covariance propagations of Eqs. (27), (35) and (41) are used to propagate ,i im C from

the initial time to the final time. The final non-Gaussian PDF then is computed using Eq. (43), and

the final mean and covariance matrix is merged as follows [30].

( )

1 1

1

,
N N

i
m i m i

i im

N
T Ti

m i i i m m
i m

ω
ω

ω

= =

=

= =

= + −

∑ ∑

∑

m m

C C m m m m

ω
ω

ω
(46)

The weights updating during the propagation process is not considered in this study, readers

with an interest on this topic can refer to [31].
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B. Method Combining GMM and STTs

For the uncertainty propagation with Deputy or Chief executing impulsive maneuvers, it needs

to split the input uncertainties (including initial relative state uncertainty and impulsive maneuver

uncertainties) into N Gaussian mixtures, and then to propagate every Gaussian mixture to the final

time using Eqs. (27), (35) or (41).

Based on the theoretical concepts of GMM method, the propagation of PDF based on the

method of combining GMM and STTs can be summarized as follows.

Step 1: Combine the initial relative state uncertainty and impulses uncertainties together as an

extended, (n+3K)-dimensional state: 0 1[ , ,..., ]Kd d d=X x v v , assume that the initial relative state un-

certainty and impulses uncertainties are pairwise independent, Gaussian random variables, then the

mean and covariance matrix of the input uncertainty vector X can be expressed as

[ ]0 0 1

0 6 3 6 3

3 6 1 3 3

0

3 3 3 3

3 6 3 3

( ) ( ), [ ],..., [ ]

( )

( )
( )

( )

T

m

m

t t E d E d

t

d
t

d

× ×

× ×

× ×

× ×

=

 
 
 =
 
 
 

0 0

0 0

0 0

0 0

m m v v

C

C v
C

C v

L

M

M O

L

(47)

Step 2: Split the multivariate Gaussian distribution ( )0 0; ( ), ( )gp t tx m C into N Gaussian mix-

tures ( ), ,i i im Pω (i = 1, 2, …, N) using Eq. (45) and the library data given by Vittaldev and Russell

[32].

Step 3: Extract the input statistical moments, i.e. 0( )i tm , 0( )i tC , [ ]k iE dv and ( )i kdC v (i =

1, 2, …, N, k = 1, 2, …, K), from the split Gaussian mixtures ( ),i im P . Propagate these moments to

the final time using Eqs. (27), (35) or (41), then obtain the corresponding final moments of relative

state uncertainty, i.e. ( ), ( )i f i ft t  m C . It is noted that the transitive STTs in Eqs. (27), (35) or (41)

only need to compute once for propagating all the Gaussian mixtures, because all the nonzero mean

Gaussian mixtures can be nonlinearly propagated using the same STTs.

Step 4: Compute the PDF and moments of final relative state uncertainty using Eqs. (43) and

(46), respectively.

By combing the STTs-based covariance propagation with the GMM method, the PDF and mo-

ments of final relative state uncertainty can be analytically computed.

VI. Simulation Results
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In this section, the accuracy of the analytical methods developed in Secs. IV and V are demon-

strated with numerical results. To evaluate their accuracy, we first analytically compute the first two

moments and the PDF using the analytical methods, and then compare them with the distribution

calculated from Monte Carlo simulations. In the simulation, Chief is located at an 800 km altitude,

near-circular orbit, its initial orbital elements (semi-major axis, eccentricity, inclination, right ascen-

sion of the ascending node, argument of periapsis, and true anomaly) is: EC(t0) = [7181.728 km,

0.0005, 45°, 250°, 90°, 30°]. Deputy’s initial nominal relative state is selected as: 0
ˆ ( )tδ x = [8.660

km, -10 km, 17.321 km, -5.187 m/s, -17.967 m/s, -10.374 m/s]. This initial relative orbit is described

in Chief LVLH frame, and its projection in the yz-plane is a circle of radius as 20rρ = km. Chief

appears at the center of the circle, and the initial phase angle between Chief and Deputy in the yz-

plane is 0ρα = . The simulation time is half a day, corresponding to the initial time t0 = 0 s and the

final time tf = 43200 s.

The initial relative state uncertainty is assumed as zero mean Gaussian distribution with its

standard deviation being: 0( )tδ xσ = [50 m, 80 m, 30 m, 0.3 m/s, 0.4 m/s, 0.2 m/s]. Because the

maneuver uncertainties are typically proportional to the maneuver magnitudes, the standard devia-

tions of impulsive maneuvers are set as: ˆ
k ka b∆ = ∆ +v vσ (k = 1, 2, …, K), where |∙| denotes the 

absolute value, and the coefficients a = 0.002, b = 0.05. The number of MC samples is 10000, and

the number of GMM mixtures is N = 21. The numerical simulations are performed on a personal

computer with CPU 3.60 GHz, Intel core i7 processor.

Because different scenarios (i.e., free relative motion in Sec. VI.B, relative motion with Deputy

maneuvering in Sec. VI.C, and relative motion with Chief maneuvering in Sec. VI.D) are considered,

we use different acronyms to label the methods used in different scenarios, they are explained in

Table 1. For the LinCov method in Table 1, it should be noted that the STM Φ in Eq. (21) can be

directly used to propagate the relative state uncertainty if only the first-order solution is considered,

and that the result of transitive propagation (i.e. a first-order solution of Eq. (27)) is the same with

that of segmented propagation (i.e. a first-order solution of Eq. (29)) as the STM is naturally tran-

sitive (i.e.
0 0( , ) ( , ) ( , )f ft t t t t t=Φ Φ Φ ).

Table 1 Explanation of the acronyms for different methods used in different scenarios

Method Explanation

MC Numerically integrating the dynamics of both satellites in the ECI frame using Eq. (2), transform-

ing their states from ECI frame to Chief LVLH frame and differencing them to obtain the relative

state.

LinCov It denotes the covariance propagation using Eq. (7).

gmmSTT It denotes the combing GMM and STTs method given in Sec. V, in which the respective tranSTT
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is used for a specific scenario corresponding to Sec. VI.B, VI.C or VI.D.

tranSTT In Sec. VI.B and VI.D, it denotes the covariance propagation using Eq. (27).

In Sec. VI.C, it denotes the covariance propagation using Eq. (35).

In Sec. VI.D, it denotes the covariance propagation using Eq. (41).

segmSTT In Sec. VI.B and VI.D, it denotes the covariance propagation using Eq. (27), however, the STM

Φ
)

is replaced by the Φ in Eq. (21).

In Sec. VI.C, it denotes the covariance propagation using Eq. (29).

In Sec. VI.D, it denotes the covariance propagation using Eq. (29), however, the STTs ,Φ
)
Ψ are

replaced by the STTs ,−ϕ ψ in Eq. (41).

A. Accuracy Analysis of Relative State Propagation

In order to validate the accuracy of Eq. (21) on relative orbit propagation, the propagation

results of different analytical solutions are compared with the numerical results. The propagation

errors on relative position ( rδ δ= r ) and velocity ( vδ δ= v ) are shown in Figs. 1 and 2, in which

“C-W” denotes the C-W equations [2], “Gim and Alfriend” denotes the linear J2-perturbed solution

in [6], “Sengupta et al.” denotes the nonlinear J2-perturbed solution in [14], and “This paper” denotes

the nonlinear J2-perturbed solution in Eq. (21). For the results of “Sengupta et al.”, we use Eq. (17)

instead of the Eq. (46) in [14], because we thought there might be a small typo for the Eq. (46) in

[14], as explained in Sec. III.C.

As shown in Figs. 1 and 2, the accuracy of Eq. (21) is almost the same with the solution given

by Sengupta et al. [14]. Nevertheless, as illustrated by the enlarged view of Fig. 1, Eq. (21) obtains

a bit improvement on relative position propagation through using osculating orbital elements instead

of mean orbital elements in the second-order state transition of relative motion. This study mainly

focus on the propagation of relative state uncertainty by using Eq. (21), more results about relative

state propagation can refer to [6, 14, 44].

Fig. 1 Relative position propagation error Fig. 2 Relative velocity propagation error
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B. Results for Free Relative Motion

In order to validate the uncertainty propagation method developed in Sec. IV.A for the scenario

of free relative motion, the initial relative state uncertainty is propagated to the final time using

different methods interpreted in Table 1. The final relative state uncertainty and their 3σ ellipsoids 

are projected to two coordinate planes and illustrated in Figs. 3~6. The detailed absolute errors on

means and standard deviations are compared in Tables 2 and 3, respectively. For the clarity of com-

parison, the means and standard deviations of MC simulations are presented in the second rows.

As shown in Tables 2 and 3, the errors of segmSTT method are larger than those of tranSTT

method on propagating the first two moments. For example, the error of yσ (standard deviation of

transverse position) for the tranSTT is only 7.86 m, however, it is 81.18 m for the segmSTT. It means

that the analytical STTs for relative motion ( ,Φ Ψ in Eq. (21)) cannot be directly used to propagate

the relative state uncertainty unless a correction is implemented on Φ , as shown in Eq. (24). More-

over, the tranSTT method also has a better accuracy than the LinCov method as the second-order

terms are considered. Almost the same accuracy is witnessed between the tranSTT and gmmSTT

methods. Thus, there is no need to adopt the more complex gmmSTT method if only the first two

moments are required.

The accuracies of different methods are vividly compared in Figs. 3~6. Evidently, in compari-

son to the segmSTT and LinCov methods, the 3σ error ellipsoids of the tranSTT provide good agree-

ment with the results of MC simulations. As shown in Fig. 3, the final relative state uncertainty

becomes non-Gaussian after a nonlinear propagation. Although the tranSTT method provides good

agreements with MC simulations on propagating mean and covariance matrix, the first two moments

are insufficient to fully describing the non-Gaussian distribution. Therefore, the gmmSTT method

is necessary to approximate the PDF of final uncertainty which is non-Gaussian distribution. The

results are presented in Figs. 7~8.

Table 2 Comparisons of final means for free relative motion

Mean
xm (m) ym (m) zm (m) vxm (m/s) vym (m/s) vzm (m/s) Computation time (s)

MC -195.48 -9.95 -0.20 -0.006 0.004 0.001 760.543

tranSTT-MC -0.84 -0.51 0.06 0.001 0.001 -0.001 0.061

segmSTT-MC -0.85 -0.52 0.06 0.001 0.001 -0.001 0.051

LinCov-MC 195.48 9.95 0.20 0.006 -0.004 -0.001 0.010

gmmSTT-MC -0.68 -0.50 0.06 0.001 0.001 -0.001 0.223

Table 3 Comparisons of final standard deviations for free relative motion
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Covariance
xσ (m) yσ (m) zσ (m) vxσ (m/s) vyσ (m/s) vzσ (m/s)

MC 360.56 52460.25 237.30 0.623 0.489 0.142

tranSTT-MC 4.23 7.86 0.24 0.001 0.000 -0.004

segmSTT-MC 66.83 81.18 -85.12 0.019 -0.025 -0.011

LinCov-MC -35.64 81.18 -85.12 0.019 -0.025 -0.011

gmmSTT-MC 3.41 -14.15 0.17 0.001 0.000 -0.004

Figure 7 gives the 3σ error ellipsoids of the 21 Gaussian mixtures propagated using the tranSTT 

method, as is shown, the MC samples are well surrounded by the 3σ error ellipsoids, it shows that 

the gmmSTT method is effective to capture the non-Gaussian uncertainty. Additionally, the PDF

computed using the gmmSTT method is shown in Fig. 8, it can be seen that the PDF of gmmSTT

has contours which well matches of the curvature of the MC samples.

The computation times are given in Table 2, comparing to the MC method (760.543 s), the

tranSTT (0.061 s) method has comparable accuracy but much smaller computation time. Although

the LinCov (0.010 s) is more efficient, it has lower accuracy than the tranSTT for nonlinear, non-

Gaussian uncertainty propagation.

Fig. 3 xy-plane projection of final position uncer-
tainty for free relative motion

Fig. 4 xz-plane projection of final position uncer-
tainty for free relative motion
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Fig. 5 vxvy-plane projection of final velocity uncer-

tainty for free relative motion

Fig. 6 vxvz-plane projection of final velocity uncer-

tainty for free relative motion

Fig. 7 xy-plane projection of Gaussian mixtures for
free relative motion

Fig. 8 xy-plane projection of PDF contours for free
relative motion

C. Results for Relative Motion with Deputy Maneuvering

In order to validate the uncertainty propagation method developed in Sec. IV.B for the relative

motion with Deputy maneuvering, the initial relative state uncertainty and the impulses uncertainties

are propagated to the final time using different methods interpreted in Table 1. The nominal impulses

are given in Table 4, these two impulses are computed using Eq. (21), they are used to reconfigure

Deputy from the given initial relative state (20 km) to a final hold point ( ˆ ( )ftδ x = [0, -5 km, 0, 0,

0, 0]) under the analytical relative motion of Eq. (21).

Table 4 Nominal impulses for relative motion with Deputy maneuvering

Impulses tk (s) Δvkx (m/s) Δvky (m/s) Δvkz (m/s)

k = 1 22770.86 -0.104 0.818 -1.765

k = 2 28216.38 -9.167 -0.860 -19.291

T
ra

n
s
v
e

rs
e

/k
m



26 / 35

Table 5 Comparisons of final means for relative motion with Deputy maneuvering

Mean
xm (m) ym (m) zm (m) vxm (m/s) vym (m/s) vzm (m/s) Computation time (s)

MC -182.05 -10.77 -0.20 -0.004 0.004 0.001 772.952

tranSTT-MC -12.56 287.67 -5.96 -0.001 0.040 -0.001 0.073

segmSTT-MC -31.20 256.56 -5.96 -0.003 0.036 -0.001 0.069

LinCov-MC -182.05 10.77 0.20 0.004 -0.004 -0.001 0.015

gmmSTT-MC -12.40 287.43 -5.95 -0.001 0.040 -0.001 0.442

Table 6 Comparisons of final standard deviations for relative motion with Deputy maneuvering

Covariance
xσ (m) yσ (m) zσ (m) vxσ (m/s) vyσ (m/s) vzσ (m/s)

MC 432.21 50560.40 206.29 0.646 0.651 0.167

tranSTT-MC 14.54 319.93 2.99 0.008 0.000 -0.002

segmSTT-MC 599.75 3828.15 4.13 0.061 1.462 -0.002

LinCov-MC -15.10 2067.13 -49.12 0.005 0.012 -0.004

gmmSTT-MC 13.89 298.67 2.94 0.007 0.000 -0.002

The final relative position uncertainty and their 3σ ellipsoids are projected to two coordinate 

planes and illustrated in Figs. 9~10. The detailed absolute errors of means and standard deviations

are compared in Tables 5 and 6, respectively. As shown in Table 6, the tranSTT method is more

accurate than the segmSTT and LinCov methods on standard deviations.

However, as shown in Table 5, the tranSTT method mismatches MC simulations on the means

of transverse position and velocity, and its accuracy on propagation means even worse than LinCov

method. The reason may be that only the average effects of J2-perturbation are considered in Eq.

(21). In fact, the mean error of 287.67 m on the transverse relative position is relatively small com-

pared to its standard deviation (50560.4 m). In contrast, an evident improvement on radial compo-

nent has been obtained comparing the tranSTT with the LinCov. As shown in Figs. 9 and 10, com-

pared to the segmSTT and LinCov method, the 3σ error ellipsoids of tranSTT are obviously well 

matched with the MC simulation. That is, the tranSTT method still has better accuracy than the

segmSTT and LinCov methods on propagation the first two moments for the scenario with Deputy

maneuvering.
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Fig. 9 xy-plane projection of final position uncer-
tainty for relative motion with Deputy maneuvering

Fig. 10 xz-plane projection of final position uncer-
tainty for relative motion with Deputy maneuvering

Fig. 11 xy-plane projection of PDF contours for rel-
ative motion with Deputy maneuvering

Fig. 12 xy-plane projection of PDF contours for rel-
ative motion with Chief maneuvering

As shown in Tables 5 and 6, the gmmSTT method still witnesses the similar accuracy with the

tranSTT method on propagating the first two moments. Moreover, as shown in Fig. 11, the PDF of

gmmSTT has contours which well matches of the curvature of the MC samples, it demonstrates that

the gmmSTT method is effective to capture the non-Gaussian distribution for this scenario with

Deputy maneuvering.

D. Results for Relative Motion with Chief Maneuvering

In order to validate the uncertainty propagation method developed in Sec. IV.C for the relative

motion with Chief maneuvering, the initial relative state uncertainty and impulses uncertainties are

propagated to the final time using different methods interpreted in Table 1. The nominal impulses

are given in Table 7, these two impulses are computed using Eq. (21), they are used to maneuver

Chief so that the relative state of Deputy can be reconfigured from the given initial value (20 km) to

a final hold point ( ˆ ( )ftδ x = [0, -5 km, 0, 0, 0, 0]) under the analytical relative motion of Eq. (21).
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The final relative position uncertainty and their 3σ ellipsoids are projected to two coordinate 

planes and illustrated in Figs. 13~14. The detailed absolute errors on means and standard deviations

are compared in Tables 8 and 9, respectively.

Table 7 Nominal impulses for relative motion with Chief maneuvering

Impulses tk (s) Δvkx (m/s) Δvky (m/s) Δvkz (m/s)

k = 1 31566.21 -2.494 1.468 -4.74

k = 2 37266.69 -6.821 -1.375 -16.252

Table 8 Comparisons of final means for relative motion with Chief maneuvering

Mean
xm (m) ym (m)

zm (m) vxm (m/s) vym (m/s)
vzm (m/s) Computation time (s)

MC -195.71 -10.66 -0.12 -0.006 0.004 0.001 853.201

tranSTT-MC 26.77 -995.25 -7.39 -0.011 0.000 -0.002 0.083

segmSTT-MC 11.13 -1034.49 -7.37 -0.012 -0.001 -0.002 0.075

LinCov-MC 195.71 10.66 0.12 0.006 -0.004 -0.001 0.019

gmmSTT-MC 26.91 -994.41 -7.38 -0.011 0.000 -0.002 0.606

Table 9 Comparison of final standard deviations for relative motion with Chief maneuvering

Covariance
xσ (m) yσ (m)

zσ (m) vxσ (m/s) vyσ (m/s)
vzσ (m/s)

MC 463.99 52441.06 154.70 0.665 0.492 0.166

tranSTT-MC -11.31 785.92 -1.81 -0.013 0.002 -0.001

segmSTT-MC 27.38 3420.16 -1.18 0.030 0.030 -0.003

LinCov-MC -131.32 -1174.39 11.05 0.007 -0.023 -0.001

gmmSTT-MC -11.87 763.48 -1.82 -0.013 0.002 -0.002

For this scenario (relative motion with Chief maneuvering), the accuracies and computation

times on propagating the first two moments for different methods show similar trends with those in

Sec. VI.C (the scenario with Deputy maneuvering). Therefore, we do not discuss the accuracy com-

parison results in detail again in this section. Based on the results presented in Tables 8~9 and Figs

13~14, it is found that, for this scenario, the tranSTT method is still more accurate than the segmSTT

and LinCov methods on propagating the first two moments.

Additionally, the results of the gmmSTT are compared with MC simulations in Fig. 12, as is

shown, the PDF contours of gmmSTT well match the curvature of the MC samples, it demonstrates

that the gmmSTT method is still effective to capture the final non-Gaussian distribution for this

scenario.
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Fig. 13 xy-plane projection of final position uncer-
tainty for relative motion with Chief maneuvering

Fig. 14 xz-plane projection of final position uncer-
tainty for relative motion with Chief maneuvering

E. Propagation Errors under Different Initial Conditions

In sections VI.B~VI.D, the initial relative orbit size is fixed as 20rρ = km, and the uncer-

tainty propagation time is fixed as 0.5ft = day. In order to validate the accuracy of the proposed

method, the analytical methods are compared with the numerical MC simulation under different

initial conditions, i.e., different initial relative-orbit sizes ( rρ from 10 km to 55 km) and different

propagation times ( ft from 0.5 day to 5 days). The other input parameters are kept the same with

the scenario of free relative motion (Sec. VI.B). For this purpose, the following root mean square

error (RMSE) in the stand deviations are computed as

2MC
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( )- ( )

3
r i f i f

i x y z

e t tσ σ
=

 =  ∑ (48)

2MC

, ,
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( )- ( )
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e t tσ σ
=

 =  ∑ (49)

where re and ve are the position and velocity RMSE, respectively, iσ and MC
iσ are the stand-

ard deviation of final relative state uncertainty respectively computed using the proposed analytical

method and the MC simulation.

The position and velocity RMSE for different methods are compared in Fig. 15 ( 0.5ft = day)

and Fig. 16 ( 20rρ = km). Obviously, the RMSE diverge more quickly with the propagation time

(Fig. 16) than with the relative-orbit sizes (Fig. 15). As shown in Fig. 15, with the increasing of

relative-orbit size ( rρ from 10 km to 55 km), the RMSE of segmSTT and LinCov methods diverge

quickly, while the RMSE of tranSTT and gmmSTT methods diverge much slowly. Since the second-

order nonlinear terms are correctly included in tranSTT and gmmSTT methods, their RMSE are
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small (less than 800 m) even though the initial relative-orbit size reaches 55 km. As shown in Fig.

6, for different propagation time, the tranSTT and gmmSTT methods still witness better accuracies

than segmSTT and LinCov methods, their position RMSE are less than 2.5 km even for 5-day prop-

agation. Additionally, as the tranSTT and gmmSTT methods are analytical, their computation times

remain unchanged (almost the same with those in Table 2) for both Figs. 15 and 16. However, for

the 5-day propagation in Fig. 16, the MC simulation requires more than 7600 s of computation time.

Fig. 15 position and velocity RMSE under different
initial relative-orbit sizes

Fig. 16 position and velocity RMSE under different
propagation time

F. Summary and Discussion

In summary, based on the results and analysis presented in Secs. VI.B~VI.E, the STTs-based

uncertainty propagators (tranSTT and gmmSTT) developed in this study not only provide good ac-

curacy matching of MC simulations but also are computationally efficient.

(1) As shown in Sec. VI.B, the previously proposed STTs (Eq. (21)) that used for relative state

propagation cannot be directly employed to propagate relative state uncertainty. Instead, the revised

STTs (Eq. (24)) given in this study can be used, and it has better accuracy than the previous ones.

(2) As shown in Secs. VI.C and VI.D, for relative state uncertainty propagation with abrupt

state jumps (e.g. Deputy or Chief executes maneuvers), the transitive STTs (Eqs. (35) and (41))

derived in this paper has better accuracy than the segmented STTs (Eq. (29)) on relative state un-

certainty propagation. Because the truncation error will be increasingly enlarged by the segmented

STTs with the statistical moments being dispersed by the segmented trajectories one after another.

(3) As shown in Sec. VI.E, as the second-order nonlinear terms are correctly included in the

proposed methods (tranSTT and gmmSTT), the proposed methods are suitable for problems with

large initial relative-orbit size rρ or long propagation time ft . The defined RMSE of standard de-

viation is less than 800 m for rρ up to 55 km, and this RMSE is less than 3 km for ft up to 5 days.
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(4) The proposed methods (tranSTT and gmmSTT) are analytical, and thus they are computa-

tionally much more efficient than MC simulation. The computation times for all scenarios, as shown

in Tables 2, 5 and 8, are less than 1 second, which is less than 0.2% of the computation time for MC

simulation. It is potentially suitable for satellite onboard computation.

(5) The known shortcomings of the proposed methods are: First, the STTs are singular for zero

inclination orbits (i ≈ 0 deg); Second, the expressions for computing the STTs are relatively complex. 

However, the concepts of accounting for the second-order nonlinear terms and the abrupt state jumps

on relative state uncertainty propagation can be used to extend the current method through combing

it with the state-of-art analytical STTs in relative motion (e.g., [8, 9, 12]).

VII. Conclusions

An analytical uncertainty propagation method based on state transition tensors (STTs) is devel-

oped for satellite relative motion near J2-perturbed, elliptic orbits. First, the second-order STTs for

propagating the relative state difference are derived based on the nonlinear analytical solution for

relative motion, these STTs are obtained by adding a correction into the first-order solution of rela-

tive state. Second, based on the STTs for free relative motion, a new set of transitive STTs is derived

to propagate uncertainties for relative motion with abrupt state jumps, e.g. impulsive maneuvers

executing on the two satellites (denotes as Deputy and Chief). Third, the nonlinear covariance prop-

agation is formulated by combining the STTs with the covariance analysis method. Finally, the non-

linear propagation of the probability density function (PDF) has been constructed by combining the

STTs with a Gaussian mixture model.

Different scenarios, i.e. free relative motion, relative motion with Deputy maneuvering, and

relative motion with Chief maneuvering, have been used to validate the proposed STTs-based un-

certainty propagator. Numerical results show that the proposed method provides good agreement

with Monte Carlo simulations on covariance and PDF propagations, and that the proposed method

outperforms the traditional linear covariance method since the second-order terms are taken into

account. Additionally, as the STTs can be analytically computed, and the splitting of univariate

Gaussian distribution can be done offline, the proposed uncertainty propagation method can be com-

putationally efficient.
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