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Predicting Physical and Chemical Properties of US Soils 
with a Mid-Infrared Reflectance Spectral Library

Nutrient Management & Soil & Plant Analysis

Mid-infrared (MIR) reflectance spectroscopy is commonly studied as a rapid 
and nondestructive method for predictive soil analysis under laboratory condi-
tions. The first objective of this paper is to report an MIR spectral library based 
on 20,000+ soil samples collected from the United States. The second objective 
is to assess, using partial least squares regression (PLSR) and artificial neural 
networks (ANN), the performance of the library to predict 12 physical and 
chemical soil properties: organic carbon (OC), inorganic carbon (IC), total car-
bon (TC), total nitrogen (TN), clay, silt, sand, Mehlich-3 extractable phosphorus 
(P), NH4OAc extractable potassium (K), cation exchange capacity (CEC), total 
sulfur (TS), and pH. The third objective is to investigate whether the use of aux-
iliary variables of master horizon (HZ), taxonomic order (TAXON), and land 
use land cover (LULC) would improve MIR model performance. The results 
showed that OC, IC, TC, TN and TS were predicted most satisfactorily with R2 
> 0.95 and RPD (ratio of performance to deviation) > 5.5. Soil CEC, pH, clay, 
silt, and sand were also predicted satisfactorily with R2 > 0.75 and RPD > 2.0. 
P and K were predicted poorly, with R2 < 0.4 and RPD < 1.4. The ANN mod-
els generally outperformed PLSR models, except for clay, silt and sand. Using 
auxiliary variables (HZ, TAXON, and LULC) to develop stratified models gener-
ally improved model performance. The HZ-specific models showed the greatest 
improvements. Using an MIR spectral library for routine soil analysis would 
positively impact many modern applications where high spatial resolution, 
quantitative soil data are demanded.

Abbreviations: ANN, artificial neural network; CEC, cation exchange capacity; HZ, 
horizon; IC, inorganic carbon; LULC, land use land cover; MIR, mid-infrared; OC, organic 
carbon; PLSR, partial least squares regression; RMSE, root mean squared error; RPD, 
ratio of performance to deviation; TAXON, taxonomic order; TC, total carbon; TN, total 
nitrogen; TS, total sulfur; VisNIR, visible and near infrared.

VisNIR (visible and near infrared, from 25000 to 4000 cm-1) and MIR 
(mid-infrared, from 4000 to 400 cm-1) are the two most commonly used 
spectral regions for soil analysis (Viscarra Rossel et al., 2006). Both tech-

niques are rapid, nondestructive, and require only drying and grinding for sample 
preparation (which is already required for virtually all soil analyses in the labora-
tory). Multiple soil properties can be inferred from one spectral scan. These fea-
tures make VisNIR and MIR highly desirable for many applications requiring high 
throughput analysis or in situ deployment.

Both VisNIR and MIR are vibrational spectroscopy, a type of spectroscopy in-
volving the absorption of electromagnetic energy due to various vibrational modes 
of molecules (absorptions in the visible part caused by electronic transition). 
Fundamentals of these vibrational absorption bands appear in the MIR region. 
They are strong, distinct, and can be used to fingerprint specific chemical bonds 
associated with the bands. The VisNIR region is characterized by overtones and 
combinations of fundamental bands. They are generally weaker, overlapped, and 
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•	A mid-infrared spectral library 
containing 20,000+ samples was 
reported.

•	Twelve soil physical and chemical 
properties were predicted with MIR 
spectra.

•	ANN models performed better than 
PLSR for most soil properties.
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as auxiliary variables improved 
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an alternative to laboratory-based 
analysis for OC and IC.
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difficult to resolve for specific chemical constituents (Stenberg 
et al., 2010).

The performance of VisNIR versus MIR for soil analysis 
was compared in a number of papers, with an emphasis on soil 
carbon. McCarty et al. (2002) showed that MIR outperformed 
NIR for soil organic C and inorganic C modeling. Reeves et al. 
(2006) used MIR and NIR spectra to model organic C, inorganic 
C, and total C of soil samples from 10 States in the United States 
and obtained more accurate predictions with MIR. Similarly, 
Vohland et al. (2014) reported considerable better model perfor-
mance with MIR compared with VisNIR for organic C, micro-
bial biomass-C, hot water extractable C, and nitrogen. Ge et al. 
(2014b) demonstrated that, compared with VisNIR, MIR-ATR 
(attenuated total reflectance) models yielded much higher accu-
racy for inorganic C and clay content, and slightly higher accu-
racy for organic C. Henaka Arachchi et al. (2016) also showed 
improved predictions for organic C fractions of bulk soil samples 
using MIR compared with NIR. Bellon-Maurel and McBratney 
(2011) conducted a critical review on this topic and concluded 
that MIR is better than NIR in predicting C, with prediction 
errors generally 10 to 40% lower.

Although better modeling results are documented with 
MIR, VisNIR has a number of advantages that makes it more 
widely used in the soil research community. First, less expensive, 
portable, and off-the-shelf VisNIR instruments have been avail-
able for a long time. Second, acquiring VisNIR scans requires less 
sample preparation. Furthermore, VisNIR has been deployed in 
the field (Ackerson et al., 2017; Bricklemyer and Brown, 2010) 
and used for intact, field-moist soil samples (Ge et al., 2014a; 
Minasny et al., 2011).

Large VisNIR soil spectral libraries have been also devel-
oped and compiled. Different from local datasets which contain 
a few hundred samples covering field or watershed scales, large-
scale VisNIR libraries cover regional, national or global scales 
with a few thousands to tens of thousands of soil VisNIR spec-
tra and reference soil data (Brown et al., 2006;Viscarra Rossel 
et al., 2016; Wijewardane et al., 2016b). They can be accessed 
and used by researchers from different countries to model and 
predict soil properties with higher throughput and lower cost, 
compared with the traditional laboratory-based soil analysis 
(Wijewardane et al., 2016b). This becomes particularly relevant 
as there are increasing demands for densely sampled soil data in 
the space-time continuum for applications like precision agricul-
ture, land resource management, and hydrological and ecological 
modeling (Schmugge et al., 2002; Viscarra Rossel et al., 2011; 
Viscarra Rossel and Bouma, 2016).

Literature is scanty on large-scale MIR soil spectral librar-
ies. Viscarra Rossel et al. (2008) reported an MIR library from 
Australia containing ~1900 samples; and Terhoeven-Urselmans et 
al. (2010) reported an MIR database containing a diverse set of 971 
samples from the International Soil Reference and Information 
Center. On the other hand, the superior performance of MIR 
models for many soil properties suggests the great potential of 
such MIR libraries for high throughput soil analysis under labora-

tory conditions. The MIR may not be quite suitable for in situ soil 
analysis, but it is conceivable that a soil MIR library can be a very 
powerful tool to supplement conventional laboratory analysis and 
increase throughput (Nocita et al., 2015). This paper intends to 
fill in this gap in the literature with the following three objectives: 
(i) introduce a compiled MIR soil spectral library comprising over 
20,000 soil samples collected from the United States, (ii) evalu-
ate the performance of the MIR library in predicting a number of 
common soil physical and chemical properties using partial least 
squares regression and artificial neural networks, and (iii) investi-
gate the refinement of MIR models using auxiliary variables.

Materials and methods
Soil Samples and MIR Spectral Library

The MIR spectral library was compiled at USDA–NRCS 
National Soil Survey Center (NSSC). The library consisted of 
20,153 soil samples. The soil samples were collected through-
out the United States over the past 17 yr, belonged to various 
projects, and were consistently processed and analyzed follow-
ing The Kellogg Soil Survey Laboratory (KSSL) protocols (Soil 
Survey Staff, 2014b).

Twelve soil properties in this study included organic carbon 
(OC), inorganic carbon (IC), total carbon (TC), total nitrogen 
(TN), percentages of clay, silt and sand, cation exchange capacity 
(CEC), Mehlich-3 extractable potassium (K), NH4OAc extract-
able phosphorus (P), total sulfur (TS), and pH. Table 1 lists ref-
erence laboratory methods used to measure these soil properties 
(Soil Survey Staff, 2014b).

Each sample also had three auxiliary variables: Land use 
land cover (LULC, as described in Fry et al., 2011), Taxonomic 
orders (TAXON), and field described Master Horizons (HZ) 
(Soil Survey Staff, 2014a). These variables were later used to 
stratify samples for the refinement and improvement of spectral 
modeling. Table 2 shows the number of samples in each category. 
Nearly half of soil samples were from B horizons or Mollisols. In 
LULC, samples from agriculture lands (Ag Land) had the high-
est proportion while woody wetlands had the lowest proportion.

A Fourier-Transform Infrared spectrometer (FT-IR, Vertex 
70, Bruker Optics) was used to acquire MIR spectra (in diffuse 
reflectance mode or DRIFT) of all soil samples. The instrument 
had an MCT (mercury cadmium telluride) detector cooled by 

Table 1. Soil properties studied and the reference methods 
used for their lab analysis.

Soil property Unit Reference method
Organic C % Total carbon minus inorganic carbon

Inorganic C % HCl treatment/Manometric

Total C % Dry combustion

Total N % Dry combustion

Clay, silt and sand % Pipette method

CEC cmolc kg–1 NH4OAc/pH 7 extraction

Extractable K cmolc kg–1 NH4OAc/pH 7 extraction

Extractable P mg kg–1 Mehlich-3 extraction

Total S % Dry combustion

pH 1:1 water extraction
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liquid nitrogen. The spectral resolution was set at 4 cm-1. Air-
dried and ground samples (<2 mm) were further ground to 180 
mm and then loaded into a 96-well spot plate. The plate was coat-
ed by a layer of reflective anodized aluminum. The wells were 6 
mm in diameter and 1.3 mm deep. For each soil sample, four sub-
samples were drawn and loaded into four wells on the spot plate; 
and the four scans were averaged to obtain the MIR spectrum of 
that sample. Care was given to ensure the surface of the sample 
in each well was flat (by using a cylindrical, flat-bottomed press 
tool). The MIR spectrum of each sample was then measured by 
the instrument in a sequential manner, and a reference spectrum 
was collected immediately before every soil sample by scanning an 
empty well as the reference. Both the sample and reference scans 
from each well were 32 co-added instantaneous scans. All spectra 
were first stored in the FT-IR spectrometer’s OPUS software for-
mat and then converted to csv for processing and analysis.

Spectral Modeling with PLSR and ANN
Spectra collected by the instrument covered the spectral 

range from 7498 to 600 cm-1 (the lower end determined by 
MCT detector limit). However, for spectral analysis and model-
ing, only the range from 4000 to 600 cm-1 was used, which is 
commonly regarded as the MIR spectral region.

Spectra were preprocessed with an average window of 10 
bands. This improved signal to noise ratio of the spectra, re-
duced the dimensionality of data for effective computation, and 
avoided model overfitting. The library was randomly split into 
two datasets as a calibration set (50%) used for model develop-
ment, and a validation set (50%) for model validation. Models 
were calibrated using partial least squares regression (PLSR) and 
artificial neural network (ANN).

The PLSR is the most commonly used technique for che-
mometric modeling and the de facto standard method in soil 
spectroscopy. Similar to principal component analysis, PLSR re-
duces predictor variables to several synthetic variables known as 

“latent variables” while considering the response variable simul-
taneously. A linear model is then fitted between the latent vari-
ables and the response variable (Helland, 2004). Unlike ANN, 
PLSR modeling is less computationally demanding and more 
interpretable (Stenberg et al., 2010).

The ANN is inspired by the networks of biological neu-
rons, which have layers of nodes acting as nonlinear summing 
devices. These nodes are connected to input variables by weights 
which are adjusted iteratively in model calibration (Dayhoff 
and DeLeo, 2001). Back-propagation is one technique to adjust 
these weights to minimize the learning error by propagating the 
error back to the input layers (Rumelhart et al., 1985; Gallant, 
1993). ANN is effective in scenarios where low signal-to-noise 
ratio is observed in data and interpretation is not one of the goals 
(Hastie et al., 2001).

For PLSR, models with the number of latent variables from 
1 to 30 were considered (as the tuning parameter); and the opti-
mum models were selected by number of latent variables which 
gave the first local minimum of root mean squared error of cross-
validation (RMSECV) using 50-fold cross-validation. For ANN, 
a grid search with two tuning parameters (the number of nodes 
in the hidden layer from 3 to 25, and the decay of weight at each 
iteration set at 0.01, 0.1, and 0.3) was used to select the model 
with the lowest RMSECV values.

Model performances were evaluated by calculating R2 (co-
efficient of determination between predicted and reference val-
ues in the validation set), root mean squared error of validation 
(RMSEV), ratio of performance to deviation (RPD), and ratio 
of performance to inter-quartile range (RPIQ, Bellon-Maurel et 
al., 2010). The RPIQ was included because the distributions of 
all soil properties deviated substantially from normal (Table 3).

To investigate whether stratifying samples by the auxiliary vari-
ables would improve MIR modeling, we calibrated the MIR mod-
els according to the classes for each auxiliary variable. For example, 
when HZ was used as the auxiliary variable, we developed five 
HZ-specific PLSR models (that is, O-model, A-model, E-model, 
B-model, C-model; Table 1) using the calibration samples in each 
class. These HZ-specific models were then applied to the validation 
samples in their corresponding class. The R2 and RMSEV were then 
calculated across all the validation samples and compared with the 
generic models (that is, without using the auxiliary variables). Note 
that for some classes, the number of samples was not enough to cali-
brate a robust PLSR or ANN model (e.g., there are only six Oxisol 
samples in the library). We set an arbitrary threshold of 500, mean-
ing that if the number of samples in a class was less than 500, the 
specific model for that class was not built to avoid model overfitting.

Model calibrations were implemented in the supercom-
puter cluster at the Holland Computing Center of University 
of Nebraska-Lincoln with 64 2.1 GHz cores and 250 GB RAM. 
Data analysis was performed in the R environment (R Core Team, 
2016) with the following packages: pls (Mevik et al., 2013) for 
PLSR, nnet (Venables and Ripley, 2002) for ANN, caret (Kuhn 
et al., 2015) as the modeling wrapper, and doParallel (Revolution 
Analytics and Weston, 2015) for parallel processing.

Table 2. Number of soil samples (in parentheses) in each cate-
gory of field-described master horizon, taxonomic order, and 
land use land cover.†

Master horizon Taxonomic order Land use land cover

O (1058) Alfisols (3115) Ag Land (4258)
A (4275) Andisols (945) Deciduous Forest (1725)

E (389) Aridisols (921) Developed/Open Space (715)

B (7317) Entisols (1503) Evergreen Forest (3100)

C (2526) Histosols (612) Grassland/Pasture (3656)

Inceptisols (2677) Shrubland (2299)

Mollisols (6948) Woody Wetlands (655)

Spodosols (1184) Barren (101)

Ultisols (1693) Developed/High Intensity (84)

Gelisols (215) Developed/Med. Intensity (286)

Oxisols (6) Developed/Low Intensity (341)

Vertisols (325) Herbaceous Wetlands (110)

Mixed Forest (399)

Open Water (294)
Perennial Ice/Snow (6)

† Categories having <500 samples were not used for model 
calibration and validation in stratified modeling.
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Results and discussion
Soil Properties in the MIR Spectral Library

Table 3 gives summary statistics of the 12 soil properties in 
the calibration and validation sets. The mean and median values 
are comparable in both sets, indicating the split of data was bal-
anced which was important for effective model evaluation. All 
soil properties appear to deviate substantially from normal dis-
tributions, as indicated by their Skewness and Kurtosis values. 
The extreme values in OC (>50%) are the samples of O horizons 
of Histosols or Spodosols in agricultural lands or forest areas. 
Samples with extreme IC values (>8%) are mainly from B hori-
zons of Mollisols. Highly sandy samples (>90%) are from the C 
horizons of Entisols in south Michigan. Highly clayey samples 
(>80%) are from B horizons of Alfisols in Superior Lake Plain.

The wide range and non-normal distribution of proper-
ties are expected as samples in this database are from wide geo-
graphic areas covering a broad range of climate, parent material, 
land cover and management practices. In addition, the samples 
in the library do not represent all soil orders and horizons equal-
ly (Table 2), which also leads to the skewed distributions of soil 
properties. Previous studies have reported similar distributions 
(Brown et al., 2006; Wijewardane et al., 2016b) and applied 
log transformations (Askari et al., 2015; Mulder et al., 2016) to 
improve model performance. We did not employ variable trans-
formation in this study, because the modeling method used (in 
particular ANN) and assessment metrics (RPIQ) would address 
this non-normality issue effectively (Bellon-Maurel et al., 2010).

Soil samples with high OC (37%), IC (10%), and clay 
(96%) are given as an example to show samples’ MIR spectra 
(Fig. 1). Several strong absorption bands that can be associated 
with certain functional groups are identifiable. For the high clay 
sample, the absorption peak at 3620 cm-1 (labeled a in Fig. 1) is 
commonly seen for clay minerals (e.g., kaolinite, smectite, and 
illite); and the peak at 1645 cm-1 (labeled e in Fig. 1) is caused 
by H–O–H bonds of water in the clay lattice (Nguyen et al., 
1991). For the high OC sample, C–H stretching bands from 

methyl and methylene groups of organic matter at 2920 cm-1 
and 2850 cm-1 (labeled b and c in Fig. 1) are identified, along 
with the carbonyl C=O band of organic matter at 1750 cm-1 
(labeled f in Fig. 1). Diagnostic bands of carbonates at 2510, 
1800, 1415, 870, and 710 cm-1 can be identified in the high IC 
sample (all labeled d in Fig. 1). These characteristic bands, as well 
as the overall spectral shape, are in good agreement with the pub-
lished soil MIR spectra (McCarty et al., 2002; Ge et al., 2014b).

Mid-Infrared Spectral Library Model Performance
The MIR modeling (PSLR and ANN) results (Table 4) in-

dicate the target soil properties can be grouped into four classes 
in terms of prediction accuracy. The first group includes OC and 
IC. These two properties are predicted with the highest accuracy, 
with very high R2 (0.99), very low bias, and high RPD (>11) (with 
ANN method for validation). The second group includes TC, 
TN, and TS. The models for these three properties also showed 
satisfactory validation statistics, with R2 = 0.97, low bias and RPD 
values greater than 5.5 (again, with ANN method in validation). 
The third group includes clay, silt, sand, CEC, and pH, which are 
predicted with intermediate accuracy. Their validation R2 values 
vary between 0.80 and 0.90, and RPDs vary between roughly 2.0 
to 3.0 with the better of the two modeling approaches. The last 
group includes K and P, which are predicted with low accuracy (R2 
in general lower than 0.50). Biases of these models are small rela-
tive to RMSEV, suggesting that lack-of-fit is the major source of 
error for these two properties. A visualization of six soil proprieties 
(OC, IC, clay, sand, CEC and pH) is given in Fig. 2 with scatter-
plots of MIR-predicted (with ANN) versus laboratory-measured 
values for the validation set and a 1:1 line for reference.

Soil OC, IC, TC, TN and TS contribute directly to chemi-
cal bonds of carbon-containing compounds in soil (namely, 
organic matter and carbonates). The high R2 values for these 
properties can therefore be attributed to the specific strong ab-
sorption bands associated with these chemical bonds (Viscarra 
Rossel and Behrens, 2010). On the other hand, properties like K 

Table 3. Summary statistics of soil properties in the calibration and validation sets.

Soil property†

Data set Statistic OC IC TC TN Clay Sand Sit CEC K P Total S pH

––––––––––––––––––––––––––––––– % ––––––––––––––––––––––––––––––– ––– cmolc kg–1––– mg kg–1 %
Calibration Minimum 0 0 0 0 0 0.2 0 0 0 0 0 2.32

Median 0.64 0.13 0.97 0.08 21.11 33.6 39.3 14.97 0.33 6.03 0.01 6.23

Mean 3.47 0.84 3.77 0.2 22.72 38.86 38.43 17.88 0.53 21.52 0.15 6.4

Maximum 62.43 10.56 62.3 6.91 96.14 100 94.5 199.6 30 587.2 18.78 10.49

Skewness 4 2.68 3.97 4.78 0.7 0.5 -0.05 4.35 12.95 5.82 12.9 0.13

Kurtosis 18.48 11.84 18.43 31.61 3.26 2.08 2.31 34.69 319.97 55.27 188.77 2.11

Validation Minimum 0 0 0 0 0 0.1 0 0 0 0 0 2.67

Median 0.63 0.12 0.98 0.08 21.27 34.2 38.6 14.84 0.33 6.01 0.01 6.27

Mean 3.13 0.85 3.42 0.19 22.63 39.4 37.98 17.78 0.53 22.71 0.21 6.42

Maximum 57.17 12.62 57.17 5.23 90.82 100 94.2 377.1 32.33 595 25.24 10.23

Skewness 4.35 2.84 4.32 5.03 0.7 0.48 -0.04 5.09 14.59 5.37 10.14 0.13
Kurtosis 21.83 13.35 21.86 33.04 3.27 2.05 2.29 51.52 451.45 42.45 115.69 2.05

Total no. of samples 17298 7861 20102 20102 18952 18961 18961 17873 17877 4969 20102 18493
† OC, organic carbon; IC, inorganic carbon; TC, total carbon; TN, total nitrogen; CEC, cation exchange capacity.
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Fig. 1. Mid-infrared (MIR) spectra of selected samples of 37% organic carbon, 10% inorganic carbon, and 96% clay showing the common 
diagnostic absorption bands caused by organic matter (b, c, and f), carbonates (d), and clay minerals (a and e). The gray spectral envelope is the 
bounding maximum and minimum value of the MIR absorption of the entire library at each wavenumber.

Table 4. Cross validation and validation results of mid-infrared modeling for different soil properties using partial least squares 
regression (PLSR) and artificial neural network (ANN).

Soil property
Modeling 
method

Calibration set Validation set

RMSECV† R2 RMSEV‡ R2 Bias RPD§ RPIQ¶

Organic C (%) PLSR 2.10 0.95 1.89 0.95 0.00 4.55 0.82
ANN 1.00 0.99 0.75 0.99 -0.01 11.46 2.05

Inorganic C (%) PLSR 0.24 0.97 0.26 0.97 -0.02 5.61 4.42
ANN 0.15 0.98 0.13 0.99 0.00 11.23 8.98

Total C (%) PLSR 2.02 0.95 1.90 0.95 0.00 4.44 1.08
ANN 1.01 0.99 1.34 0.97 -0.01 6.32 1.54

Total N (%) PLSR 0.15 0.86 0.15 0.86 0.00 2.69 0.83
ANN 0.08 0.96 0.07 0.97 0.00 5.76 1.77

Clay (%) PLSR 6.07 0.85 6.01 0.85 0.02 2.60 3.91
ANN 5.98 0.86 7.61 0.77 -0.89 2.05 3.08

Silt (%) PLSR 10.24 0.73 9.96 0.74 0.02 1.96 2.88
ANN 10.59 0.70 10.09 0.73 0.38 1.93 2.84

Sand (%) PLSR 12.22 0.82 12.07 0.82 -0.10 2.36 3.92
ANN 13.20 0.78 14.25 0.75 -0.56 2.00 3.33

CEC (cmolc kg–1) PLSR 6.33 0.86 6.50 0.86 -0.06 2.63 2.36
ANN 5.72 0.88 5.58 0.90 0.01 3.09 2.75

K (cmolc kg–1) PLSR 0.64 0.37 0.70 0.29 0.00 1.19 0.71
ANN 0.53 0.51 0.51 0.48 0.02 1.33 0.97

P (mg kg–1) PLSR 37.26 0.20 45.17 0.14 -1.26 1.08 0.47
ANN 37.40 0.19 44.64 0.16 -2.59 1.09 0.47

Total S (%) PLSR 0.30 0.78 0.31 0.94 0.00 4.21 0.08
ANN 0.19 0.91 0.23 0.97 0.01 5.85 0.11

pH PLSR 0.57 0.80 0.57 0.80 0.00 2.24 3.84
ANN 0.44 0.88 0.43 0.89 0.00 2.99 5.12

† Root mean squared error of cross validation. 
‡ Root mean squared error of validation. 
§ Ratio of performance to deviation. 
¶ Ratio of performance to inter-quartile range.
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and P cannot be assigned to particular MIR absorption bands, 
which suggests why these properties are not predicted as success-
fully as the first group.

In general, models calibrated with ANN outperformed 
those with PLSR (except for clay, silt and sand). The better 
results by ANN for majority of the soil properties are not sur-
prising. The large soil library with samples from very different 
backgrounds (in terms of climate, parental material, for exam-

ple), leads likely to complex and nonlinear relationship between 
soil properties and MIR spectra, which would be better mod-
eled by ANN. The ANN approach may also be advantaged by 
modeling the soil properties in the original scale rather than log-
transformed scale. These results are also in agreement with other 
VisNIR studies where nonlinear methods performed better than 
the linear method (i.e., PLSR) when modeling large datasets 
(Viscarra-Rossel and Behrens, 2010; Wijewardane et al., 2016b). 

Fig. 2. Scatterplots of laboratory-measured versus mid-infrared-predicted organic carbon, inorganic carbon, clay, sand, cation exchange capacity 
(CEC), and pH using an artificial neural network.
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While not tested in this study, other nonlinear chemometric 
methods such as random forests and support vector regression 
have also been widely and successfully used in modeling large soil 
spectral datasets (Wijewardane et al., 2016a).

One advantage of PLSR is that it allows the models (namely, 
regression coefficient in each wavenumber) to be plotted and 
examined while ANN yields black-box models. Wavenumbers 
with larger regression coefficients indicate a larger contribution 
to the final predicted values (Beebe and Kowalski, 1987), which 
in some cases could provide spectroscopic explanation of these 
models. Plots of wavenumber versus PLSR regression coefficient 
for the models of OC, IC, clay, sand, and CEC are shown in 
Fig. 3. Clearly, the diagnostic bands in Fig. 1 are also identified 
in these PLSR models. For example, C–H stretching at 2920 
and 2850 cm-1 (again labeled b and c as in Fig. 1) appear to be 
significant in the OC model, together with the C=O stretching 
at 1750 cm-1 (labeled f ). Similarly, all five bands associated with 

carbonates (labeled d) can be identified in the IC model; and the 
two bands associated with clay content (labeled a and e) appear in 
the clay model. It is also interesting to point out that, for the CEC 
model, both bands attributable to clay and OC are found. CEC 
is usually correlated with clay and OC, which likely explains the 
presence of clay and OC bands in the CEC model.

Stratified Modeling with Auxiliary Variables 
of Horizon, Taxon, and Land Use

Validation results of each soil property with stratified model-
ing using auxiliary variables of HZ, TAXON, and LULC are given 
in Supplemental Tables S1 through S12. Because there are many 
stratified MIR models to be compared, it is not easy to general-
ize trends or patterns regarding model performance. However, it is 
evident that, for the soil proprieties which are predicted satisfacto-
rily with the generic model, those are also predicted satisfactorily 
with stratified models. K and P are still the two properties showing 
the poorest overall performance in stratified models; even though 
for K, some stratified models have improved substantially (for 
example, the Mollisols-K model using TAXON as the stratifying 
criterion and the Developed/Open Space-K model using LULC 
as the stratifying criterion using ANN). The good performance 
of these stratified models also suggests the usefulness of the large-
scale MIR library on predicting local-scale datasets, and alleviates 
the concern that the good performance of generic models for some 
soil properties is inflated by the great range of values in the library.

To compare the effectiveness of the three auxiliary vari-
ables for sample stratification, Fig. 4 is produced by pooling 
all samples from different stratified models and calculating the 
overall RMSEV across the strata for the six selected soil proper-

Fig. 3. Partial least squares regression model regression coefficients 
of organic carbon, inorganic carbon, clay, sand, and CEC. The 
large regression coefficients that can be associated with diagnostic 
absorption bands in soil mid-infrared spectra were labeled as in Fig. 1.

Fig. 4. Comparison of generic modeling with specific modeling using 
master horizon (HZ), taxonomic order (TAXON), and land use land 
cover (LULC) as the stratifying variables. Both modeling approaches 
of partial least squares regression (PLSR) and artificial neural networks 
(ANN) are compared. The root mean squared error of validation 
(RMSEV) was calculated by pooling the samples from all strata.
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ties. Among the three variables, HZ or TAXON appears to be 
more effective in stratifying the samples to improve the PLSR 
model performance, compared with LULC, particularly for OC, 
IC and CEC. For example, RMSEV of the generic OC model 
was 1.89%. When HZ, TAXON and LULC were used for 
sample stratification, RMSEV was improved to 0.98, 1.47, and 
1.52%, respectively. Similarly, HZ and TAXON also reduced 
RMSEV for IC, clay, sand, CEC and pH, with the exception that 
HZ stratification increased RMSEV of clay slightly. The use of 
LULC, however, led to mixed results. It reduced RMSEV for 
OC, clay, sand and pH, but increased RMSEV for clay and CEC.

The higher effectiveness of HZ or TAXON compared with 
LULC as stratifying variables for MIR PLSR model improve-
ment can be attributed to the fact that HZ and TAXON are asso-
ciated with the pedogenic processes and intrinsic physical proper-
ties of soils. Using either variable to stratify the library could lead 
to sample classes which have spectrally and compositionally more 
similar samples, and result in better MIR models within each 
class. LULC, on the other hand, is more related to management 
aspect of soils that are applied over diverse soils and soil proper-
ties. Therefore, LULC may not be as effective as HZ or TAXON 
in stratifying samples. This finding is also consistent with another 
study conducted by Wijewardane et al. (2016b) where sample 
stratification with HZ and TAXON improved the performance 
of a VisNIR spectra library for OC and TC prediction.

In contrast to PLSR, using auxiliary variables does not 
seem to improve the performance of ANN models for these soil 
properties. Clay is the only soil property that shows significant 
decrease in RMSEV with all three auxiliary variables when com-
pared with the generic ANN model. This improvement, never-
theless, is discounted when the high RMSEV of the generic clay 
ANN model is considered. One possible explanation is that as a 
nonlinear modeling approach, ANN can effectively account for 
the nonlinearity issue (for instance, by accommodating different 
associations between the target soil properties and MIR spectra 
among different soil horizons or orders) in the library. This re-
sulted in already good ANN models, leaving only limited room 
for improvement with sample stratification.

When combining modeling approaches and stratification, 
it seems that for OC, IC, and pH, generic ANN models show 
better performances compared with PLSR. For clay and sand, us-
ing TAXON-specific PLSR give the best result. For CEC, HZ-
specific PLSR models give the highest overall prediction accuracy.

Stratification can also be done with two or more auxiliary 
variables, which potentially can form more uniform calibration 
sets and further improve model performance. As an example, 
we stratified the MIR library with “HZ = A and LULC = Ag 
Land”. This process selected shallow layer, surface samples from 
lands for agricultural use, which are the target of many precision 
agriculture applications (Ge et al., 2007). The modeling result 
(Table 5) show that, with this stratified subset, RMSEV for OC 
is 0.60 and 0.52% for PLSR and ANN models, respectively. 
RMSEV for clay is 5.01 and 4.33% for PLSR and ANN mod-
els, respectively. Compared with their respective generic models 

(Table 4), RMSEV for these two soil properties are much lower. 
Some applications, such as generating site-specific fertilization or 
irrigation management zones based on grid soil sampling, can be 
supported and expedited by the MIR library.

Implications for the Use of Mid-Infrared Spectra
The results in this study show that MIR-based prediction 

can be accurate (validation R2 : 0.97, RPD > 5.5) for OC, IC, 
TC, TN and TS over a range of different soils in the United 
States. Given this level of accuracy, the MIR library can be used 
to predict the properties of new soil samples with higher confi-
dence, and in certain situations, replace wet-chemistry laborato-
ry-based analysis to increase speed or reduce cost ( Janik et al., 
1998; Nocita et al., 2015). Recently, there have been emerging 
and cross-cutting fields where spatially dense and low-cost soil 
data are increasingly demanded, such as precision agriculture, 
soil process modeling, and soil carbon inventory and change de-
tection at different scales. In this context, MIR-based soil anal-
ysis could be a solution to this problem of soil data scarcity in 
these modern applications. The MIR models can also be used as 
a rapid screening tool for laboratory quality control and quality 
assurance protocols (i.e., in addition to wet-chemistry analysis). 
For these reasons, MIR libraries would be attractive to com-
mercial or noncommercial (such as those affiliated with govern-
ments and universities) soil laboratories, with great potential to 
reduce operating costs and increase analysis speed.

The use of the MIR spectral library in this study will also 
face several challenges. The first challenge comes from the fact 
that MIR models are derived from data-driven approaches and 
empirical in nature. If new samples to be analyzed fall outside the 
regime of the calibration set (for instance, the target soil proper-
ties outside the prediction range), it is likely that the prediction 
will be unduly poor. This is a key reason that hinders the practi-
cal use of MIR. Further studies are needed especially in under-
standing the intrinsic relationships between MIR wavelengths 
and soil properties if MIR would be used as the only measure-
ment method of soil properties.

A second challenge is the computational resources needed 
for calibrating the prediction models. For the majority of soil 
spectroscopy studies, modeling is done on a personal computer 
with a few hundred soil samples. As an MIR spectral library can 

Table 5. Validation results of mid-infrared modeling (partial 
least squares regression [PLSR] and artificial neural network 
[ANN]) for the subset selected from the library using “HZ = A 
and LULC = Ag Land”.

Soil 
property

Modeling 
method

Validation statistic

RMSEV† R2 Bias RPD‡ RPIQ§

Organic C 
(%)

PLSR 0.60 0.92 0.05 3.45 2.78
ANN 0.52 0.94 0.01 4.00 3.22

Clay (%) PLSR 5.01 0.85 -0.47 2.49 3.55
ANN 4.33 0.88 -0.73 2.87 4.11

† Root mean squared error of validation.
‡ Ratio of performance to deviation.
§ Ratio of performance to inter-quartile range.
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have tens of thousands of soil samples, model calibration can 
become cumbersome and time consuming, especially with data 
mining techniques such as ANN. In this study, computation 
was done on a high-performance computing cluster, which re-
duced the time requirement of model calibration significantly. 
It is worth to note that ANN modeling with our dataset cannot 
be done on a personal computer with RAM of 16GB (simply 
because the memory was not enough). Therefore it is essential to 
have adequate computational resources to support MIR spectral 
libraries for model calibration, library updates (to include new 
samples), and recalibration.

Another challenge of MIR spectral libraries involves with 
the approaches for model calibration. Should all samples in the 
library be used, or only a smaller subset of the library be selected 
adaptively, to develop the calibration? Using all samples in a large 
spectral library will lead to large-scale, generic models. They en-
compass more variations in soil properties and MIR spectra, but 
also give higher prediction uncertainties. Conversely, a smaller 
subset will result in small-scale models applicable to local sam-
ples but maybe with better prediction accuracy.

The results of this study show that, if nonlinear modeling 
techniques such as ANN are used, good generic models involv-
ing all library samples could be developed. On the other hand, 
the method like PLSR can benefit from using auxiliary variables 
(such as HZ and TAXON) to select a subset of library samples 
for model calibration. However, these auxiliary variables may 
not be readily available for some parts of the world where field 
soil surveying programs are not well developed or established, 
rendering sample stratification impractical. Alternatively, spec-
tral information itself can be used to select a subset of library 
samples to improve prediction accuracy (Ramirez-Lopez et al., 
2013). Techniques such as spiking and extra-weighted spiking 
(Guerrero et al., 2014; Wetterlind and Stenberg, 2010) are also 
demonstrated to augment the spectral library and improve local 
predictions. It is not easy to predict what approach would work 
best. Many factors, such as size of the spectral library, availability 
of computational resources, target application and accuracy, and 
frequency of update with the arrival of new samples, would af-
fect the approach being used. With the experience gained from 
this study, it is recommended to calibrate stratified models based 
on the HZ or TAXON to improve prediction if PLSR is used. 
However, if the computational demand can be met, nonlinear 
global models could provide improved accuracies.

Conclusions
The goal of this study is to predict an array of 12 soil physical 

and chemical properties from a national soil MIR spectral library 
comprising 20000+ samples from the United States. Two model-
ing techniques, namely, PLSR and ANN are employed and com-
pared; and three auxiliary variables (HZ, TAXON and LULC) 
are used to explore the strategy of sample stratification for model 
improvement. The main conclusions drawn are as follows.

· Soil properties OC, IC, TC, TN, and TS can be 
predicted with MIR spectra satisfactorily, followed by 

CEC, pH, clay, silt, and sand. The prediction of soil K and 
P is poor.

· The ANN models generally outperform PLSR models, 
except for clay, silt, and sand.

· The use of auxiliary variables to develop stratified MIR 
models improves prediction performance for most soil 
properties and strata. Stratification appears more effective 
for PLSR than ANN.

· Among the three auxiliary variables, HZ and TAXON 
appear more effective as the stratifying criteria to improve 
MIR prediction on the soil properties than LULC.

· Stratifying the MIR library can be done on two or 
more auxiliary variables, which lead to even better model 
performance.
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