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disease. Am J Physiol Heart Circ Physiol 294: H1971-H1977, 2008. First pub-
lished March 28, 2008; doi:10.1152/ajpheart.91503.2007.—Folic acid (FA) is a
member of the B-vitamin family with cardiovascular roles in homocysteine regu-
lation and endothelial nitric oxide synthase (eNOS) activity. Its interaction with
eNOS is thought to be due to the enhancement of tetrahydrobiopterin bioavailabil-
ity, helping maintain eNOS in its coupled state to favor the generation of nitric
oxide rather than oxygen free radicals. FA also plays a role in the prevention of
several cardiac and noncardiac malformations, has potent direct antioxidant and
antithrombotic effects, and can interfere with the production of the endothelial-
derived hyperpolarizing factor. These multiple mechanisms of action have led to
studies regarding the therapeutic potential of FA in cardiovascular disease. To date,
studies have demonstrated that FA ameliorates endothelial dysfunction and nitrate
tolerance and can improve pathological features of atherosclerosis. These effects
appear to be homocysteine independent but rather related to their role in eNOS
function. Given the growing evidence that nitric oxide synthase uncoupling plays
a major role in many cardiovascular disorders, the potential of exogenous FA as an
inexpensive and safe oral therapy is intriguing and is stimulating ongoing investi-
gations.
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THE FIRST THERAPEUTIC USE of folic acid (FA) dates back to 1931,
when Lucy Wills discovered that yeast extract was effective
against tropical macrocytic anemia (97) and that the critical
factor involved was FA. The main role of FA was found to be
its involvement in the production and maintenance of new cells
(39) because it has an essential role in the integrity and
function of DNA. DNA synthesis and cell proliferation require
the transfer of carbon groups, a task principally fulfilled by
folates. As a consequence, FA deficiency leads to inadequate
nucleic acid synthesis and impairs cell division. During preg-
nancy, this can lead to neural tube defects, such as spina bifida;
orofacial cleft; and congenital heart defects (6, 20). The risk of
these developmental abnormalities is significantly reduced by
FA supplementation preceding conception and during preg-
nancy (77). FA deficiency is also associated with the develop-
ment of neoplastic and preneoplastic conditions (17), neurop-
athy (56) and depression (1).

FA is a water-soluble B vitamin that derives its name from
the Latin word for leaf (folium) because it was first isolated
from spinach leaves. Humans are unable to synthesize folate de
novo and thus rely on dietary intake to derive sufficient levels
of the vitamin. Rich sources include citrus fruits and juices,
dark green leafy vegetables such as spinach, wheat and other
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whole grains, and liver. The synthetic form of FA is usually
designated as folate. 5-Methyltetrahydrofolate (5-MTHF), the
active metabolite, has a structure very similar to that of tetra-
hydrobiopterin (BHy4), an essential cofactor of endothelial ni-
tric oxide (NO) synthase (eNOS), with the exception of an
extended tail attached to 5-MTHF. It is also the primary form
of folate entering the human circulation from the intestinal
cells. The conversion of FA to 5-MTHF has limited capacity,
however, and if enough FA is consumed orally, unaltered FA
appears in the circulation (42), is taken up by cells, and is then
reduced by dihydrofolate reductase to tetrahydrofolate. Over
the past five years, the potential benefits of FA in the treatment
of cardiovascular pathology have been revealed and have
stimulated further clinical and experimental research. In this
review, we discuss the potential mechanisms of action of FA
and its role in the pathogenesis and treatment of different
cardiovascular pathologies.

Mechanisms of Action of FA

FA is required for the remethylation of homocysteine to
methionine, which in turn reduces the concentration of homo-
cysteine available to support oxidative stress (52). FA de-
creases plasma homocysteine levels of both normo- and hy-
perhomocysteinemic subjects (61). However, FA also conveys
protective effects in the absence of hyperhomocysteinemia by
multiple mechanisms (Fig. 1). In the presence of sufficient
cofactor BHy, the enzyme eNOS principally synthesizes NO.
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Fig. 1. Different mechanisms of action and
targets of folic acid in cardiovascular dis-
eases. eNOS, endothelial nitric oxide (NO)
synthase; EDHF, endothelium-derived hyper-
polarizing factor; BHy, tetrahydrobiopterin.
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Oxidative stress can oxidize BH4 to its inactive form BH,.
Diminished bioavailability of BH,4 leads to eNOS uncoupling
with subsequent decreased NO formation and increased gen-
eration of reactive oxygen species (19, 35, 45, 90). Folate can
help to restore the bioavailability of BH4 by several mecha-
nisms. MTHF can increase the effectiveness of BH4 on eNOS
uncoupling. In theory, this can be explained by improved redox
state or enhanced binding affinity of BH4 to eNOS (improved
occupancy of eNOS by available BH4) or that MTHF facili-
tates the one-electron oxidation of BHy to the BH, radical (78).
In addition, folate can enhance the regeneration of BH4 from
the inactive form BH, (41) and can chemically stabilize BHy4
(Fig. 2). Hyndman et al. (38) also found that 5-MTHF is
capable of binding the pterin site in eNOS and may directly
interact with eNOS independent of BH4, although details of
this interaction remain scant.

Fig. 2. Interaction of folic acid with eNOS.
5-Methyltetrahydrofolate (5-MTHF) is capa-
ble of directly interacting with eNOS (i).
Folic acid also restores the bioavailability of
BH, by ameliorating the binding affinity of BHy4
to eNOS (ii), by chemically stabilizing BH4

(iii), and by enhancing the regeneration of L-arginine
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There is also evidence that FA exerts direct and indirect
antioxidant effects, such as the improvement of the cellular
antioxidant defense system (24, 36, 92). FA deficiency in rats
increases lipid peroxidation and decreases cellular antioxidant
defenses (24, 36). In healthy human volunteers, the beneficial
effect of folates on postprandial endothelial dysfunction cor-
responded with decreased urinary excretion of malondialde-
hyde, a radical-damage end product (98). The administration of
FA to smokers induced a significant reduction in plasma
fibrinogen and D-dimer levels, markers of a prothrombotic
state, and changes in plasma homocysteine did not correlate
with these levels (54), suggesting an antithrombotic effect
independent of homocysteine modulation. Other studies have
shown antithrombotic effects of FA that are linked to a decline
in homocysteine, which itself is prothrombotic (37, 47, 100) by
its inhibition of a number of pathways, including thrombo-

L-citrulline

BH, from the inactive form BH: (iv). Oxida-
tive stress-induced BH4 depletion leads to an
imbalance between NO production and the
generation of free radicals.
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modulin expression (50), antithrombin III-binding activity of
heparan sulfate proteoglycan (34), and ecto-adenosine diphos-
phatase activity (34). Homocysteine also stimulates endothelial
plasminogen activator inhibitor-1 expression (58) and mono-
cyte tissue factor expression and potentiates platelet aggrega-
tion (23, 43).

There are several other mechanisms that may underlie the
beneficial effect of FA, but these are presently less well
defined. First, 5-MTHF has been reported to restore the defec-
tive production of an unidentified endothelium-derived hyper-
polarizing factor in diabetic rats (21). Second, we recently
demonstrated an improved myocardial high-energy phosphate
metabolism from high-dose FA pretreatment in rats subjected
to regional coronary occlusion (60). As a result, less superox-
ide was generated, eNOS was kept in his coupled state,
myocardial function was preserved, and reperfusion injury was
prevented.

FA and Congenital Heart Disease

Congenital heart defects occur in ~3-8 of every 1,000
births. In the United States alone, the number of deaths attrib-
uted to congenital heart defects is estimated to be ~6,000
annually (9). The etiology of nonsyndromic congenital heart
defects is complex, involving genetic, epigenetic, and environ-
mental risk factors. However, one of the most promising clues
about the prevention of conotruncal defects (truncus arteriosus,
transposition of great arteries, and tetralogy of Fallot) is that
women who use FA-containing vitamins in early pregnancy
have reduced risks of delivering offspring with conotruncal
defects (10, 75). FA is well known for its beneficial effects on
neural tube closure which depend on NO synthase (NOS)
activity (64). Indeed, blocking NOS activity by inhibiting BH4
or calcium-calmodulin binding to NOS, results in ablated
closure of the neural tube. Therefore, it is recommended that all
women capable of becoming pregnant take 400 pg/day of FA
in addition to a healthy diet (6). Women taking medications
that interfere with folate metabolism (e.g., antiepileptic drugs
such as carbamazepine and valproate) are advised to take
higher doses of FA (1-5 mg/day) during preconception and
throughout pregnancy. Furthermore, a recent study showed that
the offspring of pregnant rats on a protein-restricted diet during
pregnancy had higher systolic blood pressure, impaired acetyl-
choline-induced vasodilation, and reduced levels of eNOS
mRNA in their thoracic aorta. Maternal folate supplementation
during pregnancy in this model normalized blood pressure
while having a modest effect on vascular function (84). These
data provide a good example of how vitamin supplementation
can ameliorate the adverse effects of micronutrient imbalance
during pregnancy.

FA and Homocysteine

The best-known beneficial action of FA is its homocysteine-
lowering effect. Homocysteine is a sulfur-containing amino
acid generated during the catabolism of methionine. Homocys-
teine is metabolized by two pathways, either remethylation in
the case of insufficient methionine or transsulfuration in the
case of excess methionine. In the remethylation pathway,
homocysteine is reconverted to methionine by methionine
synthase, requiring vitamin B> as a cofactor and FA as a
methyl donor (26). With the use of the transsulfuration path-
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way, homocysteine is catabolized by cystathionine [3-synthase,
with vitamin Be as a cofactor, to cystathionine and subse-
quently to cysteine, which is excreted in the urine or incorpo-
rated into glutathionine. Hyperhomocysteinemia is therefore
associated with low concentrations of methionine, FA, or
vitamin B».

As a consequence of the involvement of FA in the homo-
cysteine pathway, the oral administration (0.5-5 mg/day) re-
sults in a 25-30% reduction in the fasting homocysteine
concentration (25, 33, 37a, 68, 87). No difference in the
homocysteine-lowering effects of supplementary FA has been
found with daily intake ranging 0.4-5 mg (37a, 87), except in
patients with chronic renal failure who require a higher dose.
Supplementation with vitamin B> (0.02-1 mg daily) produces
an additional 7% reduction in homocysteine levels and simul-
taneously eliminates the theoretical risk of precipitating sub-
acute combined degeneration of the spinal cord. Vitamin Be
supplementation has no additional effect on fasting homocys-
teine levels but does significantly lower postmethionine load
homocysteine and cystathionine concentrations (68). Hyperho-
mocysteinemia, found in up to 40% of individuals with cere-
brovascular, coronary, or peripheral vascular diseases (18), can
be considered an independent cardiovascular risk factor (11,
76). However, the strength of association of homocysteine with
the risk of cardiovascular disease may be weaker than previ-
ously believed. An updated meta-analysis of several large-
scaled observational studies found that a decline in blood
homocysteine of 25% (~3 pwmol/l) was associated with ~11%
lower risk of coronary heart disease and 19% lower risk of
stroke (37b). However, most large prospective studies were
underpowered for this level of risk reduction, and even larger
studies are needed to prove or disprove risk modulation (3, 53).

FA and Endothelial Dysfunction

Endothelial dysfunction is a major marker of cardiovascular
risk (69, 79, 94) and is characterized by reduced production/
availability of NO and/or an imbalance between endothelium-
derived relaxation (prostacyclin and endothelium-derived hy-
perpolarizing factor) and contracting (endothelin and angioten-
sin) factors and oxidants. A number of studies have assigned a
pivotal role to oxygen-derived free radicals in accelerating NO
degradation. These oxygen-derived free radicals, in particular
superoxide anion, easily react with NO, decreasing its half-life.

The prevention or amelioration of coronary vascular endo-
thelial dysfunction is an attractive goal for therapeutic inter-
ventions aimed at reducing symptoms or clinical events. In the
past few years, studies have reported improved endothelial
function after FA supplementation in patients with hyperho-
mocysteinemia (8, 14, 15, 83, 88, 99), and normohomocys-
teinemic patients with familial hypercholesterolemia (92, 93),
diabetes (89), stable coronary artery disease (22, 59), and in
smokers (55, 66). Chronic FA treatment for 6 wk in subjects
with an acute myocardial infarction resulted in improved en-
dothelial function (61). Nitroglycerin and other nitrates are the
mainstay therapies for coronary artery disease but can be
associated with oxygen-free radical-induced nitrate tolerance
and subsequent endothelial dysfunction (81). The development
of tolerance during continuous therapy is a major factor lim-
iting the efficacy of these drugs. Supplemental FA may be
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instrumented in preventing such tolerance and endothelial
dysfunction (32).

FA and Atherosclerosis

FA may have beneficial effects on atherosclerosis. Carnicer
et al. (13). demonstrated in apolipoprotein E-deficient mice that
FA led to a decline in atherosclerotic lesions associated with
increased apolipoprotein Al, AIV, and B levels and decreased
oxidative stress. This was independent of plasma homocysteine
and cholesterol levels. Clinical studies have employed more
mixed cocktails of B vitamins. For example, a 1-yr daily
B-vitamin supplementation (2.5 mg FA, 25 mg vitamin Be, and
0.5 mg vitamin Bj,) reduced carotid intima-media thickness
compared with placebo administration (82). In one study, a
long-term FA treatment (~10 yr) at a much higher dose than
currently used (40—80 mg/day) was found to lower the inci-
dence of myocardial infarction, angina pectoris, and the re-
quirement for nitroglycerin in patients with coronary artery
disease (67). This study was not placebo controlled, however,
and remains an isolated observation.

Another manifestation of vascular disease where FA may be
helpful is restenosis following balloon angioplasty. Schnyder
et al. (72) examined 205 patients with stable coronary artery
disease treated with a combination of FA (1 mg), vitamin B,
(400 pg), and pyridoxine (10 mg) and found reduced restenosis
rates (19.6% vs. 37.6%). The extent of restenosis was also less
severe. This group also observed that patients with plasma
homocysteine levels below 9 wmol/l have a 49% lower rate of
coronary restenosis than those with higher levels (71). How-
ever, other studies did not confirm these results (49), poten-
tially in part because of the greater use of vascular stents in this
latter study. In the Swiss Heart Study, a reduction in restenosis
with FA was most observed in vessels treated with angioplasty
only (10.3% vs. 41.9%, P < 0.001), whereas the benefit in
stented lesions did not reach statistical significance (20.6% vs.
29.9%, P = 0.32). Differences in the pathophysiology entailed
with stent placement could underlie the difference. Since
thrombotic complications from sirolimus- and paclitaxel-elut-
ing coronary stents have recently come into focus (77), the
potential use of FA may again be revisited.

FA and Hemodynamic Parameters

FA has been examined for potential effects on arterial blood
pressure. Tawakol et al. (80) found that high doses of FA (30
mg) acutely reduced systolic, diastolic, and mean arterial
pressure. In regions of normal coronary flow, FA did not alter
myocardial blood flow or adenosine reserve, whereas in abnor-
mal zones, FA significantly improved flow reserve (49% in-
crease with adenosine), despite the decline in pressure. Addi-
tionally, FA increased vasodilator reserve by 83% in abnormal
segments but had no effect in normal segments. In another
study, low-dose FA (5 mg/day), administered for 3 wk, low-
ered brachial pulse pressure, without altering mean arterial
pressure (96), coupled to improvement in regional artery com-
pliance.

FA and Cardiovascular Mortality

Low-serum folate levels are associated with a high risk of
fatal coronary artery disease, especially when folate levels fall
below 6.8 nmol/l (=3 ng/ml) (63). This inverse relationship
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between folate status and atherosclerotic vascular diseases has
also been demonstrated in the Nutrition Examination Survey
(28, 31, 51), the Kuopio Ischemic Heart Disease Risk Factor
Study (95), and the Framingham Heart Study (74), although it
has not been confirmed by others: the Physicians’ Health Study
(16) and Atherosclerosis Risk in Communities Study (27).
Antifolate therapy with methotrexate has been suggested to
promote atherosclerosis (48). Beyond dietary reductions, a
common mutation of 5,10-MTHF reductase caused increased
thermolability and reduced activity of the enzyme catalyzing
reduction of 5,10-methylenetetrahydrofolate to 5-MTHF. This
mutation has been reported as a risk factor for cardiovascular
disease (29, 30, 40, 46, 62).

Pharmacological Considerations of FA

In general, FA supplementation is considered safe (12), and
there is no evidence that high natural folate intake poses a
toxicity risk (65). No adverse effects have been reported when
high doses of FA (40—80 mg/day) are administered for as long
as 10 years (67). Only one study reported on the use of FA (300
mg/kg, once a week for 4 wk) in rats as a model for interstitial
nephritis (86). However, converting this dose from a rat to a
human of 75 kg results in a dose of 22.5 g. The main safety
concern lies in the fact that folate can mask the diagnosis of
pernicious anemia, because high FA levels correct the anemia
but allow the neuropathy to progress undiagnosed to an irre-
versible degeneration of the spinal cord (73). Therefore, vita-
min B, levels should always be measured before the start of
supplementation with FA. Another concern that needs special
attention is the role of FA in carcinogenesis. In established
neoplasms, the inhibitory and promoting effect of folate defi-
ciency and supplementation, respectively, has been well de-
scribed and has been the basis for cancer chemotherapy with
several antifolate agents (e.g., methotrexate) and 5-fluoroura-
cil. In neoplastic cells, in which DNA replication and cell
division occur at an accelerated rate, the interruption of folate
metabolism causes ineffective DNA synthesis, resulting in the
inhibition of tumor growth (32, 33). In contrast, the role of FA,
and in particular of folate fortification, on de novo carcinogen-
esis in normal tissue has been the subject of many contradic-
tory reports over the past decade (44). Very recently, Bayston
et al. (7) reported that there is no ground of concern to avoid
the fortification with FA and that FA supplementation will not
enhance the risk on colorectal carcinomas.

The synthetic form of FA (folate) is used in supplements and
is added to food because of its high stability and bioavailabil-
ity. The metabolic active form of FA, 5S-MTHEF, is also readily
available. Unlike FA, 5-MTHF has to be converted to tetrahy-
drofolate via the vitamin Bj>-dependent enzyme methionine
synthase. In case of vitamin B12 deficiency, 5-MTHF is not
converted to tetrahydrofolate and thus is not able to improve
megaloblastic anemia, even when given at high doses. Further-
more, 5-MTHF does not require a reduction by dihydrofolate
reductase to be incorporated into the active cellular folate pool
(101). However, low-dose 5-MTHEF is equally effective since
FA in reducing homocysteine concentrations in healthy per-
sons (91) and restoration of endothelial function can also be
performed by an infusion of 5-MTHF (92).

Uremic patients usually have elevated levels of homocys-
teine and are relatively resistant to FA therapy. The reason for
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this phenomenon is unknown but may be due to impaired
intestinal absorption and/or impaired metabolic transformation
of FA to an active form (57). Folinic acid (5-formyltetrahy-
drofolate) supplementation to this population may be more
efficient in reducing the high homocysteine level in uremia (2,
57, 85). Folinic acid can be given intravenously, where it
normally is readily converted (via 5,10-methenyltetrahydrofo-
late and 5,10-methylenetetrahydrofolate) to 5-MTHF (70).
This form of FA is best known for counteracting the therapeu-
tic and toxic effects of FA antagonists, such as methothrexate,
in the treatment of tumors, rheumatoid arthritis, and psoriasis.

Conclusion

Coronary artery disease has become the leading cause of
death in Western countries. Various studies have demonstrated
an association between low-serum folate levels and the risk of
fatal coronary artery disease. In light of this observation, FA
not only appears important for risk stratification but also opens
new therapeutic possibilities in the treatment of cardiovascular
diseases. Apart from various promising results on eNOS-
dependent superoxide generation in animal studies and its
well-known homocysteine-lowering effect, FA can benefit on
endothelial dysfunction, and recent work suggests a potential
to preserve myocardial function and prevent tissue damage.

Some of these effects may require high doses of FA, much
higher than those tested to date, and clearly much higher than
those obtainable through the diet. Precisely when and why
higher doses might be required for some therapeutic targets
remain unclear and somewhat controversial. Clearly, additional
studies are needed to further clarify the potential role of FA,
not only for risk stratification but also for cardiovascular
disease treatment and/or prevention.
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