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Abstract: In this paper, we introduce the concept and an implementation of geospatial 3D 

image spaces as new type of native urban models. 3D image spaces are based on collections 

of georeferenced RGB-D imagery. This imagery is typically acquired using multi-view stereo 

mobile mapping systems capturing dense sequences of street level imagery. Ideally, image 

depth information is derived using dense image matching. This delivers a very dense depth 

representation and ensures the spatial and temporal coherence of radiometric and depth data. 

This results in a high-definition WYSIWYG (“what you see is what you get”) urban model, 

which is intuitive to interpret and easy to interact with, and which provides powerful 

augmentation and 3D measuring capabilities. Furthermore, we present a scalable cloud-based 

framework for generating 3D image spaces of entire cities or states and a client architecture 

for their web-based exploitation. The model and the framework strongly support the smart 

city notion of efficiently connecting the urban environment and its processes with experts 

and citizens alike. In the paper we particularly investigate quality aspects of the urban model, 

namely the obtainable georeferencing accuracy and the quality of the depth map extraction. 

We show that our image-based georeferencing approach is capable of improving the original 

direct georeferencing accuracy by an order of magnitude and that the presented new multi-image 

matching approach is capable of providing high accuracies along with a significantly 

improved completeness of the depth maps. 
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1. Introduction 

The original concept of “smart city” was first postulated in the late 1980s and was focused on the role 

of information and communication technologies (ICT) with regard to modern urban infrastructures. 

Since then it has evolved into a (multi-dimensional) more general concept relying on the use of ICT to 

enhance quality and performance of urban services, to reduce costs and resource consumption, and to 

engage more effectively and actively with its citizens. Albino et al. [1] provide a good overview of the 

evolution, dimensions, and definitions of different variants of a smart city. Most definitions contain 

elements that are closely related to geospatial concepts, in general, and to the new urban modeling 

approach introduced in this paper. Hall et al. [2], for example, emphasize the monitoring of critical 

infrastructures, such as roads, bridges, tunnels, rails, subways, major buildings, etc., in order to optimize 

resources, plan preventive maintenance activities, and monitor security aspects with the intent to 

maximize services to its citizens. Harrison et al. [3] emphasize the connectivity of the physical 

infrastructure, the IT infrastructure, the social infrastructure, and the business infrastructure to leverage 

the collective intelligence of the city. Cretu [4], last but not least, identifies governance and economy as 

important drivers for smart cities and highlights the need for new thinking paradigms. A common 

denominator of all smart city definitions is the employment of ICT concepts and infrastructures allowing 

people to smartly interact with real-world objects and processes. Such ICT solutions, again, require 

models of the real world in our case urban models, in order to represent, interact with, analyze or simulate 

the urban environment and processes. Since a large part of urban infrastructure and activity is closely 

linked to road corridors, streetside urban models are of particular importance in a smart city context. 

Today, citywide streetside environments can be routinely captured by vehicle-based mobile mapping 

systems [5–8]. Early research and visionary experiments, such as the Aspen Movie Maps project [9], 

date back to the late 1970s and were entirely image-based. In this visionary project, the image-based 

virtual urban streetside environment was used for interactively navigating through and interacting with the 

real world. It, thus, demonstrated many of the features, which more than 25 years later became part of 

popular street-level mapping services, in particular Google Street View [8]. Research in mobile mapping 

systems and sensors was originally focused on direct georeferencing of frame imaging sensors [10]. With 

the emergence of mobile LiDAR sensors the focus was almost completely shifted to mobile laser 

scanning (MLS) [11] which is currently dominating the market for engineering applications. However, 

due to tremendous progress in sensor technologies, photogrammetric, and computer vision algorithms, 

and due to new applications, namely indoor mobile mapping, image-based approaches have again 

become a strong research focus in different communities [7,12,13]. 

This paper introduces a new type of native urban models based on collections of georeferenced 3D 

imagery from multiview-stereo together with a fully functional implementation. The new model 

provides a high-fidelity representation of the streetside environment, accurate and robust 3D 

measurement capabilities, powerful options for capturing and augmenting urban infrastructure elements, 
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and is extremely easy-to-use. It, thus, combines the high accuracies of point cloud based urban models 

from MLS with the intuitive navigation and interpretation found in popular image-based streetside web 

services. This makes the 3D image-based urban model suitable for a wide range of smart city applications 

for professionals and citizens alike. 

2. Related Work 

Urban models can be considered as suitable digital representations of urban environments for 

capturing, managing, analyzing and visualizing specific urban processes. As pointed out in the 

introductory discussion on the notion of the “smart city”, the spectrum of such processes and of their 

needs is extremely broad. Thus, there exists no “suits-it-all” urban model supporting all conceivable 

smart city contexts and applications. While there is no widely accepted taxonomy of (3D) urban models, 

there are a number of helpful classifications. Meilland et al. [14], for example, distinguish between 3D 

parametric models and image-based key-frame models, but they do not cover point cloud-based models, which 

play an important role in urban modeling. In an earlier overview of urban models [15], the authors 

distinguish between geometric 3D models, image-based models, and a rich point cloud model. They also 

provide a comparison between these three model types based on the following criteria: modeling 

concept, representation modeling, modeling strategy, prevailing acquisition strategy and coverage, 

georeferencing accuracy requirements, a typical modeling scope ranging from micro to macro scale, 

suitable visualization scenarios, as well as navigability. 

While new geospatial sensors for acquiring urban models are emerging and rapidly evolving, there 

seems to be a convergence into two main types of urban models. We refer to them as urban 

reconstructions or derived 3D urban models on the one hand and native urban models on the other. 

For a comprehensive overview of research activities in urban reconstruction in the fields of computer 

graphics, computer vision, photogrammetry, and remote sensing we refer the reader to the survey of 

Musialski et al. [16]. Despite the efforts and major progress in the automatic generation of accurate 

parametric 3D models [12,13,17] from airborne or ground-based imagery and point clouds, 3D 

reconstruction remains a complex and ill-posed tasks. In order to control complexity and to address 

inherent problems, such as occlusions and gaps in the data, state-of-the art urban reconstruction 

techniques employ priors or grammars for specific types of urban structures to be modeled. These 

approaches often lead to visually-appealing, photorealistic or abstracted, possibly even semantic, urban 

models [12,18,19], but they are not well-suited for unstructured environments or for urban models with 

high to very high accuracy requirements, e.g. for high-quality 3D measurements [7,20–22]. 

Native urban models, the second type of urban models, primarily consist of basic geospatial data 

types. These include: monoscopic, stereoscopic [7], panoramic [23] or RGB-D imagery [7,8,14],  

3D point clouds [15] or combinations thereof [24]. Native urban models do not aim at complete 3D 

reconstructions of entire objects or urban scenes. As a consequence, native urban models are less 

complex, do not require a high level of scene understanding, and can be generated with a much higher 

level of automation and robustness than actual urban reconstructions. However, large-scale high-definition 

native urban models come at the cost of extremely large data volumes. Therefore, apart from major 

progress in kinematic positioning and mobile mapping sensor technologies, the dramatic increase in 

network bandwidths, as well as in cloud storage and cloud computing capacities have been important 



ISPRS Int. J. Geo-Inf. 2015, 4 2270 

 

 

enablers and drivers for research in native urban models [25]. Additionally, numerous research activities were 

spurred by successful commercial examples of native urban models, most of all Google Street View [8]. 

The main contributions of our paper are as follows. We first introduce the concept of 3D geospatial 

image spaces (Section 3). We then present a framework implementing all components for capturing, 

processing, and exploiting the new type of native urban model (Section 4). We subsequently address 

three important research questions related to 3D image spaces and discuss the respective results based 

on real-world experiments: 

 Georeferencing strategies for the RGB-D imagery and the obtainable absolute measuring 

accuracies (Section 5); 

 Depth map extraction strategies and the obtainable relative measuring accuracies (Section 6); 

 The smart exploitation of the new urban model with respect to functionality and ease-of-use 

(Section 7). 

In the final section, we provide conclusions on strengths and limitations of 3D image spaces and give 

an outlook on future developments and perspectives. 

3. Geospatial 3D Image Spaces 

3.1. Concept 

We propose a simple but powerful new native urban model type, which we refer to as Geospatial 3D 

Image Spaces. Such 3D image spaces (Figure 1a) consist of collections of georeferenced RGB-D 

imagery, combining radiometric (RGB), and depth information (D) (Figure 1b). 

(a) (b) 

Figure 1. (a) Conceptual illustration of 3D image spaces consisting of collections of 

georeferenced multi-view RGB-D imagery; and (b) georeferenced RGB image with its 

associated depth map (D) containing a depth value for each pixel of the RGB image. 
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The native urban model of 3D image spaces shall fulfill the following requirements: 

 Provide a high-fidelity metric photographic representation of the urban environment, which is 

easy to interpret and which can be augmented with existing or projected GIS data 

 The RGB and the depth information shall be spatially and temporally coherent, i.e. the 

radiometric and the depth observation should ideally take place at exactly the same instance 

 The depth information shall be dense, ideally providing a depth value for each pixel of the 

corresponding RGB image 

 Image collections are usually ordered, e.g., in the form of images sequences, for simple 

navigation and shall efficiently be accessed via spatial data structures 

 The model shall support metric imagery with different geometries, e.g., with perspective, 

panoramic or fish eye projections 

 The model shall be easy-to-use and shall at least support simple, robust and accurate image-based 

3D measurements using enhanced 3d monoplotting 

 The model shall provide measures to protect privacy 

The urban model of 3D image spaces can further be characterized by its scope, by typical imaging 

sensors, acquisition strategies, and by its specific exploitation features and techniques. 

Scope—The scope of our proposed urban model is very broad. While the current focus and use is 

predominantly street level and indoor modeling, the model would also be applicable to nadir and oblique 

aerial imagery [26,27]. 

Sensors—The model does not depend on a specific data acquisition technique as long as it ensures the 

spatial and temporal coherence of the RGB and D information. This temporal coherence is particularly 

important in urban environments with numerous moving objects such as cars, trams or pedestrians (see 

Section 4.4). In outdoor urban environments, the requirement of dense and temporally-coherent RGB-D 

values with a sufficiently high spatial resolution can currently only be met by stereo or trinocular camera 

setups [6,7,14,20] and a subsequent depth extraction using dense image matching (see Section 6). Once 

active range imaging sensors will reliably work in bright daylight and provide a sufficiently high spatial 

resolution, they might become the sensor technology of choice for acquiring urban 3D image spaces. 

Hybrid sensor configurations, e.g., combinations of monoscopic cameras and LiDAR sensors [8], are in 

wide-spread use in commercial mobile mapping systems. However, they are of limited use in typical urban 

environments, as long as the imagery and range information for a real-world object are not collected 

simultaneously and with the same viewing geometry. 

Acquisition Strategy—The goal in generating 3D image spaces is to capture every object of interest 

within multiple images, ideally from multiple perspectives and with a spatial resolution, which allows 

the reliable identification of any object to be mapped. In case of street level urban mapping, multi-view 

imagery is typically acquired in dense sequences along the vehicle trajectory. These dense imaging 

patterns not only allow for a smooth navigation; they can also be exploited to increase the georeferencing 

accuracy [21,22] or the robustness of depth extraction, as will be shown in the following sections. 

Exploitation—The interaction with our proposed 3D image spaces is relatively simple but powerful 

and is similar to well-known street level services such as Google Street View. Due to the dense image 

acquisition patterns, frame-to-frame navigation within the model is almost video-like. While the model 

is constraining the viewing position to the original acquisition position, users can still freely pan and 
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zoom through the original images without ever noticing the third dimension hidden behind the familiar 

(2D) imagery and without having to revert to an actual 3D visualization of the RGB-D image. 

3.2. Discussion 

3D images spaces differ from monoscopic, typically panoramic 2D image spaces such as offered by 

Cyclomedia’s Cycloramas [23], whose main measuring principle is based on interactive forward 

intersections within panoramas captured from multiple positions and at different epochs. 3D image 

spaces have numerous similarities to the model behind Earthmine’s commercial solution [6,28]. Their 

published approach, however, sacrifices some of the accuracy by projecting and mosaicking the original 

multi-head panoramic imagery and depth information onto a cylindrical panorama [28].  

A recently published and similar approach uses collections of spherical RGB-D panoramas of large-scale 

urban environments for autonomous navigation and real-time localization [14]. The spherical RGB-D 

panoramas, referred to as “augmented spherical key-frames”, are also generated by warping and 

mosaicking multiple images onto a sphere. Dense depth maps for the sphere are obtained by applying 

different dense image matching algorithms, such as semi-global matching (SGM) [29] and Efficient 

LArge-scale Stereo (ELAS) [30] to the rectified spherical panoramas with a subsequent triangulation of 

the depth information. Image data for both models are acquired using multi-head camera systems. By 

considering all sensors of a panoramic head to have a unique center of projection [14], both approaches 

reduce the relative and absolute 3D measurement accuracy from a potential cm-level to the dm-level or 

even lower. Other approaches such as the one described for the Stereopolis II system [7], preserve the 

original perspective image geometry and are thus not affected by the accuracy degradation. 

In conclusion, the proposed native urban model of 3D image spaces preserves the original image 

geometry and ensures the spatial and temporal coherence of the radiometric and depth information. Thus, 

in contrast to parametric 3D models or hybrid image-LiDAR based urban models, 3D image spaces 

ensure the principle of WYSIWYG (“What You See Is What You Get”). This is particularly important 

in a smart city context, where urban models are not only to be used by experts but also by a potentially 

large number of the citizens. Last but not least, by preserving the original image geometry, the urban 

model itself can be used for very accurate integrated or exclusively image-based georeferencing. Thus, 

the accuracy of the urban model could be increased as and when needed—possibly even months or years 

after the original data acquisition. 

4. Implementation and Test Environment 

Following a series of research projects on vision-based mobile mapping and urban modeling at the 

University of Applied Sciences and Arts Northwestern Switzerland FHNW, 3D image spaces have been 

the main focus of the most recent project named infraVIS (Sustainable Infrastructure Management based 

on Versatile Intelligent 3D Image Spaces). The main goal of the project was to demonstrate the feasibility 

of 3D image spaces and to evaluate their capabilities in real-world scenarios covering entire cities or 

states. The project thus addresses the entire process chain from the mobile acquisition of multi-view 

stereo and panoramic imagery, the image-based extraction of dense and accurate depth maps and the 

fully cloud-based processing and web-based exploitation of such large scale image spaces. An overview 

of the architecture and workflow for 3D image spaces is given in Figure 2. In the following sub-sections 
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we introduce the data acquisition system (Section 4.1), the processing pipeline (Section 4.2), the exploitation 

system (Section 4.3), and the test environment (Section 4.4) used in the experiments. 

 

Figure 2. System architecture and workflow of the infraVIS project. 

4.1. Data Acquisition System 

Data for the subsequent tests was acquired using the multi-stereovision mobile mapping research 

platform of the Institute of Geomatics Engineering (IVGI) at FHNW [20]. The current acquisition system 

shown in Figure 3 has the following features [31]: 

 A NovAtel SPAN inertial navigation system with a tactical grade UIMU-LCI inertial measuring 

unit (IMU) featuring fiber-optics gyros and with a L1/L2 GNSS kinematic antenna 

 Up to five stereo camera systems with either 11 MP or Full HD resolution, a typical radiometric 

resolution of 12 bits and max. data capturing rates of 5 fps or 30 fps respectively 

 The stereo systems are mounted on a rigid frame with typical stereo baselines of approx. 1 m 

 Typical configurations consist of a main stereo system facing forward and additional stereo 

systems facing aft, sideways or even pointing downwards at the road surface 

 Recent additions include up to two Ladybug 5 multi-head panoramic cameras 

 All sensors are synchronized using hardware trigger signals from a custom-built trigger box 

which also supports distance-based triggering to ensure uniform image sequences even in busy 

or congested traffic 

 Typical data acquisition speeds range from 30 to 80 km/h and max. acquired data volumes are 

in the order of up to 1 TB per hour of operation, depending on the acquisition parameters 
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(a) (b) 

Figure 3. (a) Multiview multi-sensor stereovision IVGI mobile mapping system; and  

(b) detail view showing the three stereo camera systems and the GNSS/IMU positioning system. 

4.2. Processing Pipeline 

Our processing pipeline for creating geospatial 3D image spaces from multi-view stereo imagery 

includes the steps of system calibration, georeferencing (see Section 5), generation of normalized and 

distortion-free images, the subsequent depth map generation (see Section 6), and finally the generation 

of multi-resolution tiles for the imagery and the depth maps. The processing framework uses Python as 

a wrapper language and high-level languages for computationally-intensive tasks. The framework 

features a multi-platform support and can be operated on individual workstations, on high-performance 

compute clusters (HPC), and in highly-scalable cloud computing environments, e.g., Amazon’s AWS 

Cloud Computing Services. 

The system calibration plays a key role in ensuring the postulated high relative and absolute 

accuracies that can be achieved with the resulting urban model. Calibration of a multi-sensor mobile 

mapping platform such as ours is documented in [10,20,32–34]. It includes the determination of the 

interior orientations of the 20+ sensor heads; the determination of relative orientation parameters among 

all sensors heads; and, finally, the calibration of lever arm and misalignment between imaging sensors 

and the IMU body frame. For a description of the calibration procedure and an evaluation of the results, 

we refer the reader to [20]. 

For depth map extraction, we are using a number of dense image matching algorithms and 

implementations. These include OpenCV StereoSGBM [35], a simplified variant of the SGM algorithm [29], 

SURE by nFrames [36], and Agisoft PhotoScan [37]. An important element of our depth map generation is 

the calculation of a matching quality indicator, which is stored with every pixel of the depth map. 

4.3. Cloud-Based Management and Web-Based Exploitation System 

During the entire processing workflow a comprehensive meta-database, representing all aspects of a 

3D images space is populated. It includes information on sensor calibration, road network topology, 

vehicle trajectories and image sequences, interior and exterior orientation of every image within the 3D 

image space, plus an abundance of additional metadata. The meta-database, among many other things, 

ensures a highly-efficient spatial and temporal access to image sequences and to individual 3D image frames. 

For the web-based exploitation, a dedicated 3D engine and an SDK for the georeferenced 3D image 

spaces were implemented. They provide access to the cloud-based 3D imagery and metadata. They also 

incorporate several data streaming concepts, such as tiled image loading, caching, or spatial preloading. 
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The SDK also includes numerous features for intelligent 3D measurements and for augmenting the 3D 

imagery with other geospatial content (see Section 7). The engine and the SDK are entirely based on 

modern web technologies such as HTML5 and WebGL in order to ensure cross-platform access from any 

desktop or mobile device. 

4.4. Study Area and Data 

For the following investigations, we chose a relatively small but demanding test site depicted in 

Figure 4a. The site is located at a very busy junction between five roads in the city center of Basel, 

Switzerland. It includes three tramway stops resulting in many overhead wires and is surrounded by 

rather tall commercial properties (Figure 4b,c). This creates a very challenging environment for GNSS 

positioning. Furthermore, construction work, as well as a large number of moving objects in the form of 

pedestrians, cars, and tramways, were present during data acquisition. 

(a) 

 
(b) (c) 

Figure 4. (a) Base map of the test area with overlaid projection centers of the selected image 

sequences, ground control points (GCPs), terrestrial laser scanning (TLS) stations, and 

locations of figures of this paper (Source: Geodaten Kanton Basel-Stadt); forward-looking 

mobile mapping imagery illustrating typical challenges; and (b) GNSS shadowing and 

numerous pedestrians; (c) heavy traffic with multiple trams, cars and cyclists. 

Mobile mapping data was acquired in July 2014 as part of a complete survey of the city-state of Basel 

in cooperation with our research partner iNovitas AG. While a total of eight image sequences were 
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available in the test area, we selected forward imagery from the three sequences depicted in Figure 4a 

for further investigations. Two roads were mapped in both directions and one road in one direction only. 

The selected test data was acquired at different dates and daytimes, which reflects typical real-world 

situations. The nominal along-track distance between successive image exposures was around 1 m. 

In order to assess the performance and quality of different matching strategies, independent and 

highly accurate reference data was acquired. Four 360° terrestrial laser scans (TLS) recording XYZ point 

geometry and intensity were obtained using a Leica ScanStation P20 on 19.03.2015. By registering the 

point clouds onto several cadastral reference points, an absolute 3D TLS accuracy of 1–2 cm was obtained. 

In addition, coordinates of 70 ground control points (GCP) were determined using a Leica Nova MS50 

total station with a resulting 3D accuracy of better than 1 cm. All measurements were performed in the 

Swiss reference frame LV95 and with orthometric heights in the LN02 reference frame. 

5. High Accuracy Georeferencing—Strategies and Results 

5.1. Motivation and Challenges 

The goal of our high-definition urban model is to ensure relative 3D measurements accuracies within 

individual or neighboring 3D image frames at the cm or even sub-cm level and to allow for absolute 

measurement accuracies, i.e. 3D coordinate determination accuracies, at the sub-dm level down to the 

cm level. Thus, the targeted relative and absolute geospatial accuracies are at a similar level as the 

resolution of the imagery, which is in line with the WYSIWYG goal postulated earlier. These accuracy 

goals are very ambitious considering the following challenges: 

 A kinematic acquisition with typical speeds between 30 and 80 km/h 

 In challenging urban environments with generally poor GNSS coverage 

 With the need to also create such models in GNSS-denied areas such as in tunnels or buildings, 

 The requirement to tie the urban model, i.e. the 3D imagery, to local control points, 

 The use of multi-sensor systems with typically more than 10 sensor heads. 

5.2. Direct Georeferencing 

The strength of mobile mapping systems is their ability to directly georeference their mapping sensors 

in relation to a mapping coordinate frame [10]. While there are also online calibration approaches for 

image-based mobile mapping systems [32], we subsequently assume an accurate off-line calibration of 

the entire multi-sensor system as described earlier. In airborne photogrammetry, where we can generally 

expect a good GNSS coverage, the direct georeferencing accuracy largely depends on the angular 

measurement quality of the inertial measuring unit (IMU) [38]. In street level mobile mapping of urban 

environments, by contrast, GNSS coverage is often poor to insufficient. 

Earlier experiments with our mobile mapping system [20] with average to good GNSS coverage, 

demonstrated that absolute 3D point measurement accuracies of 3–4 cm horizontally and 2–3 cm 

vertically (1 sigma) can be achieved. In the same study [20] it was shown that the 11 MP stereo system 

is capable to deliver relative measurements within a single stereo frame or between points in neighboring 

frames of the image sequence with an accuracy better than 1 cm. 
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5.3. Integrated and Image-Based Georeferencing 

In contrast to direct georeferencing, which exclusively relies on the position and attitude information 

provided by the inertial navigation system, integrated georeferencing—often also referred to as 

integrated sensor orientation (ISO)—uses other sensor observations for georeferencing the mobile 

mapping sensors. While integrated georeferencing is also applied to MLS, multi-view image-based 

mobile mapping systems offer a particularly great potential for exploiting accurate and often highly 

redundant image-based measurements. 

There are a number of approaches for integrated georeferencing of image-based mobile mapping 

systems. One approach [21] uses image-based measurements to natural control points for position and 

attitude updates to the original, directly georeferenced vehicle trajectory. The authors apply an optimized 

least squares multi-ray matching algorithm [22] to stereo image sequences for the efficient 

semiautomatic measurement of control and tie points. Subsequently, a constrained stereo bundle 

adjustment is used for the independent estimation of exterior orientation parameters of a sequence of 

stereo frames [22]. With their approach of vision-based trajectory updates [21], the authors demonstrated 

a consistent improvement of the absolute 3D positioning accuracy—and subsequent absolute 3D 

measurement accuracy in the 3D imagery—from originally several dm to a level of 2–5 cm horizontally and 

vertically. Since the establishment of ground control measurements is often more time consuming and 

costly than the mobile mapping campaign itself, we earlier on proposed the fusion of ground-based 

imagery from mobile mapping systems with aerial imagery from airborne photogrammetric surveys [27]. 

The rationale for doing so is that airborne surveys are much less affected by the GNSS degradations 

experienced by ground-based mobile mapping systems. As such, the airborne imagery provides a quite 

homogeneous 'datum', to which the street level imagery can be referenced. In first experiments, 

horizontal accuracies in the order of 5 cm, equivalent to the ground sampling distance (GSD) of the aerial 

imagery, and vertical accuracies of approx. 10 cm were demonstrated. 

5.4. Experiments and Results 

The goals of the following experiments were (a) to assess the quality of directly georeferenced sensor 

orientations in a challenging urban environment and (b) to improve the sensor orientation quality using 

automated image-based georeferencing techniques. These improved sensor orientations were required 

for the subsequent evaluation of the extracted depth maps (Section 6) and their comparison with 

reference TLS data. 

The directly georeferenced sensor orientations for the trajectories shown in Figure 4a were obtained 

by tightly coupled GNSS/INS post-processing using NovAtel Inertial Explorer. Subsequently, bundle 

adjustments using Agisoft PhotoScan were performed with the image projection center coordinates 

obtained from direct georeferencing as initial values. Image sequence 1 (Figures 4a and 5), for example, 

comprises 123 stereo image pairs of 11 MP resolution captured with the forward pointing stereo system 

on the 24.07.2014 at 10:20 over a length of 164 m. In the bundle adjustment 13,072 tie points and 91,239 

projections were computed leading to an overall projection error of 0.67 px. 133 measurements on 27 

GCP resulted in an overall error of 14 mm in the east direction, 11 mm in the north direction, and 4 mm 

in height, which corresponds to a 3D error of 18 mm or 0.34 px respectively. 
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Figure 5. Perspective view of image sequence 1 with stereo frames (blue rectangles) and 

GCPs (yellow flags) following a bundle adjustment in PhotoScan. The location of frame 80 

with a trajectory jump is marked with a dashed ellipse. 

Overall deviations between direct georeferencing and bundle adjustment are 301 mm in the east 

direction, 38 mm in the north direction, and 423 mm in height as shown in Figure 6. The figure also 

shows a significant trajectory discontinuity at the location of image number 80 (see dashed ellipse in 

Figure 5 and dashed line in Figure 6) with a coordinate jump of 53 mm eastward, −22 mm northward, 

−40 mm in height, and 70 mm in 3D space. The coordinate jump occurred between the consecutive 

images depicted in Figure 6 when the mobile mapping vehicle had to stop for several seconds in front 

of a crosswalk. While the overall 3D deviation of direct georeferencing and bundle adjustment is 520 

mm for image sequence one, the deviations of 93 mm and 81 mm for image sequences two and three are 

significantly lower. Further values are provided in [31]. 

 

Figure 6. Differences in [m] between directly georeferenced sensor orientations (projection 

center coordinates of right and left stereo cameras) and image-based georeferencing from 

bundle adjustment for image sequence one. Trajectory discontinuity between image frames 

#80 and #82 are marked with a dashed line and the corresponding images are shown to the right. 
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5.5. Discussion 

In open areas with good GNSS coverage, direct georeferencing of image-based mobile mapping 

systems in combination with state-of-the art calibration procedures is capable of delivering absolute 3D 

measuring accuracies better than 5 cm horizontally and vertically. However, in built-up urban 

environments with extended areas of poor GNSS coverage, direct georeferencing accuracies are typically 

in the order of (sub-) meter, even with expensive, high-grade inertial navigation equipment. Integrated 

georeferencing approaches [21,27], using image-based observations for transforming directly 

georeferenced trajectory segments onto GCPs, efficiently remove the potentially large offset and drift 

errors shown in Figure 6. However, they are not suitable to also detect and compensate discontinuities 

in the trajectories also shown in Figure 6. For urban modeling applications and for subsequent dense 

multi-image matching requiring relative and absolute accuracies at the cm level, the demonstrated 

image-based georeferencing approach, employing automated bundle adjustment, and offers an efficient 

and reliable solution. 

6. Dense Image Matching for Depth Map Extraction—Strategies and Results 

3D image spaces rely on good depth values for every pixel of each image. Thus, the accurate, robust, 

and complete extraction of depth information from dense image matching is an important goal of our 

research. In this section, we investigate the effect of different stereo and image sequence matching 

strategies on the quality of the extracted depth maps. 

6.1. Matching Approaches and Configurations 

For the following investigations image sequences from the forward-looking camera system shown in 

Figure 3b were used. Furthermore, the four matching Configurations c1 to c4 depicted in Figure 7 were 

selected. Configuration c1 represents standard stereo matching with one base image and one match 

image for which a great number of algorithms exists [39]. Configuration 2 represents the case in which 

only mono imagery would be available. It is limited to the sequential matching of the base image with 

the previous and the following image. This case puts high demands on providing sufficient relative 

orientation accuracy but does not require a synchronization between multiple cameras. With 

Configurations 3 and 4 we introduce and investigate two new multi-view stereo approaches, for which 

better results can be expected. In case of Configuration 4, the base image is matched with all five 

neighboring images. Omitting the two match images of Configuration 2 from Configuration 4 leads to 

Configuration 3. 

In case of Configuration 1, stereo imagery captured at the same epoch is used for the matching 

process, which is a standard procedure. The other configurations include imagery acquired at different 

epochs and with strong motion and scale differences in viewing direction, which are typical for mobile 

mapping scenarios. The predominant motion in viewing direction between neighboring images results 

in stereo epipoles located either inside or close to the stereo partner. This requires advanced rectification 

approaches such as polar rectification, which can deal with all possible stereo geometries. In case of the 

software SURE [36] which was used for the following investigations, the polar rectification proposed in [40] 

(Figure 8) is used. Implementation details and first results are described in [31]. 
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Configuration 1 (c1) Configuration 2 (c2) 

Configuration 3 (c3) Configuration 4 (c4) 

Figure 7. Selected image matching configurations, red: base image, green: match images. 

 

Figure 8. Base image (Lt0) and its neighboring images rectified by SURE using polar rectification. 

6.2. Experiments and Results 

Accurate depth maps are fundamental for the urban model of 3D image spaces and in particular for 

reliable and accurate 3D monoplotting applications. Therefore, comparisons of depth maps were 

performed, which were either generated directly by the SURE triangulation module or obtained by  

back-projecting point clouds to the viewing geometry of a base image. Similar to the methodology of [41], 

who did not interpolate ground truth disparity maps in order to avoid artificial errors, we also did not 

interpolate the depth maps. This allowed the evaluation of the raw depth values and to cope with missing 

parts of depth maps. Depth deviations were only computed for pixels holding values for both depth maps 
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and only deviations smaller than 50 cm were considered for RMSE and mean. The locations of the different 

image sub-sequences (e.g., 1-1 or 2-1) used in the following experiments are indicated in Figure 4a. 

In a first series of tests, relative depth comparisons in image space were carried out with the depth 

map of configuration 4 (c4) as a reference (Figure 9). For all extracted 3D base images, c1–c4 delivered 

the lowest RMSE values. The highest RMSE, as well as mean values, were computed for c2–c4. While 

RMSE values for c1–c4 and c3–c4 are in the range of 36 mm to 56 mm, the range for c2–c4 is from 57 mm 

to 72 mm. c3–c4 delivered the most façade points and c2–c4 shows an opposite behavior compared to 

the two other configurations with inverted depth differences. In c2–c4 and c3–c4 the region close to the 

epipole, where depth estimations are not accurate and thus eliminated, is clearly visible. This effect 

results in a considerable number of road surface points not being mapped. 

Matching 

configurations: 

Base image 

c1–c4 c2–c4 c3–c4 

 

53 mm 

−7 mm 

72 mm 

9 mm 

56 mm 

4 mm 
 

RMSE: 

Mean: 

 

36 mm 

−10 mm 

57 mm 

22 mm 

38 mm 

1 mm 
 

RMSE: 

Mean: 

 

53 mm 

−6 mm 

64 mm 

19 mm 

54 mm 

3 mm 
 

RMSE: 

Mean: 

Figure 9. Deviations of depth maps generated by the SURE triangulation module. 
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Base image 1-1 

 

 

 
c1-TLS 

RMSE: 107 mm, Mean: 30 mm

c2-TLS 

RMSE: 153 mm, Mean: 18 mm 

 
c3-TLS 

RMSE: 137 mm, Mean: 15 mm

c4-TLS 

RMSE: 144 mm, Mean: 8 mm 

 
Base image 2-1 

 

 

c1-TLS 

RMSE: 121 mm, Mean: 7 mm 

c2-TLS 

RMSE: 127 mm, Mean: 5 mm 

 
c3-TLS 

RMSE: 142 mm, Mean: -4 mm 

 
c4-TLS 

RMSE: 143 mm, Mean: -4 mm 

 
Base image 2-2 

 

 

c1-TLS 

RMSE: 145 mm, Mean: -3 mm 

c2-TLS 

RMSE: 160 mm, Mean: -6 mm 

 
c3-TLS 

RMSE: 164 mm,  

Mean: -16 mm 

c4-TLS 

RMSE: 169 mm,  

Mean: -11 mm 

Figure 10. Depth deviations between point clouds from SURE triangulation and TLS. 
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In a second test series, terrestrial laser scanning points projected to image space were used as 

reference. These reference depth maps (TLS) were compared with dense image matching point clouds 

for all matching configurations (c1–c4), all generated using the SURE triangulation module. The highest 

mean values, i.e., the highest depth offsets, were computed for base image 1-1 (see Figure 4a). The 

highest RMSE, i.e., the highest depth noise values, were observed for base image 2-2, which were caused 

by a large shadow area and vegetation (see Figure 10). All RMSE values are in the range of 107 to 169 

mm. While c1-TLS features the lowest RMSE values, c2-TLS shows the highest RMSE values for all 

but for base image 2-1, where significantly fewer points are mapped in comparison to the other 

configurations. RMSE values for c4-TLS are a little higher than for c3-TLS but c4-TLS also includes 

more depth observations. 

6.3. Discussion 

Investigations in image space showed similar results between the four selected configurations for all 

three base images. Due to a single large stereo base, the traditional stereo Configuration 1 provided high 

accuracies, which did not further improve with the additional use of images captured at different epochs. 

Configuration 2 with sequential matching of mono image sequences loses many points around the 

epipole. It also yields a limited accuracy since the base for image ray intersection is very small. The 

differences between Configurations 3 and 4 are not significant. However, especially compared to the 

standard stereo Configuration 1, the increasing number of match images available in Configuration 4 

delivers significantly higher point densities. In summary, the traditional stereo matching Configuration 1 

delivers depth maps with a medium completeness but with the highest accuracy and Configuration 4 

yields depth maps with the highest completeness but slightly higher RMSE values. For a more detailed 

discussion of the multi-view configurations and the underlying epipolar rectification for in-sequence 

matching we refer the reader to our publication [31]. A further depth map improvement in terms of 

completeness and reliability can be expected from the future incorporation of the imagery from the  

back-right and left stereo systems as well as from the panorama camera. 

7. Smart Exploitation of Cloud-Based 3D Image Spaces 

In the introduction of 3D image spaces in Section 3, we postulated some key capabilities such as a 

high-fidelity WYSIWYG representation of the urban environment that shall be easy-to-use, support 

robust and accurate 3D measurements, as well as a simple and efficient augmentation of geospatial 

contents. In this section, we demonstrate some of these capabilities by presenting and discussing a 

selection of features offered by our cloud- and web-based software framework introduced in Section 4. 

Since the client application of the software framework is entirely web-based, running on every actual 

Internet browser, there is no need for a software installation on client computers. The same web 

application can even be deployed for different types of users within customer organizations. This could 

provide geospatial expert users with more advanced tools than, for example, users from different 

application domains or even public users. Expert-only functionality could include absolute 3D 

coordinate measurement, GIS editing tools or the augmentation of critical infrastructure not accessible 

to the public. 
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Key features and functionality offered by the urban model based on geospatial 3D image spaces 

include the following: 

3D Monoplotting is the underlying core functionality, which enables accurate 3D measurements or 

the digitizing of points, lines or polygons (Figure 11a) simply by clicking on a location within the 2D 

imagery. Based on the exact georeference of each image and on its associated dense depth map, 3D 

world coordinates of every 2D cursor position are instantly calculated. With these 3D point coordinates, 

arbitrary relative measurements can be derived, e.g. distances, heights or areas as shown in Figure 11a,c,d. 

Monoplotting is a long-known photogrammetric procedure, which enables 3D digitizing and 3D feature 

extraction from single images where an underlying depth map representing the surface of the represented 

scene is available. The principle of digital 3D monoplotting dates back to the early 1970s and was 

originally applied to combinations of aerial imagery and digital elevation models (DEM). Later on it was 

extended to satellite imagery [42] and to the combination of close-range photogrammetry and TLS point 

clouds [43], where 3D monoplotting has become a standard measuring principle. Today, 3D monoplotting 

is also used in hybrid image- and LiDAR-based mobile mapping environments [7,8,11] allowing  

image-based monoscopic 3D measurements in combination with co-registered MLS point clouds. 

However, these hybrid solutions currently cannot guarantee the spatial and temporal coherence of the 

image and depth information, which would be required for both accurate and robust 3D measurements 

and which currently can only be provided by stereovision based mobile mapping. 

Augmentation of Geospatial Contents—For the inspection and updating of existing geospatial 

content, such as infrastructure data, the web client provides functionality to load and store such data 

from or to a file or to interface with existing databases (Figure 11b). For data exchange, GIS standard 

geometry formats like GeoJSON or WFS services are supported. In the regular case, where existing 

infrastructure data is available in 2D only, i.e. without known height information, the original 2D 

geometry can be projected into 3D by means of a server-side process. This process again uses the dense 

depth maps. To increase the height accuracy, multiple 3D images are taken into account for this 

calculation. This process runs fully automatically and allows determining the missing height for huge 

existing 2D infrastructure databases for their accurate integration into the 3D image spaces. 

Simple “One-Click” Measurements—In the context of street level urban environments and road 

management the height of objects above the terrain is an important measure. For accurately measuring 

such heights, a special “one click” height measurement tool was developed. As shown in Figure 11c, the 

user clicks on a point above the ground e.g. on a traffic light or on an overhanging tree branch. Based on 

this 3D position an exact vertical line in the map reference system is defined. The intersection of this 

vertical line with the depth map representing the underlying ground automatically determines the ground 

point for the vertical height measurement. The calculation is similar to the one used for assigning heights 

to an existing 2D infrastructure dataset, as described in the last section. The main difference is that the 

tool is running on client side. The same functionality is also used for automatically extracting 

longitudinal road profiles or cross-sections. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 11. Overview of selected tools and features for interacting with 3D image spaces. (a) 

Measuring a polygonal area by 3D monoplotting; (b) superimposing existing infrastructure 

data e.g. water (blue) and waste water (red) pipes in an urban street scene;  

(c) single-click height measurement from a traffic light to the road surface; (d) measuring of 

a perpendicular distance (red line) from an orthogonal reference line (green) extracted from 

pavement border; (e) resulting images of a multi-view query looking for a 3D world 

coordinate (red square) under different viewing angles; and (f) mobile web application. 
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Intelligent Advanced Measurements—In urban infrastructure management it is often necessary to 

perform more sophisticated measurement tasks, such as determining exact orthogonal distances from a 

defined edge or axis (see Figure 11d). For this purpose, a special orthogonal measurement tool was 

created, which simultaneously exploits the radiometric and depth information of the 3D image. In a first 

step, the tool searches for edges at the user’s current cursor position by using the radiometric image 

information. A subset of pixels around the cursor is analyzed by a restricted partial Hough transform [44]. 

The generated Hough space is then thresholded by a predefined limit to find clear Hough peaks. If no 

peak is found, then the threshold limit decreases iteratively, controlled by the duration a user presses the 

mouse button. This ensures that small intensity changes of edges are still recognized as a possible line. If 

a clear radiometric edge is found, a 3D edge is estimated using the co-registered depth information. The 

resulting 3D line is then set as reference line. By further clicking in the image, orthogonal distances to 

this reference line can be measured as shown in Figure 11d. 

Multi-View Queries—Usually street level environments are captured in a multi-stereo configuration 

and in different driving directions. Often those streets are re-captured in a predefined interval, such as 

every year or every two years, to ensure actual data. This leads to a continuously growing huge 3D image 

database. To get the full benefit of these huge 3D image collections, intelligent image selection 

algorithms are necessary. One example is the efficient querying of all images containing a specific 3D 

world coordinate or object. This allows users to easily inspect an object from different viewing angles 

or to compare measurements in multiple frames. An implementation of such an algorithm in the multi-view 

tool is shown in Figure 11e. Future advanced multi-view queries on 3D image spaces could also be used 

for localization or augmentation tasks as shown in [45]. 

Mobile Measurements—The usage of a web application built with state of the art web technologies 

like HTML5/WebGL allows the software to run cross-platform on desktop or mobile devices (Figure 11f). 

Typical data streaming concepts were applied and performance in limited bandwidth environments was 

an important criterion during development in order to run the application also on mobile devices. As a 

result, users can access and exploit the 3D image spaces directly in the field, for example, for cross-check 

measurements, for checking where an existing underground pipe is located or even for staking-out tasks. 

The latter can be achieved by making cm-accurate 3D measurements between augmented infrastructure 

objects and natural features, such as road markings on the mobile client. These virtual measurements can 

then be staked out in the field, e.g. by using simple tape measures. 

8. Conclusions and Future Work 

In this paper we introduced the concept and an implementation of a new type of native urban model 

which we refer to as geospatial 3D image spaces and which is based on collections of georeferenced 

RGB-D imagery. A key requirement of the model is that the depth information (D) for each image shall 

be dense, as well as spatially and temporally coherent. This ensures that the urban model is WYSIWYG 

(“what you see is what you get”), i.e. that any visible object, including moving objects such as cars or 

pedestrians, can be correctly localized and measured in 3D. Multi-view stereo mobile mapping systems 

in combination with state-of-the-art dense image matching algorithms are capable of fulfilling these key 

requirements. With such systems, urban environments along road corridors, railway lines and even rivers 

can be captured with high fidelity and with a high level of accuracy. The urban model and the system 
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framework described in this paper are already operationally used by our spin-off company and research 

partner iNovitas AG for producing large-scale 3D image based urban models of entire cities and states. 

In the paper we subsequently addressed three main research issues determining the performance and 

usefulness of 3D image spaces in real-world environments: (1) the obtainable georeferencing and 

subsequent absolute accuracy, (2) the density and relative measurement accuracy, and (3) specific 

exploitation features offered by the model. 

First, we showed that the multi-view stereo imagery not only serves as metric 3D representation of 

the environment but that it can also be used for significantly improving the georeferencing accuracy in 

typical GNSS-degraded urban areas. In our experiments, the original direct georeferencing accuracy 

from high-grade inertial navigation equipment was in the order of one to several dm. With image-based 

georeferencing using a bundle adjustment of just the front stereo imagery and a number of GCPs, the 3D 

georeferencing accuracy of the imaging sensors could be improved by an order of magnitude to less 

than 2 cm. It was also shown that largely automated image-based georeferencing is capable of 

compensating discontinuities in directly georeferenced trajectories, which were not addressed by earlier 

integrated georeferencing approaches. 

Second, we presented a number of image matching strategies, which aim at obtaining optimal depth 

maps that are as dense and complete as possible and provide an optimal depth accuracy. As could be 

expected, the traditional single base stereo configuration provided the highest accuracy, but a limited 

completeness. A new multi-image matching configuration, which matches a base image with five 

spatially and temporally adjacent images using a modified polar rectification approach was introduced. 

It was shown that traditional stereo matching and the multi-stereo matching approaches yield far superior 

results to what can be obtained from matching monoscopic imagery, which is still the standard imagery 

with most commercial mobile mapping systems. This supports the idea of using stereo imagery for 

establishing high-quality urban 3D spaces. The evaluations further showed that the multi-stereo 

configurations yield depth maps with similar accuracies to traditional stereo matching but with a 

significantly higher completeness and robustness. These are valuable contributions towards creating 

image-based urban models not only with an unparalleled richness but also with a reliable measuring 

capability at the cm accuracy level—even in challenging urban environments. 

Third, from a smart city perspective, the interesting aspects of 3D image spaces include their intuitive 

interpretation by geospatial experts and the general public alike as well as their ease of use by means of 

increasingly powerful web and mobile clients. A key element in the exploitation of 3D image spaces is 

the underlying 3D monoplotting functionality. We demonstrated that the combination and extension of 

this well-known principle with accurately georeferenced high-resolution imagery, dense depth maps, 

and new algorithms are enabling a range of powerful, yet easy-to-handle new tools for interacting with 

3D image spaces. 

The potential for future work in image-based urban models in general and in 3D image spaces, in 

particular, is enormous. Our own work will focus on further improving the image-based georeferencing of 

3D image spaces by incorporating imagery from all views into a new constrained bundle adjustment. 

Based on these results we will continue our research in optimal depth generation from multi-view stereo 

matching with the goal of significantly improving the density and accuracy of the depth information over 

what was presented in this paper. This work will, among other aspects, also include investigations on 

optimal along-track and cross-track baselines. Ongoing work in depth extraction also includes stereo 
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configurations with 360° coverage with the goal of preserving both the original image geometry and 

providing high depth extraction accuracies. Integrated and image-based georeferencing approaches, 

which are highly accurate and automated, will also be a prerequisite for creating accurate and large-scale 

indoor models based on 3D image spaces. In the longer term, multi-temporal large-scale 3D image spaces 

of entire cities or states will provide an ideal basis for urban change detection. However, due to the 

complexity and the vast number of rapidly changing objects in urban scenes, the automatic detection of 

'slow' urban changes will remain a major scientific challenge for many years to come. 
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