
Abstract
An approach and strategy for automatic detection of build-
ings from aerial images using combined image analysis and
interpretation techniques is described in this paper. It is
undertaken in several steps. A dense DSM is obtained by
stereo image matching and then the results of multi-band
classification, the DSM, and Normalized Difference Vegeta-
tion Index (NDVI) are used to reveal preliminary building
interest areas. From these areas, a shape modeling algorithm
has been used to precisely delineate their boundaries. The
Dempster-Shafer data fusion technique is then applied to
detect buildings from the combination of three data sources
by a statistically-based classification. A number of test
areas, which include buildings of different sizes, shape, and
roof color have been investigated. The tests are encouraging
and demonstrate that all processes in this system are
important for effective building detection.

Introduction
One of the major challenges in the fields of computer vision
and digital photogrammetry is the 3D reconstruction of the
terrain surface from aerial images of urban or suburban areas
where buildings, roads, trees and vegetation are intermin-
gled in an intricate and complex fashion. The automatic
determination of Digital Terrain Models (DTM) by stereo
image matching algorithms has been one of the primary
goals of digital photogrammetry for many years, particularly
for the production of digital orthophotos, 3D building
reconstruction, 3D city models, the application and manage-
ment of 3D databases for urban and town planning, and
Geographic Information Systems (GIS) modeling.

Stereo image matching determines corresponding pixels
or features in overlapping images and is fundamental to
digital photogrammetry for elevation determination. How-
ever, conventional image matching supplies a Digital Surface
Model (DSM) or visible surface, since it determines eleva-
tions of the tops of man-made objects such as buildings, or
vegetation, and hence does not represent the terrain surface
(Baltsavias et al., 1995; Henricsson et al., 1996; Tönjes,
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1996). Therefore, it is necessary to identify buildings, trees
and other objects on the surface to be able to reduce the
elevations to the bare earth DEM. Many automated building
detection and extraction methods have been proposed by
researchers. Shadow analysis-based algorithms have been
used by Liow and Pavlidis (1990) and Nevatia et al. (1999).
Information fusion-based systems have been reported by
McKeown (1991), and Haala and Hahn (1995). Methods
supported by DTM and orthoimages have also been reported
by Baltsavias et al. (1995), Horiguchi et al. (2000), Straub
and Heipke (2001), and Brunn (2001). Considering the
different shapes, environments, and image intensity for
different buildings, together with the occurrence of occlu-
sions and shadow effects, the automation of building extrac-
tion is a complicated and difficult procedure (Sahar and
Krupnik, 1999). In addition to developing better schemes,
the inclusion of more information is an essential direction
for the research. Henricsson (1998), Chen and Hsu (2000),
and Niederost (2001) used color images to improve the
system performance for roof determination and edge extrac-
tion. Spreeuwears et al. (1997) and Gabet et al. (1997) used
multi-view images to reduce the effect of occlusions. Multi-
image 3D feature and DSM extraction for building change
detection were proposed by Paparoditis et al. (1998 and
2001). Laser scanner data were used by Mcintosh et al.
(2000), Masaharu and Hasegawa (2000), and Haala et al.
(1998). Multi-resolution analysis of wavelets for house
extraction has been proposed by Shi and Shibasaki (1995).
Huertas and Nevatia (1988), Shufel and McKeown (1993),
Henricsson et al. (1997), Lammi (1996), Henricsson and
Baltsvias (1997), Jaynes et al. (1997a), Jaynes et al. (1997b),
Baillard et al. (1998), Kim and Muller (1998), Vosselman
(1999), and Lu et al. (2003) have also demonstrated develop-
ments in algorithms for building extraction. Despite the
development by researchers of many automatic building
extraction algorithms based on images, terrain laser scan
data and their combination (Collin et al. 1998; Hanson et al.
2001; Henricsson, 1998; Walter, 1999; Haala and Brenner,
1999), there are no operational algorithms because each
method is focused on a particular application and data
sources, and is usually not transferable to different features.

The goal of this research is to define building areas
occurring on overlapping aerial or satellite images over a
variety of terrain types and ground cover, for the reconstruc-
tion of terrain elevations of the bare earth surface, without
the input of additional data such as terrain laser scanning or
GIS. The approach includes an attempt to understand and

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Ap r i l  2006 395

Yi Hui Lu is with the NSW Department of Environment
and Conservation, Sydney 2000 NSW, Australia (Yi.Lu@
environment.nsw.gov.au) She was formerly at the School of
Surveying and SIS, University of NSW, UNSW Sydney 2052
NSW, Australia.

John C. Trinder is with the School of Surveying and SIS,
University of NSW, UNSW Sydney 2052 NSW Australia
(j.trinder@unsw.edu.au).

Kurt Kubik is with the Department of Computer Science and
Electrical Engineering, University of Queensland, QLD 4072
Australia (kubik@itee.uq.edu.au).

Photogrammetric Engineering & Remote Sensing 
Vol. 72, No. 4, April 2006, pp. 395–403.

0099-1112/06/7204–0395/$3.00/0
© 2006 American Society for Photogrammetry

and Remote Sensing 

04-118  3/14/06  9:04 PM  Page 395



396 Ap r i l 2006 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

interpret the image content and the characteristics of the
terrain cover, such as buildings and trees, as an integral part
of the process of determining terrain elevations. A further
goal is also to demonstrate the suitability of data fusion for
combining evidence derived from multiple data sources for
detecting buildings.

General Description of Automatic Building Detection System
Figure 1 illustrates the architecture of the automatic build-
ing detection system developed in this research, which is
divided into three parts. Only the Dempster-Shafer algorithm,
shown as “Fusion” in the figure, will be described in detail.
The components of the system aim to include information on
elevations, spectral characteristics of the images, and outlines
of area features to assist in the detection of buildings. The
upper section of Figure 1, in the box named “Classification”,
detects several characteristics of the terrain cover. On the left
side of the box, a dense set of elevation points is determined
by area-based image matching on a high-resolution stereo
image pair of aerial photographs. These points represent the
DSM of the region on an absolute height datum, and reveal
objects above the terrain surface, such as buildings and trees.

The right hand side of this box in Figure 1 shows
processes undertaken on multispectral images of the area.
Ideally, the images would be the same as were processed
for the determination of the DSM, but they may be a lower
resolution set, if high-resolution multispectral images are not
available. A K-means clustering is undertaken to detect four
clusters, namely buildings, trees, ground, and grass. Then,
using a post-classification procedure, a segmented image
is created comprising regions of connected pixels that are
contained in the same class. The NDVI (Normalized Difference
Vegetation Index) is used to transform the multi-spectral
data into an image band representing vegetation. In these
processes, the NDVI and DSM can be considered as two key
parameters, which may define the differences between
vegetated and non-vegetated objects. For example, an initial
assumption could be made that areas with heights above
some limit, are likely to be either trees or buildings. Areas
with low NDVI, and heights above the general terrain surface
are likely to be buildings, whereas areas with high NDVI and
heights above that surface are likely to be trees. Areas with
high NDVI, with heights similar to the terrain surface are likely
to be grassland or cultivated areas. Hence the four information

layers shown in the “Classification” box in Figure 1, namely,
the land-cover classification, the results of the K-means
clustering, DSM, and NDVI, play an important role in differenti-
ating between buildings, trees, and grassland. They are there-
fore overlaid using a ArcView® Map Query operation to
detect preliminary “building interest areas,” which are used
as input to the “Shape Modeling” process.

In the “Shape Modeling” box, boundaries of the prelimi-
nary building interest areas derived from the “Classification”
section are determined from the image using a level set method
for curve propagating interfaces, which was introduced by
Osher and Sethian (1988). It is based on mathematical and
numerical work of curve and surface motion by Sethian (1985,
1995, 1999), and offers a highly robust and accurate method for
tracking interfaces moving under complex motions. A more
detailed description of the level set algorithm and the exam-
ples of its operation can be found in (Lu et al., 2003).

In the “Fusion” box, the Dempster-Shafer fusion theory
is used to combine three data sources, the DSM, the results
of the K-means clustering and the building outlines, to
detect final building areas, as described in the next sections.

Data Fusion Using Dempster-Shafer Theory
During the preliminary data analysis in the Classification
box in Figure 1, it was evident that no single data source
provided a consistent means of interpreting the image for
detection of buildings. In order to reliably detect building
regions, an approach that combines the evidence from a
number of data sources is needed. Region evaluation with
redundant data can help reduce imprecision in the detection
of features, while complementary data can provide a more
complete description. A multi-source evidential reasoning
based region evaluation (MEBRE) module has been developed
for this task. The module uses three data sources derived
in Figure 1: the K-means clustered image (referred to as
Clustered image), region outlines derived from the level set
modeling (referred to as LevelSet) and the DSM. Evaluation
at feature level was implemented in the MEBRE module by
the Dempster-Shafer method, which is a statistical-based
data fusion classification algorithm, used when the data
contributing to the determination of the analysis of the
images is subject to uncertainty. One of the advantages of
this module is that it uses the spectral and spatial character-
istics of the features. This approach effectively combines
and counterbalances multiple evidence from different data
sources in order to define the building regions, instead
of relying on scoring techniques. A further advantage of
Dempster-Shafer evidence theory is that it provides esti-
mates of imprecision and uncertainty of the information
derived from different sources (Shafer, 1976; Klein, 1999;
Hegarat-Mascle, 1997). The application of a data fusion
technique aims to improve the quality of a decision by
making use of redundant and complementary data, while
decreasing its imprecision and uncertainty.

Assume a set of n propositions making up the hypo-
thesis space as denoted by �, and 2� are the subsets of �.
Based on the information from the data sources, a probabil-
ity mass m can be assigned to any proposition or union of
propositions. For � A � 2�, m is defined for every element
A and the mass value m(A) is in the interval [0,1].

The following mass equations can be obtained:

(1)

where � is the empty set.

 A ( 2�

 m(� ) � am(A) � 1

m(�) � 0

Figure 1. Architecture of the building detection system
demonstrating the three modules of Classification,
Shape Modeling, and Fusion.
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In image classification, each pixel is assigned a class
based on the content in the image, and � is the set of
hypotheses about a pixel class. The Dempster-Shafer theory
permits the consideration of any subset of �. Applied to
image classification problems, it means that not only single
classes, but also any union of classes can be represented.
The number of classes (including all possible unions, but
excluding the null set) is called the power of the set and is
equal to 2n � 1. For example, if there are three propositions
n � 3, there are 23 � 1 � 7 classes, given by C1, C2, C3, C1
� C2, C1 � C3, C2 � C3, and C1 � C2 � C3 (Klein, 1999;
Hegarat-Mascle, 1997; Shafer, 1976).

The Dempster-Shafer theory provides a representation of
both imprecision and uncertainty through the definition of
two parameters: Support (Sup) and Plausibility (Pls), which
are obtained from the probability mass m. Support for a
given proposition means that all masses assigned directly
by the data sources are summed. Plausibility for a given
proposition means all masses not assigned to its negation
are summed. For � A � 2� and � B � 2�, the two parame-
ters are defined respectively as follows:

.

(2)

An uncertainty interval is defined by [Sup(A), Pls(A)] where

(3)

The Sup of hypothesis A may be interpreted as the
minimum uncertainty value about A. Its Pls may be inter-
preted as the maximum uncertainty value of A. For several
data sources, the Dempster-Shafer method enables the
combination of probability masses from these sources to
obtain a single value for the probability of a proposition.

Assume there are two data sources, Bi and Cj, each
comprising n object types. The object type A, is a subset of
either Bi or Cj. The total probability mass committed to a
subset A from the two data sources is

where

(4)

In the Dempster-Shafer theory, the hypotheses about single
classes and unions of classes are respectively called simple
hypotheses and compound hypotheses. When the probability
masses of simple hypotheses are not null, a decision rule must
be determined that best suits the application, such as the
maximum Sup, which is formulated as follows:

(5)

Multi-sources Region Evaluation
If there are 1, 2, . . . . . p data sources and Bi (i � 1 . . . n)
object types in the data sources, mn is the basic probability

 Sup (A) � Sup (A ).

 max (Sup (A))

 k � a
B �  C j ��i

i,j
m1(Bi)m2 (Cj) .

 m(A) �

am1(Bi)m2(Cj)
B �  C j �Ai
i,j

1 � K
 , K � 1

  Pls(A) � 1 � Sup(A), A �  A � �, A � A � � .

 Sup 1A 2 	 Pls1A 2

 B�A��

  Pls 1A 2 � am1B 2
 B�A

 Sup (A) � am(B)

mass provided by source n (1 	 n 	 p, p � 3). Using
Dempster-Shafer evidential theory, the combination of all
the data sources is defined as follows:

(6)

Multi-source Evidential Reasoning-based Region Evaluation Module
The multi-source evidential reasoning based region evalua-
tion (MEBRE) method has been used to combine the three
datasets of building classification (Clustered image), level set
results (LevelSet), and DSM, to detect the final building
areas as illustrated in Figure 2, in which mn (Bi) is the
probability mass for class Bi in Dataset n. Since regions
defined by the LevelSet are spatial features, the correspon-
ding feature areas in the DSM and Clustered image were
determined in terms of their pixel locations. Probability
masses mn (Bi) were defined for each feature area in each
data source, based on the Dempster-Shafer theory according
to Equation 6. Building regions were then predicted from
the Sup and Pls derived from Equations 2 and 5.

Dempster-Shafer theory has been used for unsupervised
pixel level classification in Hegarat-Mascle et al. (1997).
Because only non-spatial features were considered, classi-
fication errors occur at the boundaries of features. The
evaluation procedure by Dempster-Shafer evidential rea-
soning, based on spatial features in this research aims to
overcome this problem.

Clustered image, LevelSet, and DSM are assigned as
Datasets 1, 2, and 3, respectively. Classes C1, C2, and C3
represent trees, buildings and ground, respectively. To
determine the probability mass m(C1), Class C1 in Dataset 1
is combined with all the classes in Datasets 2 and 3 to find
propositions which belong to class C1. Although there are
49 possible combinations for calculating probability mass
m(C1), only the combinations which belong to class C1
should be included. Since the intersections of other classes,
such as intersections between C1 � C2 in Dataset 1 and C1

  K � a
B1�B2p p �Bp��

 �
1	n	p

 m n(Bi).

m(A) �

a
B1�B2p p� Bp�A

 �
1	n	p

mn(Bi)

1 � K
 

Figure 2. Flowchart of the Multi-source Evidential
Reasoning Based Region Evaluation (MEBRE) module
achieved by fusion of the three data sources, namely
the results of the classification (referred to as Clustered
image), the shape modeling by level set (referred to as
LevelSet), and the DSM.

04-118  3/14/06  9:04 PM  Page 397



398 Ap r i l 2006 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

TABLE 1. CALCULATION OF PROBABILITY MASSES, SUPPORT AND PLAUSIBILITY, FOR DEMPSTER-SHAFER DATA FUSION FOR THREE DATA SOURCES
where 1 � k � 4(ut 
 st 
 us � 9uts)

m1 (B) m2 (B) m3 (B) 
A Clustered Image LevelSet DSM m (A) Sup(A)

C1 trees 1 � 3t u s

C2 buildings t 1 � 3u s

C3 ground t u 1 � 3s

C1 � C2 0 0 s 0

C1 � C3 0 u 0 0

C2 � C3 t 0 0 0

C1 � C2 � C3 0 0 0 0 1 0

4us(1 � 3t)
1 � k

4t(s 
 u � 6su)
1 � k

4st(1 � 3u)
1 � k

4u(s 
 t � 6st)
1 � k

4ut(1 � 3s)
1 � k

4s(u 
 t � 6ut)
1 � k

4s(u 
 t � 6ut)
1 � k

4ut(1 � 3s)
1 � k

4ut(1 � 3s)
1 � k

4u(s 
 t � 6st)
1 � k

4st(1 � 3u)
1 � k

4st(1 � 3u)
1 � k

4t(s 
 u � 6su)
1 � k

4us(1 � 3t)
1 � k

4us(1 � 3t)
1 � k

Sup(A)

in Dataset 2 and 3, belong to class C1, they are also added
to probability mass m(C1).

Initial Probability Mass Definition for Region Evaluation
The definition of probability functions for region evaluation
remains largely an unsolved problem. In image processing,
the definition of the initial probability masses can be obtained
at three different levels. At the most abstract or highest level,
information representation is derived in a similar way to
methods in artificial intelligence, where probability masses
are assigned to propositions, often provided by experts
(Gordon and Shortliffe, 1985). At the middle level, the defini-
tion of probability masses is derived from attributes, and may
involve simple geometrical models (van Cleynenbreugel et al.,
1991). This definition is suitable for model-based pattern
recognition, but it is difficult to use in image fusion for the
classification of complex structures such as buildings in
urban areas, for which no model exists. At the pixel level,
probability masses are obtained from statistical pattern recogni-
tion. The most widely used approach assigns probability
masses based on simple hypotheses only (Rasoulian et al.,
1990), but the absence of probability masses for compound
hypotheses limits the power of Dempster-Shafer evidential
method. This paper attempts to include both simple and
compound probability hypotheses.

For MEMRE, the probability masses are assigned according
to the information provided by each image. This method is
more reliable and is able to take into account a larger variety
of situations. For the Clustered image, the probability masses
m (A) have non-null values assigned to C1, C2, C3, and C2 �
C3 as shown in Table 1. Since C2 for buildings and C3 for the
ground may have the same spectral and texture characteristics
in the image, there are ambiguities between these two classes
in Clustered image. Hence, C2, C3, and C2 � C3 in Table 1
are assigned the same probability, t. Null probability masses
are assigned to the other compound hypotheses. Since all the
masses sum to 1, the probability mass for C1 is 1-3t. For each
detected region by LevelSet, the numbers of pixels represent-
ing trees, ground, grass, and buildings can be calculated,
respectively. The probability t can be defined based on the
number of pixels assigned to each building region:

 probBuilding � NumofBuilding/total.

 NumofGrass 
 NumofBuilding

 total � NumofTree 
 NumofGround

Since as shown in Table 1, the calculated 

probability mass of pixels being buildings from the above
formula can be normalized in the t range in order to make
the total probability equal to 1 for all object types in one
dataset:

(7)

For regions derived by LevelSet, since the detected
building regions are derived from the processing of low-
level image analysis and interpretation and level set
modeling based image segmentation, they are considered to
be more reliable and are assigned higher probabilities. As
shown in Table 1, buildings in class C2 are assigned a
probability of 1-3u and other non-null classes are assigned a
probability of u. If the other classes are assigned lower
probabilities, the class of building will have a higher
probability since the sum of probabilities is 1. Hence, for all
the test images, u has been assigned a value of 0.15 as
shown in Table 4, which leads to an appropriately higher
value of C2 of 0.55 for the building regions. In the tuning
tests below on a single building, it will be shown that even
when the probability value of C2 decreases to 0.45 (defini-
tion 4 of probabilities in Table 5), the building can still be
detected.

For the DSM, since the buildings are in a suburban
residential area, there are ample trees and grassed and bare
ground surrounding the buildings. Buildings and most trees
in the DSM will have similar heights above the ground, and
hence these two classes are easily confused. The initial
assignment of probabilities is given in Table 1, but the
effects of tuning these assignments will be demonstrated in
the following. In Table 1, class C1 representing trees, C2
buildings and C1 � C2 are therefore assigned the same
probabilities, s, and hence the probability mass of class C3,
the ground, is 1-3s. The calculation of s is based on the
mean of the DSM values. For example, if the elevation of an
area, a building, or tree is high compared with the surround-
ing area, the probability s assigned to that area in the DSM
will be higher than for other areas i.e., 0.33 or 0.34 as
shown in Table 4 (0.34 is used for rounding-off purposes
only to ensure the sum of the column is 1).

t �
probBuilding

3
.

t � c0,
1
3
d
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Experiments with Region Evaluation Module
Initially an example is given of the process of detecting
the building shown in Figure 3 (which is confirmed as a
building by visual interpretation of the images), first using
two sets of data, namely the Clustered image and LevelSet,
and then using all three sets. The purpose of this test is to
demonstrate the significance of using all sources of data.
Table 2 shows the numbers of pixels for 4 classes in the
Clustered image corresponding to the building derived from
LevelSet dataset. Based on Equation 7, the normalized
probability of buildings t is 0.16, which is obtained from the
classified pixel numbers in Table 2.

Table 3 shows computed probability masses, Sup and
Pls values, for each simple and compound hypothesis for
the model based on the two data sources, i.e., Clustered
image and LevelSet. In the case where the probability
masses of simple hypotheses are non-null, a decision rule
that maximizes the Sup over all hypotheses will always
favor compound hypotheses. For example, in Table 3,
compound hypothesis C1 � C2 has Sup(A) � 0.78 and

, which satisfies the decision rule, but does
not provide a definitive decision on the correct feature. In
Sup(A) � 0.22

order to avoid this situation, a decision rule involving only
the simple hypotheses must be used. Based on Equation 5,
there is no value of Sup(A) which can be concluded as a
maximum, and also . Therefore, in this
example, the detected building from two data sets is evalu-
ated as non-building class, which would be an incorrect
decision.

Table 4 shows the example of the same building
detected based on three datasets. The value “0.53” (in the
sixth column) is the maximum Sup value for a simple
hypothesis, and at same time . There-
fore, the processed area has been correctly evaluated as
a building.

Since choosing the initial probability masses is impor-
tant, several experiments have been made to investigate
how their selection affects the region evaluation. Table 5
summarizes definitions 2, 3, and 4, showing the changes in
probabilities from those given for definition 1. For definition
2, the initial probabilities for Datasets 2 and 3 have been
kept the same, while the probabilities for Dataset 1 have
been changed as demonstrated by the arrows. The probability
of the compound class C1 � C3 has been increased since
grass is included in class C3 as ground, and may be con-
fused with the class of trees. After Dempster-Shafer eval-
uation, the building is correctly assigned, because of the
strength of the supporting probabilities. For definition 3, the
probabilities for Datasets 1 and 2 remain the same as in
definition 1, but the probability for the class of buildings s
has been decreased and the compound probability C2 � C3
has been increased. In this case the building is also correctly
detected. For definition 4 of probabilities in Table 5, the
probabilities for Datasets 1 and 3 are the same as in defini-
tion 1, but the probability u in Table 1 has been decreased
and the compound probabilities C1 � C2 and C2 � C3
increased, resulting also in correct detection of the class
of building. This definition shows that, although the probability
for the building class C2 has been decreased, a correspon-
ding increase in the probabilities of the compound classes
C1 � C2 and C2 � C3 will lead to the building still being
correctly detected.

From these tests, it is noted that the building can be
detected in all cases provided sufficiently high probability
masses are assigned in the multiple datasets. The higher
probabilities of unions of classes, which include the class
buildings, such as C1 � C2 can assist in their correct detec-
tion. If the probabilities of the union of classes not involv-
ing buildings are incorrectly assigned values that are too
high, the buildings will not be correctly detected. It is clearly
important to ensure that a correct analysis is made of
these probabilities before the Dempster-Shafer analysis is

sup(c2) � sup(c2)

Sup(A) � Sup(A)

TABLE 3. EVALUATION OF THE BUILDING SHOWN IN FIGURE 3 USING TWO

DATASETS: CLUSTERED IMAGE AND REGIONS DERIVED BY LEVELSET

t � 0.16, u � 0.15, 1 � k � 0.428

m1 (B) 
Clustered m2 (B) 

A Image LevelSet m (A) Sup(A)

C1 0.52 0.15 0.36 0.36 0.64
C2 0.16 0.55 0.41 0.41 0.59
C3 0.16 0.15 0.22 0.22 0.78
C1 � C2 0 0 0 0.78 0.22
C1 � C3 0 0.15 0 0.59 0.41
C2 � C3 0.16 0 0 0.64 0.36
C1 � C2 � C3 0 0 0 1 0

Sup (A)

Figure 3. Features in the region of one building, for
which the probabilities for the Dempster-Shafer algorithm
have been investigated in Tables 2, 3, 4, and 5: (a) the
ortho image, (b) the Clustered image, and (c) building
region derived by LevelSet.

(a) (b) (c)

TABLE 4. EVALUATION OF THE SAME BUILDING SHOWN IN FIGURE 3 AND

TABLE 3 USING THREE DATA SETS: CLUSTERED IMAGE, LEVELSET, AND DSM,
USING DEFINITION 1 OF PROBABILITIES

t � 0.16, u � 0.15, s � 0.33, 1 � k � 0.22

m1 (B)
Clustered m2 (B) m3 (B) 

A Image LevelSet DSM m (A) Sup(A)

C1 trees 0.52 0.15 0.33 0.47 0.47 0.53
C2 buildings 0.16 0.55 0.34 0.53 0.53 0.47
C3 ground 0.16 0.15 0 0.01 0 1
C1 � C2 0 0 0.33 0 1 0
C1 � C3 0 0.15 0 0 0.47 0.53
C2 � C3 0.16 0 0 0 0.53 0.47
C1 � C2 � C3 0 0 0 0 1 0

Sup (A)

TABLE 2. NUMBERS OF PIXELS ASSIGNED TO EACH CLASS IN THE CLUSTERED

IMAGE CORRESPONDING TO THE BUILDING IN FIGURE 3

Classes

Number Tree Grass Ground Building

17 90 194 276
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undertaken. It would also be appropriate in future, to
investigate the significance level of the Sup values required
to ensure a reliable detection of buildings.

Tests and Results
The results of processing one area will be described in this
section based on the probabilities defined typically by
Tables 1 and 2. No further tuning of the probabilities was
performed for these tests. A summary of results obtained for
four additional areas will be given at the end of this section.
Figure 4 illustrates the left image of a pair of 1:20 000 scale
color aerial images with 515 � 521 pixels in the row and
column directions, respectively, with a GSD of 0.3 meter,
taken at a flying height of 3,070 meters. The scale of the
images is smaller than desired, but larger scale images of the
area were not available. The image contains a number of
white roofed and two red roofed buildings. The majority of
buildings have a distinguishable contrast against the
background.

The processing steps followed were those shown in
Figure 1. A dense DSM was determined using the digital

photogrammetry software Socet Set® v.4.2 to ensure that the
majority of structures were revealed in the DSM. Due to the
fact that no high resolution multi-spectral images were
available, the color images were processed using the red and
green image bands to obtain a Visible Vegetation Index (VVI)
of the area, instead of the NDVI. The VVI was likely to be less
effective in determining vegetation regions, but this was
unavoidable. Areas with high VVI should represent the
vegetation and the areas with low VVI, ground and buildings.
The four information layers shown in the “Classification”
box in Figure 1, namely DSM, K-means clustered image,
segmented image and VVI were input into ARCVIEW®, using
the Map Queries operation, and preliminary building
interest areas detected. Using the region growing algorithm,
small spots which did not belong to buildings were deleted
from the Map Queries result. The resulting building interest
areas are shown in Figure 5. Some road areas, wrongly
assigned as buildings, were deleted and the correct building
areas derived from classification have been successfully
maintained. However, building areas that were not detected
in the “Classification” step due to their unusual roof color,
will not be recovered in subsequent steps.

Figure 4. Left image of the stereo aerial photos used in
the first test.

Figure 5. Detected building interest areas after
Classification.

TABLE 5. SUMMARY OF SIGNIFICANT COLUMNS IN THE TABLES DERIVED FOR DEFINITIONS OF PROBABILITY MASSES 2, 3, AND 4, FOR THE DETECTION OF THE

BUILDING SHOWN IN FIGURE 3. THE DIRECTIONS OF THE CHANGES IN THE PROBABILITIES ARE INDICATED BY ARROWS. THE RESULTING VALUES FOR AND

ARE ALSO SHOWN

Definition 2 of Probabilities Definition 3 of Probabilities Definition 4 of Probabilities

m1 (B) 
A Clustered Image Sup(A) m3 (B) DSM Sup(A) m2 (B) LevelSet Sup(A)

C1 trees 0.27b 0.47 0.53 0.23b 0.30 0.70 0.12b 0.45 0.55
C2 buildings 0.16 0.53 0.47 0.24b 0.57 0.43 0.45b 0.55 0.45
C3 ground 0.16 0.01 0.99 0 0.13 0.87 0.12b 0 1
C1 � C2 0 0.99 0.01 0.23b 0.87 0.13 0.10c 1 0
C1 � C3 0.25c 0.47 0.53 0 0.43 0.57 0.11b 0.45 0.55
C2 � C3 0.16 0.53 0.47 0.3 c 0.70 0.30 0.10c 0.55 0.45
C1 � C2 � C3 0 1 0 0 1 0 0 1 0

Sup(A)Sup(A)Sup(A)

Sup(A)
Sup(A)
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Figure 6. Detected buildings after application of data
fusion by Dempster-Shafer based on the three datasets
Clustered image, LevelSet, and DSM. Buildings shown in
bright outlines are the correctly detected buildings,
while those with darker outlines are those that were
incorrectly detected as buildings and eliminated.

Shape modeling with the level set method was then
implemented to delineate the boundaries of the buildings as
revealed in Figures 6 and 7. Some roads and cars were
assigned as buildings after the level set shape modeling,
because the building interest areas supplied wrong informa-
tion and caused the interpretation of some building regions
to be unreliable. Thus, it was necessary to use Dempster-
Shafer data fusion method to evaluate the regions.

Based on the decision rule given in Equation 5, the
three data sources, Clustered image, LevelSet, and DSM were
combined to produce the revised building areas shown in
Figure 6. Most areas which were incorrectly assigned as
buildings have been detected, as shown in darker outlines,
while the bright outlines are the correctly detected build-
ings. The final building boundaries overlaid on the ortho-
photo are shown in Figure 7.

The consequence of the data fusion is that eight incorrect
building areas have been detected and deleted in the final
result, as shown in Figure 7, which is a significant improve-
ment in the detection rate. There were 32 buildings in the
image, and 31 buildings were detected, as shown in the first
line of Table 6. A summary of the results of five sets of images

processed for these tests, i.e., the test shown above and four
further test areas given in Table 6 demonstrates that a success
rate for building detection in excess of 80 percent is possible.

Conclusions
The method described in this paper combines stereo image
matching, multi-spectral image analysis, shape modeling
by the level set method, and Dempster-Shafer data fusion
theory to locate building areas in the test images. The DSM
and multispectral image analysis were used to supply
approximate building areas, which were processed by the
level set method to determine the outlines of the buildings.
The level set method has been applied for the first time in
this study for urban image analysis. The Dempster-Shafer
data fusion technique provides the theoretical basis for
evaluating the reliability of the detected buildings from
the combination of the different data sources by a statisti-
cally-based classification. The tests described in the paper
demonstrate that each step in the system is important,
leading to an effective and robust detection of buildings
with a success rate in excess of 80 percent.

Based on the test areas shown, the results are encourag-
ing, but further research is needed to refine these methods,
since some buildings will be missed in the early processing
steps and never recovered because they have unusual roof

Figure 7. Detected buildings overlaid on the ortho
image.

TABLE 6. SUMMARY OF RESULTS OF DETECTION OF BUILDINGS FOR ALL FIVE TESTS IN THIS STUDY

Tests in Total Regions of Detected Deleted Wrong False Detection
this Study Buildings LevelSet Buildings Buildings Evaluation Rates

Test1 32 39 31 8 0 96.8%
Test2 96 91 85 5 1 88.5%
Test3 61 65 50 11 4 81.9%
Test4 50 43 40 3 0 80%
Test5 26 24 21 2 1 80.8%
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characteristics, such as color and texture. Future improve-
ments in the method could involve revision of the order of
the processes to detect the lost buildings. In addition, further
tuning of the initial probabilities should be undertaken to
determine the behavior of Support and Plausibility values,
and their level of significance for correctly defining buildings.
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