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We consider a two-stage supply chain under centralized control. The downstream facility
faces discrete stochastic demand and passes supply requests to the upstream facility.

The upstream facility always meets the supply requests from downstream. If the upstream
facility cannot meet the supply requests from inventory on hand, the shortage must be filled
by expediting, which will incur per unit and setup costs. Such expediting may take the form
of overtime production, which occurs at the end of the period and incurs relatively high
production costs, or premium freight shipments, which involves building products at the
beginning of the period they are needed and shipping them very quickly with relatively
high shipping costs. We consider the case where one method of filling shortages is available
and determine novel optimal inventory policies under centralized control. At both stages,
threshold policies that depend only on the current inventory in the system are optimal;
for the total inventory in the system, a base-stock policy is optimal. Numerical analysis
provides insight into the optimal policies and allows us to compare the supply chains under
centralized and decentralized control.
(Expediting; Overtime; Supply Chain Coordination; Inventory; Markov Decision Processes)

1. Introduction
In traditional supply chain situations, downstream
facilities make decisions about their order quanti-
ties without regard to the actual inventory avail-
able upstream. If the upstream facilities do not have
enough inventory on hand to fill the orders, it is
often assumed that the downstream facility will take
what it can get and backorder the rest. We consider
a problem with stochastic demand where the down-
stream facility’s supply requests are always met by
the upstream facility. If the downstream facility orders
more than the upstream facility has on hand, the
upstream facility must meet the shortage by expe-
diting. In practice, such expediting often consists of
either overtime production or what we call “premium
freight.” A final option for expediting is outsourcing

where the product is purchased from an outside
supplier (at a premium).

Overtime production consists of building the
required parts at the end of the day, at a higher cost
than regular production, and shipping the parts by
normal means, with the same shipping cost as would
be the case for parts that were built during regu-
lar production. Premium freight consists of building
parts at the beginning of the same day that they
are required downstream, at the same cost as regu-
lar production, and expediting shipment, for example,
shipping by airplane or helicopter with a higher ship-
ping cost than would be the case for parts shipped
the previous day. In our problem, we assume that
only one of these mathematically equivalent options
is available and that utilizing such expediting incurs
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both fixed and per unit costs. Under these conditions,
we examine how an upstream facility and a down-
stream facility can minimize system costs by work-
ing together; the upstream facility will always meet
supply requests, and the downstream facility will
avoid causing shortages upstream unless absolutely
necessary.

We have modeled our problem after the actual in-
ventory control problems faced by a large automobile-
parts supplier in Michigan, which we will refer to as
“PartCo”. PartCo’s principal business is to produce
engine parts used in vehicle assembly at one of the
big three U.S. automobile manufacturers. At PartCo,
inventory levels are relatively low, yet PartCo fol-
lows a policy of meeting all supply requests, and fre-
quently uses overtime production or premium freight
when shortages occur. Backordering is not considered
an option because the parts they send downstream
are essential to the assembly line and the cost of shut-
ting down the automobile manufacturer’s assembly
line is extremely high. We have heard a wide range
of estimates for this cost, but all have been in the tens
of thousands of dollars per hour! Therefore, overtime
production and premium freight shipments are “com-
monly” used, according to our contacts at PartCo.
We model a centrally controlled, two-stage supply
chain where the upstream facility always meets sup-
ply requests from downstream.

In our model, we have attempted to capture the
essence of the situation at PartCo, while keeping the
analysis tractable. However, the model and results
apply elsewhere in the automobile industry and
in other industries. According to an article in The
Detroit News (Smith 2001), Willow Run Airport out-
side Detroit has recently become the nation’s third
largest cargo airport due to shipment of automobile
parts. The article states that “hardly a car or truck
is made anywhere in the United States that doesn’t
include parts that have traveled through Willow Run
Airport” and that “increasingly, Detroit’s automakers
are flying parts from city to city and from continent
to continent.” Clearly, shipping parts by air is a sig-
nificant issue in the automotive supply chain.

Our model also applies to the computer and
electronics industries where many manufacturers
have reduced or even eliminated their requirements

for warehousing, and receive parts in just-in-time
fashion. Finally, our results yield new insight into a
common assumption made in the inventory litera-
ture. In many single-location inventory models, it is
assumed that supply requests upstream are always
met, without consideration of how they are met, and
at what cost. Our results show that supply requests
can always be met upstream with some form of expe-
diting, but that it may be much less expensive for
the system if the downstream facility is sensitive to
the inventory situation upstream and adjusts supply
requests accordingly.

The proof of the optimal policies proceeds as fol-
lows. We define our cost per period in terms of vari-
ables representing the inventory levels and inventory
positions at the assembler and the supplier. Note that
we use the term assembler, even though no actual
assembly may be taking place, to make it clear that
this is the downstream partner. We then substitute
variables representing the inventory level and posi-
tion for the entire system for those of the supplier.
To simplify the problem, we relax some of the con-
straints on the possible inventory levels for the assem-
bler and the system, which leads to an optimal cost
function that we can solve. Having relaxed some of
the constraints, the optimal policy for the assembler
becomes a myopic problem. We solve this myopic
problem, which leaves us with an optimality equa-
tion that depends on the system variables only, so
we derive the optimal policy for the system inven-
tory. Finally, we show that the results of our relaxed
problem meet the conditions of our original, fully con-
strained problem. All of our results are for the infinite
horizon case, bypassing finite horizon results.

In our previous paper (Huggins and Olsen 2001),
we examine the same supply chain, but under decen-
tralized control. In other words, both the supplier and
the assembler function independently without shar-
ing any information or inventory decisions. In the
decentralized case, the assembler ignores the situation
at the supplier and follows a simple base-stock policy,
because the assembler’s supply requests are always
met. At the supplier, we include a fixed cost for reg-
ular production and show that the optimal policy is
an �s� S� policy for regular production. The form of
the expediting policy depends upon the problem data.
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An interesting result is that it may be optimal to use
overtime production to not only fill a shortage but
also to produce up to a positive inventory level. This
case will not occur in our centralized model because
we assume that there is no fixed cost for regular pro-
duction at the supplier. The most important distinc-
tion to note between the decentralized and centralized
cases is that in the decentralized case the assembler
ignores the high expense to the supplier caused by
shortages. A shortage of a single unit can force the
supplier to pay a high fixed cost for expediting. In the
centralized case, we will show that the assembler is
very sensitive to shortages; the optimal policy for the
assembler will reflect this sensitivity.

In this paper, we consider a two-stage supply chain
with a single method of expediting. For a review of
single-location models with expediting, we refer the
reader to Chiang and Gutierrez (1998), Tagaras and
Vlachos (2001), or our previous paper, Huggins and
Olsen (2001). A thorough overview of supply chain lit-
erature may be found in the text edited by Tayur et al.
(1998). The seminal work of Clark and Scarf (1960)
first considered a multi-echelon inventory problem,
and Federgruen and Zipkin (1984) showed that the
same results hold over the infinite horizon. In their
paper, they assume that if the supplier cannot meet
supply requests from the assembler, the assembler is
satisfied with as much as it can get. They prove that
the optimal policy for the assembler is to ignore the
supplier and follow an �s� S� policy (or a base-stock
policy with no fixed cost for production). The opti-
mal policy for the supplier is a base-stock policy, with
an additional penalty for possibly not meeting supply
requests that effectively increases the base-stock level.

The literature on supply chains with expedit-
ing or setup costs upstream is limited. Chen and
Zheng (1994) consider supply chains with stochas-
tic demand, constant lead times, and setup costs at
all stages. They establish lower bounds on the sys-
tem costs under centralized control. Parlar and Weng
(1997) consider a two-period model for products with
short life-cycles. Lawson and Porteus (1998) model an
m+1-stage supply chain without setup costs where at
each stage the options are to ship by regular means,
expedite, or hold inventory. The authors show that a
“top-down base-stock” policy is optimal, where the

modified order-up-to decisions are made, in order,
from the upstream stage to the downstream stage, and
the regular shipment decisions are made before the
expedited shipment decisions at each stage. The expe-
diting costs at each stage are not shared with other
stages, and the authors use decomposition to solve the
problem. Moinzadeh and Aggarwal (1997) consider
a two-stage system with one warehouse and several
retailers. They assume modified one-for-one �S−1� S�
policies for both regular and expedited orders and
develop a procedure to find optimal policy param-
eters. Finally, overtime, or a “vendoring option”, in
the context of inventory systems with production
quotas was considered in Hopp et al. (1993), Duenyas
et al. (1993), and Duenyas et al. (1997). These quotas
are set in response to a downstream party’s demand.

Similar to our assumption, the papers by Gavirneni
et al. (1999) and Lee et al. (2000) consider two-stage
supply chains where the demand from stage 1 is
always met by stage 2. Gavirneni et al. study a capac-
itated two-stage supply chain under different levels
of information and show that order-up-to policies are
optimal, then discuss the value of the information to
the supplier (stage 2). In their model, they assume that
if the supplier faces a shortage, the retailer (stage 1)
“acquires the missing part of the order elsewhere.”
Lee et al. attempt to quantify the value of infor-
mation in a two-stage supply chain with correlated
demand. They assume that when the manufacturer
(stage 2) faces a shortage, the manufacturer “obtains
units from an alternative source” which they resup-
ply later. Although the manufacturer always meets
demand from the retailer (stage 1), they effectively pay
a backorder penalty. In both models, stage 1 does not
suffer the consequences of expediting, unlike our cen-
tralized model. In fact, in a footnote, Lee et al. (2000)
point out that:

In the current paper, we make the assumption that
the expedite cost is borne solely by the manufacturer
so as to isolate the benefits of information sharing
to the manufacturer. A similar assumption was made
by most other researchers � � � � If this assumption is
relaxed, then information sharing could bring bene-
fits to both the manufacturer and the retailer, but this
requires much more complex modeling of the contrac-
tual relationship between the manufacturer and the
retailer.
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Finally, in our proof of the centralized model, we
use results discussed by Porteus (1990), Zheng (1991),
Bertsekas (1995), and Rosling (2002). Zheng (1991)
shows that �s� S� policies are optimal because the
expected one-period cost function is quasi-convex,
which we show using a result from Porteus (1990).
We use this result to prove the optimal policy for the
system inventory. Bertsekas (1995) has several useful
propositions; specifically, one proposition states that
the optimal cost function satisfies Bellman’s equation
under assumptions we show to be true in our model.
Finally, we assume that our demand distribution is
logconcave, and Rosling (2002) discusses properties of
logconcave functions.

The rest of this paper is organized as follows. In §2,
we define our model, develop cost functions, substi-
tute system variables for supplier variables, and relax
two constraints. Under these relaxed conditions, we
determine the optimal policies for the assembler and
for the system in §3. We prove that the optimal poli-
cies under the relaxed conditions are optimal for the
original problem in §4. In §5, we conduct a numeri-
cal analysis and discuss managerial insights. Section 6
concludes the paper, and some proofs are included in
the Appendix.

2. The Model and Cost Functions
We consider a two-stage supply chain where an
upstream supplier (stage 2) must deliver products to
a downstream assembler (stage 1). A single manager
with perfect information about both stages makes all
decisions in an effort to minimize total system dis-
counted costs over the infinite horizon. This manager
must decide how much to produce each period at
stage 1 and at stage 2. Stage 1 experiences exoge-
nous demand; the demand experienced by stage 2 is
equal to the amount to be produced at stage 1 the
next period. Thus, the production decision at stage 1
directly influences the costs incurred by stage 2. If
stage 1 orders more than stage 2 has on hand, stage 2
is forced to expedite to meet the shortage and will
incur high costs. If stage 1 orders everything stage 2
has on hand or less, stage 2 will avoid expediting. The
optimal policies for both stages will eventually reflect

this relationship. Define the following variables:
Dt = the demand during period t,
x1� t = the inventory level at stage 1 after demand

has been experienced during period t,
y1� t+1 = the inventory position chosen for stage 1 for

period t+1,
x2� t = the inventory level at stage 2 before it expe-

riences demand from stage 1 during period t, and
y2� t+1 = the inventory position chosen for stage 2 for

period t+1.
The inventory decisions take place after demand

is experienced at stage 1. At this point, the inven-
tory at stage 1 is x1� t (which equals y1� t −Dt) and
the inventory at stage 2 is x2� t (which equals y2� t).
The manager must decide the inventory positions at
both stages, y1� t+1 and y2� t+1. The decision for stage 1
(y1� t+1) determines the demand experienced at stage 2,
which is y1� t+1 − x1� t . If y1� t+1 − x1� t > x2� t , there is a
shortage at stage 2 and they must expedite �y1� t+1 −
x1� t�− x2� t units. Note that y1� t+1 ≥ x1� t , and y2� t+1 ≥
�x2� t− �y1� t+1 −x1� t��

+.
Both of these decisions incur various costs, which

we assume to be stationary. At stage 1, linear costs are
assessed for production (c1), holding (h1), and back-
ordering (b1). At stage 2, linear costs are assessed for
production (c2), holding (h2); and expediting incurs
linear costs (ce) plus fixed (Ke) costs. We also make
the following assumptions about our model: First, the
discount factor � is assumed to be between 0 and 1.
Second, we assume that demand is discrete, inde-
pendent and identically distributed in each period,
stationary, and from a logconcave probability distri-
bution (see below) and that the expected value of
demand is positive and finite. Third, we let pd be
the probability that demand equals d, F �d� be the
probability that demand is less than or equal to d,
and assume that demand is nonnegative. Fourth, we
assume that the per unit cost of expediting is greater
than the per unit cost of production at stage 2. Finally,
to ensure that stage 1 policy is reasonable, we assume
that the backordering cost at stage 1 is not too low
and the holding cost at stage 2 is not too high. For
later reference, we label our assumptions as follows:

Assumption 1 (A1). 0< �< 1.

Assumption 2 (A2). The demand distribution is log-
concave and for all t�0< E�Dt� <�.
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Assumption 3 (A3). pd = 0 for d < 0.

Assumption 4 (A4). ce > c2.

Assumption 5 (A5). b1 ≥ ce + ���1− ��c1 − c2� and
h2 ≤ h1 +��1−��c1.

Note that a distribution F �x� is logconcave if
log F �x� is concave in x. For discrete distribu-
tions this means that the differential of F �x�,
�F �x+1�− F �x��/F �x�, is nonincreasing in x ∈ � . This
is not a restrictive assumption because most com-
mon discrete distributions are, in fact, logconcave. For
example, the discrete uniform, the Poisson, and the
binomial are all in this category. Similarly, most com-
monly assumed continuous distributions (such as the
uniform, normal, and exponential distributions) are
logconcave. We assume discretized versions of these
distributions later in our numerical analysis.

We now proceed to define the various cost func-
tions associated with the model described above. We
originally define our cost per period in terms of
stage 1 and stage 2 variables, but then make a sub-
stitution replacing the stage 2 variables with system
inventory variables. Next, we relax some of the con-
straints on the cost per period to get our relaxed cost
per period, gr�·�. Last, we formally define our relaxed
optimal cost function f ∗

r �·� and show that the stage 1
problem is now myopic. In later sections, we solve
the relaxed problem and show that its results are also
optimal for the original problem.

For a thorough review of infinite horizon, dis-
counted total cost minimization problems, we refer
the reader to Bertsekas (1995). In our problem, we
first consider the cost per period g(period k variables),
which consists of all the costs incurred by the system
during decision period k. For a given policy �, the
total, expected, discounted cost over the infinite hori-
zon is f��x0�, where x0 is the initial inventory. Mathe-
matically,

f��x0�≡ lim
N→�

E

[
N−1∑
k=0

�kg�period k variables�

]
�

We are interested in finding the optimal policy � in
the set of all feasible policies ! and hence the opti-
mal total, expected, discounted cost over the infinite
horizon, f ∗�x0�:

f ∗�x0�≡ min
�∈!

f��x0��

Dropping the time subscripts for notational conve-
nience, we define our cost per period as

g1�x1�y1�x2�y2�D�

≡�c1�y1−x1�+Ke"��y1−x1�−x2�+ce��y1−x1�−x2�
+

+h2�x2−�y1−x1��
++�c2�y2−�x2−�y1−x1��

+�

+h1�y1−D�++b1�y1−D�−

with y1 ≥ x1 and y2 ≥ �x2 − �y1 − x1��
+. The first term

is the production cost at stage 1, the next two terms
are expediting costs, the fourth term is the holding
cost at stage 2, the fifth term is the production cost
at stage 2, and the last two terms are holding and
backordering costs at stage 1. Moving the −�c1x1 back
to the previous period (analogous to Veinott 1966),
we get

g2�x1�y1�x2�y2�D�

≡ ��1−��c1y1 +�2c1D+Ke"��y1 −x1�−x2�

+ ce��y1 −x1�−x2�
++h2�x2 − �y1 −x1��

+

+�c2�y2 − �x2 − �y1 −x1��
+�

+h1�y1 −D�++ b1�y1 −D�−

under the same restrictions. Now we will define sys-
tem variables and substitute for the stage 2 vari-
ables. Let the system inventory level be xs ≡ x1 + x2

and the system inventory position be ys ≡ y1 +y2 and
substitute

g3�x1�y1�xs� ys�D�

≡ ��1−��c1y1 +�2c1D+Ke"�y1 −xs�+ ce�y1 −xs�+
+h2�xs−y1�

++�c2�ys−y1 − �xs−y1�
+�

+h1�y1 −D�++ b1�y1 −D�−
= ���1−��c1 − c2�y1 +�2c1D+h1�y1 −D�+
+ b1�y1 −D�− (1)

+Ke"�y1 −xs�+ ce�y1 −xs�+
+ �h2 −�c2��xs−y1�

++�c2ys (2)

with y1 ≥ x1 and ys ≥ y1+ �xs−y1�
+. Note that the sec-

ond restriction is equivalent to ys ≥ max#y1�xs$. Also,
we can rewrite g3�·� as

g3�x1�y1�xs� ys�D�= L1�y1�D�+L2�y1�xs�+�c2ys
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where L1�y1�D� represents the terms on line (1) and
L2�y1�xs� represents the terms on line (2). We can
now write the fully constrained optimal cost function
which we would like to solve, namely,

f ∗�x1�xs� = min
ys≥max#xs� y1$� y1≥x1

ED�g3�x1�y1�xs� ys�D�

+�f ∗�y1 −D�ys−D���
To solve this equation, we relax some of the con-

straints. Later we will show that these constraints are
always met by the optimal solution to the relaxed
problem, and that they thus solve the original, fully
constrained problem. First, we drop the constraint
that y1 ≥ x1. Second, we drop the constraint that
ys ≥ y1 in the case when y1 > xs . For later reference,
we label the relaxed assumptions as:

Relaxed Assumption 1 (R1). y1 ≥ x1.

Relaxed Assumption 2 (R2). ys ≥ y1 when y1 > xs .

After relaxing the constraints, our relaxed cost per
period has the same costs as g3�·� but with only one
constraint:

gr�x1�y1�xs� ys�D�≡ L1�y1�D�+L2�y1�xs�+�c2ys�
with ys ≥ xs . Now, we show that gr�·� ≥ 0 and then
apply a result from Bertsekas (1995) to obtain our
relaxed optimal cost function.

Lemma 1. gr�x1�y1�xs� ys�D�≥ 0.

Proof. The proof is in the Appendix. �

Because gr�x1�y1�xs� ys�D� ≥ 0, Proposition 1.1 of
Bertsekas (1995, p. 137) holds, and the relaxed optimal
cost function f ∗

r satisfies

f ∗
r �xs� = min

y1�ys≥xs
ED

[
gr�x1�y1�xs� ys�D�+�f ∗

r �ys−D�
]

= min
y1�ys≥xs

{
ED�L1�y1�D��+L2�y1�xs�+�c2ys
+�ED�f ∗

r �ys−D��
}
� (3)

Notice that y1 has no effect on either ys or the cost to
go, �ED�f ∗

r �ys−D��. Thus,

f ∗
r �xs� = min

ys≥xs

{
min
y1

{
ED�L1�y1�D��+L2�y1�xs�

}
+�c2ys+�ED�f ∗

r �ys−D��
}

= min
ys≥xs

{
m�xs�+�c2ys+�ED�f ∗

r �ys−D��
}
� (4)

where m�xs� = miny1
#ED�L1�y1�D��+ L2�y1�xs�$. Find-

ing the optimal inventory policy for stage 1 has
become a myopic problem which we solve in the first
part of §3.

3. Optimal Policies for the
Relaxed Problem

In this section, for the relaxed problem, we deter-
mine the optimal inventory policies for stage 1 and
for the system. We study the function m�xs� and show
that the stage 1 policy depends only on the system
inventory level xs . Next, we show that the optimal
inventory policy for the system is a base-stock policy.
Define NH�y1� and NL�y1� as

NH�y1� = ���1−��c1 −h2�y1

+ED
[
�2c1D+h1�y1 −D�++ b1�y1 −D�−

]
and

NL�y1� = ����1−��c1 − c2�+ ce�y1

+ED
[
�2c1D+h1�y1 −D�++ b1�y1 −D�−

]
�

We now have that

m�xs�

= min
y1

{
ED�L1�y1�D��+L2�y1�xs�

}

= min
y1




ED�L1�y1�D��+ �h2 −�c2��xs−y1�

if y1 ≤ xs
ED�L1�y1�D��+Ke+ ce�y1 −xs�

if y1 > xs

= min
y1






�h2 −�c2�xs+ ���1−��c1 −h2�y1

+ED��2c1D+h1�y1 −D�+
+ b1�y1 −D�−�



if y1 ≤ xs


Ke− cexs+ ����1−��c1 − c2�+ ce�y1

+ED��2c1D+h1�y1 −D�+
+ b1�y1 −D�−�




if y1 > xs

= min
y1

{
�h2 −�c2�xs+NH�y1� if y1 ≤ xs
Ke− cexs+NL�y1� if y1 > xs
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= min



�h2 −�c2�xs+min

y1≤xs
#NH�y1�$

Ke− cexs+min
y1>xs

#NL�y1�$�

Before continuing our study of m�xs�, we derive
properties about NL�y1� and NH�y1� in the following
lemma.

Lemma 2. Define yH = argminy1
#NH�y1�$ and yL =

argminy1
#NL�y1�$.

(1) NL�y1� and NH�y1� are convex in y1.
(2) 0 ≤ yL ≤ yH ≤�.

Proof. The proof of part (1) is straightforward. To
prove part (2), we examine the differential of both
functions; see the Appendix for details. �

Returning to our study of m�xs� and defining

N�xs� ≡ ���1−��c1 − c2�xs
+ED

[
�2c1D+h1�xs−D�++ b1�xs−D�−

]
�

we have that

m�xs� = min



�h2 −�c2�xs+min

y1≤xs
#NH�y1�$

Ke− cexs+min
y1>xs

#NL�y1�$

= min




�h2 −�c2�xs+NH�yH� if xs ≥ yH
�h2 −�c2�xs+NH�xs� if xs < yH
Ke− cexs+NL�xs� if xs > yL
Ke− cexs+NL�yL� if xs ≤ yL

= min




�h2 −�c2�xs+NH�yH� if xs ≥ yH
N�xs� if xs < yH
Ke+N�xs� if xs > yL
Ke− cexs+NL�yL� if xs ≤ yL

= min



�h2 −�c2�xs+NH�yH� if xs ≥ yH
N�xs� if xs < yH
Ke− cexs+NL�yL� if xs ≤ yL�

Define tL as the smallest w such that N�w� ≤ Ke −
cew+NL�yL�. We get that

m�xs�=



�h2 −�c2�xs+NH�yH� if xs ≥ yH�
N�xs� if tL ≤ xs < yH�
Ke− cexs+NL�yL� if xs < tL�

(5)

So, we have defined m�xs� explicitly and in the
process we have determined the optimal inventory
control policy at stage 1. If the system inventory is
large, xs ≥ yH , we order up to yH . If the system inven-
tory is medium, tL ≤ xs < yH , we use up the system
inventory, xs . Finally, if the system inventory is small,
xs < tL, we order up to yL.

Theorem 1. Let y∗1 be the optimal inventory position at
stage 1 for the relaxed problem. Then,

y∗1 =



yH if xs ≥ yH�
xs if tL ≤ xs < yH�
yL if xs < tL�

(6)

Proof. By definition of m�xs�. �

Given m�xs�, we now have that the optimal relaxed
cost function is in terms of system variables only.
From Equation (4), we have

f ∗
r �xs�= min

ys≥xs

{
m�xs�+�c2ys+�ED�f ∗

r �ys−D��
}
�

Now, we move the m�xs� term back to the previous
period and get

f ∗
rm�xs� = min

ys≥xs

{
�c2ys+�ED�m�ys−D��

+�ED�f ∗
rm�ys−D��

}
= min

ys≥xs

{
G�ys�+�ED�f ∗

rm�ys−D��
}

where G�ys�= �c2ys+�ED�m�ys−D��. We need to jus-
tify two steps here. First, we can move m�xs� back a
period and f ∗

r �·� will have the same optimal policy
as f ∗

rm�·� using an argument similar to Veinott (1966).
Second, to prove the existence of f ∗

rm�·�, we must
show that g�ys�≡ ��c2ys+m�ys−D��≥ 0 according to
Proposition 1.1 of Bertsekas (1995, p. 137). To prove
g�ys� is nonnegative and to later prove that G�ys� is
quasi-convex, let us examine the function g+�w� ≡
c2w+m�w�. Graphically, the function looks similar to
Figure 1.

Starting from the left, g+�·� decreases at rate
−�ce− c2� until point tL− 1. (The big dot on the left
is tL− 1, the big dot in the middle is yL, and yH is
the big dot on the right.) From tL to yH −1, it follows
c2w+N�w�, decreasing at first, then increasing. From
yH on, it increases at rate h2 + �1−��c2.
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Figure 1 Graph of g+�w�
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Lemma 3. The function g+�·� has exactly one minimum
which occurs between tL and yH −1 and is positive.

Proof. The proof is in the Appendix. �

Theorem 2. For the relaxed problem, the optimal
inventory control policy for the system inventory is a base-
stock policy.

Proof. Consider g�ys�:

g�ys� = ��c2ys+m�ys−D��
= ��c2ys− c2D+ c2D+m�ys−D��
= ��c2D+g+�ys−D��≥ 0�

where the inequality holds because g+�·� ≥ 0. Note
from Figure 1 or Lemma 3 that g+�·� is a quasi-convex
function with a minimum point. Now consider G�ys�:

G�ys� = �ED�c2ys+m�ys−D��
= ��c2ED�D�+ED�g+�ys−D����

The first term is a constant, and the second
term is a convolution of a quasi-convex function
(g+�ys−D�) and a logconcave probability distribution
by Assumption (A2). Thus, according to Porteus
(1990, p. 619), G�·� is a quasi-convex function. Because
G�·� is quasi-convex, the desired result follows from
Zheng (1991). �

4. Optimal Policies for the
Original Problem

In the previous section, we determined the optimal
policies for the relaxed problem

f ∗
r �xs� = min

ys≥xs

{
m�xs�+�c2ys+�ED�f ∗

r �ys−D��
}

= min
ys≥xs� y1

ED
[
gr�x1�y1�xs� ys�D�+�f ∗

r �ys−D�
]
�

Recall that our fully constrained problem is

f ∗�x1�xs� = min
ys≥max#xs� y1$� y1≥x1

ED
[
gr�x1�y1�xs� ys�D�

+�f ∗�y1 −D�ys−D�
]
�

We must show that the optimal policies for the
relaxed problem minimize the fully constrained prob-
lem and that both Relaxed Assumptions (R1) and (R2)
are met. To do so, we need one additional assumption
that our initial inventory at stage 1 does not exceed
the maximum order level at stage 1, yH .

Assumption 6 (A6). x1 ≤ yH .
Theorem 3. f ∗�x1�xs�= f ∗

r �xs�.

Proof. The optimal policies for the relaxed prob-
lem minimize the costs for the fully constrained prob-
lem because both relaxed constraints are met and
y1 does not affect ys or the costs-to-go. If xs < tL, y∗1 =
yL ≥ tL ≥ xs ≥ x1. If tL ≤ xs < tH , y∗1 = xs ≥ x1. Finally, if
xs ≥ tH , y∗1 = yH ≥ x1 by Assumption (A6). Thus, the
first relaxation (R1) is satisfied. To show that (R2) is
satisfied, define y∗s to be the optimal system inven-
tory position, S∗ to be the optimal system base-stock
level, and y∗2 to be the optimal inventory position for
stage 2. We must show that ys ≥ y1 when y1 > xs . The
only time that y1 > xs is when xs < tL (otherwise, y1 =
xs or y1 = yH ≤ xs). In this case, y∗1 = yL ≤ S∗ = y∗s . The
inequality holds because 0≤ y∗2 = y∗s −y∗1 = S∗−yL. �

For the original, fully constrained problem, we now
know the optimal policies for stage 1, stage 2, and for
the system. The order-up-to levels are as follows:

y∗1 =



yH if xs ≥ yH�
xs if tL ≤ xs < yH�
yL if xs < tL�
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y∗s =
{
xs if xs > S∗�

S∗ if xs ≤ S∗�
and

y∗2 = y∗s −y∗1 �

5. Numerical Analysis and
Managerial Insights

The optimal policies for the decentralized and central-
ized supply chains, as discussed in the introduction,
are quite different from each other. In the decen-
tralized case, stage 1 and stage 2 both follow base-
stock policies. In the centralized case, as we have just
shown, stage 1 and stage 2 follow interesting policies
that only depend on the system inventory level. Nat-
ural questions arise from this difference, such as how
much can be saved by using the centralized optimal
policy rather than the decentralized optimal policy?
Also, how do changes in the various parameters affect
inventory, savings, and frequency of expediting? To
answer these questions, we wrote a C++ program and
performed numerical analyses for various parameters
and demand distributions.

5.1. General Numerical Results
In our experiment, we set c1 = 10 and varied all the
other parameters. We let �= 0�95, 0�99, and 0.995. For
stage 1, we let h1 = 0�01, 0�05, and 0.10 and b1 = 20,
30, and 40. For stage 2, we let c2 = 3, 5, and 9 and
h2 = 0�005, 0�01, and 0.05. For expediting, we let ce = 4,
6, and 10 and Ke = 0, 50, and 200. These variations
led to a total of 37 = 2�187 possible combinations.
However, one-third of the combinations violate either
Assumption (A4) or (A5) and these results were not
considered.

For each combination, we made several calcula-
tions. We calculated the optimal base-stock levels, the
total costs, and the inventory/expediting costs for
stage 1 and stage 2 in the decentralized case. For the
centralized case, we calculated the optimal inventory
control parameters for stage 1: tL, yL, and yH . Using
these parameters, we calculated the system base-stock
level S∗ and the total cost and inventory/expediting
costs for the system under centralized control. We cal-
culated four statistics comparing the centralized case
and the decentralized case: the percentage savings in

total costs (TS%), the percentage savings in inventory
and expediting costs (I/ES%), the percentage reduc-
tion in system inventory (IR%), and the probability
of using expediting under both decentralized (P(E)D)
and centralized (P(E)C) control. We averaged these
statistics over all feasible combinations. Finally, we
divided the probability of expediting under decentral-
ized control by the probability of expediting under
centralized control to develop a ratio (D/C) that
reflects how much more frequently expediting is used
under decentralized control.

We compared the results for four different demand
distributions: Poisson(mean), Uniform(lower bound,
upper bound), Normal(mean, standard deviation),
and Exponential(mean). Because we considered dis-
crete demand, we used discrete approximations for
the last three distributions. Also, we truncated each
distribution below at zero and above at 49 to fit
into our probability array, and adjusted the probabil-
ities appropriately to ensure that the total probabil-
ity was one. (We chose a probability array of size 50
as being large enough to distinguish different distri-
butions, but small enough to converge quickly. Also,
note that each unit of demand could represent a batch
of 10, 100, 1,000, or any number of parts.) The aver-
age results for several demand distributions are in
Table 1.

We ran the experiment for constant demand
(Normal(25,0)) as one way to check the accuracy of
our computer code. First, notice that the total sav-
ings percentages are relatively small, less than 1%.
We believe this result is due to the high production
costs relative to the low holding costs; with the hold-
ing costs we assumed, it is relatively inexpensive to
hold buffer inventory. On the one hand, in an earlier
experiment we assumed much higher holding costs

Table 1 Average Savings of the Centralized Optimal Policy

Demand distribution TS% I/ES% IR% P(E)D% P(E)C% D/C

Normal�25�0� 0�00 0�0 0�0 0�00 0�00 N/A
Normal�25�1� 0�04 18�8 2�3 0�70 0�28 2�5
Normal�25�5� 0�20 18�4 8�9 1�64 0�67 2�4
Normal�25�10� 0�27 13�3 9�8 1�70 0�67 2�5
Poisson(25) 0�22 19�1 9�7 1�64 0�65 2�5
Uniform�0�49� 0�09 3�5 3�2 1�41 0�61 2�3
Exponential(15) 0�78 13�4 15�9 1�85 0�69 2�7
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(to model a lean inventory system) and found much
higher total savings percentages. On the other hand,
notice that both the inventory and expediting sav-
ings percentages and the inventory reduction percent-
ages are quite significant. Finally, observe that under
decentralized control expediting is about two and
one-half times more likely than under centralized con-
trol. Avoiding expediting and reducing system inven-
tories are significant factors that lead to the observed
savings under centralized control. We feel that some
insight can be gained by examining a typical numer-
ical example, as follows.

Consider a problem that has Poisson demand with
mean 25 and has the middle value for all the param-
eters. (That is, �= 0�99�h1 = 0�05� b1 = 30� c2 = 5�h2 =
0�025� ce = 6, and Ke = 50.) Under decentralized con-
trol, the optimal policy at both stages is a base-stock
policy, coincidentally with a base-stock level of 39 at
both stages. Under centralized control, the optimal
policy at stage 1 is

y∗1 =




39 if xs ≥ 39�

xs if 25 ≤ xs < 39�

34 if xs < 25�

and the optimal policy for the system is to order up
to a base-stock level of 70. So, under the centralized
policy, the system carries eight fewer units of inven-
tory, or an inventory reduction of 10.3%. This inven-
tory reduction leads to a savings on inventory and
expediting costs of 21.3% and a total savings of 0.16%.
These results are typical for the majority of our exper-
imental outcomes.

5.2. Parametric Changes
To further understand the differences between decen-
tralized and centralized control, we varied the prob-
lem parameters for the typical example mentioned in
the previous section. First, we assumed a normal dis-
tribution with mean 25, but varied the standard devi-
ation from 0 to 10. Second, we assumed a Poisson
distribution with mean 25, then varied the holding
costs, the backorder cost, the setup cost for expedit-
ing, and the discount factor. We varied h1 from 0.01
to 1.01 (letting h2 = h1/2), b1 from 10 to 50, Ke from 0
to 200, and � from 0.899 to 0.999.

Figure 2 Base-Stock Levels vs. Standard Deviation
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As we increased the standard deviation of the
demand distribution, all the inventory levels increased
as expected, as seen in Figure 2. The lower line is
the system base-stock level under centralized control
and the upper line is the sum of the base-stock levels
at both stages under decentralized control. The base-
stock levels appear to diverge.

For our next experiment, we varied the holding
costs. As holding costs increased, all the inventory
levels decreased, as expected. As seen in Figure 3,
the total savings percentage of centralized control
over decentralized control increased almost linearly
as the holding costs increased (whereas the inventory
and expediting production savings percentage and
the inventory reduction percentage decreased). The
probability of using expediting increased under both
kinds of control as the holding costs increased (shown
in Figure 4), as expected, while the ratio (D/C)
comparing decentralized and centralized expediting
utilization decreased. In Figure 4, the lower line rep-
resents the probability of using expediting under cen-
tralized control and the upper line represents the
same probability under decentralized control. Note
that this probability is always lower under centralized
control.
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Figure 3 Total Savings Percentage vs. Holding Costs
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Next, we varied the backorder cost and the setup
cost for expediting. As the backorder cost increases,
the percentage savings on inventory and expediting
tends to decrease. High backorder costs make the cen-
tralized policy less effective. As the expediting setup
cost increases, all statistics increase except for the
probability of expediting which decreases under both
forms of control. Figure 5 shows the increase in inven-
tory and expediting cost savings percentage (the top
line) and in inventory reduction percentage (the bot-
tom line). Under centralized control, the expediting

Figure 4 Probability of Expediting vs. Holding Costs
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Figure 5 Inventory/Expediting Costs and Inventory Reduction vs.
Expediting Setup Cost
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setup cost can be avoided if stage 1 “underorders”
from stage 2.

Finally, we varied the discount factor. As the dis-
count factor increased, so did all the inventory levels.
On the other hand, as the discount factor increased,
the total savings percentage and the probability that
expediting will be used (under both centralized and
decentralized control) generally decreased. A graph
of the probability of expediting versus the discount
factor is not shown as it looks very similar to
Figure 4 mirrored so that the probabilities are decreas-
ing rather than increasing.

5.3. Managerial Insights
As shown in Table 1, the centralized optimal policy
generally affects significant savings on inventory and
expediting costs and reduces system inventory when
compared with the decentralized optimal policy. In
real situations it could be costly to coordinate the two
stages and share information, but it may well be cost
effective, considering that the inventory/expediting
savings are typically more than 10%. In particular,
if the discount factor is low or the holding costs
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or expediting costs are high, following the central-
ized optimal policy seems worth the effort. Specif-
ically, companies operating under a lean inventory
paradigm may consider their holding and expediting
costs to be very high and hence may want to consider
the benefits of centralized control.

Clearly, to cut costs in this kind of supply chain,
stage 1 must be sensitive to the amount of inven-
tory available at stage 2. Stage 1 must be willing to
occasionally “underorder” to save significant expe-
diting costs at stage 2. By the same token, stage 2
must be willing to produce extra units when stage 1
underorders, trusting that stage 1 will want those
additional units the next period. Here, it is interesting
to compare our centralized results with those of Fed-
ergruen and Zipkin (1984) (the infinite horizon exten-
sion of Clark and Scarf 1960). In their model, stage 1
completely ignores stage 2 and follows a base-stock
model dependent on only stage 1 cost parameters;
stage 2 also follows a base-stock policy, but with a
higher base-stock level to reduce the chance of not
filling supply requests from stage 1. In our model,
stage 1 is sensitive to the costs and inventory avail-
able at stage 2, and orders accordingly; stage 2 orders
more when stage 1 underorders, bringing the system
inventory up to a base-stock level.

Finally, in most scenarios, the centralized policy is
an effective way to reduce the total inventory in the
system. For managers interested in following a lean
inventory paradigm, not only does the centralized
optimal policy offer a way to reduce inventories and
costs simultaneously but the centralized optimal pol-
icy reduces the likelihood of expediting, an outcome
which would make most managers very happy.

6. Conclusion and Extensions
In this paper, we have modeled a two-stage supply
chain where supply requests are always met by the
upstream facility. We have shown that the optimal
inventory control policies for both stages depend only
on the system inventory, and that the optimal policy
for the system inventory is a base-stock policy.

We solved the problem by substituting variables for
system inventory and then relaxing two constraints.
After this relaxation, we got a myopic problem for

stage 1 that we solved for the optimal policy which
depends on two thresholds and the system inven-
tory. Next, we solved the optimality equation for the
system and showed that a base-stock policy is opti-
mal. Finally, we showed that the solutions for the
relaxed problem solved the original, fully constrained
problem, and hence we found the overall optimal
policies.

We performed an experiment for several differ-
ent demand distributions and parameter values. The
results of this experiment indicate that the central-
ized optimal policy saves only a small amount on
total costs, but significantly reduces the inventory and
expediting costs, the system inventory level, and the
probability of using expediting. Numerical examples
illustrate where the savings occur. Our main man-
agerial insights are that to cut costs stage 1 must
occasionally underorder, and that by underordering,
inventory and expediting costs as well as inventory
levels can generally be reduced by following the
centralized policy.

Some of our analyses and results are distinctive
when compared with traditional inventory literature.
Traditional two-echelon proofs proceed by separat-
ing variables and then solving two independent prob-
lems. Our separation is a little different. We found
that by substituting system variables and relaxing
some constraints, we could first solve a myopic prob-
lem, then solve a straightforward dynamic program.
Our optimal policies also vary from traditional opti-
mal inventory policies. Our stage 1 policy of ordering
up to two separate inventory levels and occasion-
ally underordering is quite different from traditional
inventory policies. Hence, we feel that our base-stock
result for the system is also interesting.

The most obvious extension to this model is chan-
nel coordination. Is there a way to induce both stage 1
and stage 2 to follow the centralized optimal policy?
If so, how will the two stages share the various costs
involved? We are currently working on this problem
and can make a few observations about possible solu-
tions. First, the two stages must share information to
achieve the centralized results. The centralized poli-
cies depend only on the system inventory, which is
the sum to the inventories at both stages, and thus at
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least one of the stages must know the system inven-
tory to order appropriately. Second, for a cost struc-
ture to coordinate both stages, the cost structure will
very likely be two-tiered to create the two thresholds
that determine inventory positions at both stages.

Other possible extensions to this include multi-
ple types of expediting, capacity constraints, and the
inclusion of lead times. Capacity constraints may
apply to either regular production, overtime produc-
tion, or both. However, if both types of production
are constrained, we cannot guarantee that demand
will always be met. In our problem, we assume that
deliveries either occur overnight or almost instanta-
neously with premium freight. This situation is a rea-
sonable reflection of reality at PartCo because they
deliver predominantly to neighboring manufacturing
plants. However, some of their shipments travel far-
ther, even outside the country, and in these cases lead
times would apply. Incorporating other types of expe-
diting, capacity, or lead times are left as the subjects
of future work.
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Appendix
Proof of Lemma 1. We consider the case where y1 ≤ xs and the

case where y1 > xs . Note that in both cases it is possible that y1 < 0,
because backorders are allowed at stage 1.

When y1 ≤ xs ,

gr �x1�y1�xs� ys�D� ≥ h2�xs−y1�−�c2xs+�c2ys
≥ �c2�ys−xs�≥ 0�

The first inequality holds because we drop nonnegative terms from
Lines (1) and (2) and cancel the �c2y1 terms. The second inequality
holds because ys ≥ xs .

When y1 > xs ,

gr �x1�y1�xs� ys�D� ≥ −�c2y1 + ce�y1 −xs�+�c2ys
= ce�y1 −xs�−�c2�y1 −ys�
≥ ce�y1 −xs�−�c2�y1 −xs�
= �ce−�c2��y1 −xs�≥ 0�

The first inequality holds because we drop nonnegative terms from
Lines (1) and (2), the second inequality holds because ys ≥ xs , and
the third inequality holds because ce ≥ �c2 by Assumptions (A1)
and (A4). �

Proof of Lemma 2, Part (2). Note that the middle inequality is
satisfied because −h2 < 0< ce−�c2 by Assumptions (A1) and (A4).
To prove the other inequalities, we define the differential of each
function as )Ni�y1� = Ni�y1 + 1�−Ni�y1� for i = L�H . To calculate
yL, we must solve )NL�y1� = 0. If the solution to this equation is
not integer, yL will be either the ceiling or the floor of the solution
to this equation. Consider

)NL�y1� = NL�y1 +1�−NL�y1�

= ����1−��c1 − c2�+ ce��y1 +1�

+ED��2c1D+h1�y1 +1−D�+ + b1�y1 +1−D�−�
− ����1−��c1 − c2�+ ce�y1

−ED��2c1D+h1�y1 −D�+ + b1�y1 −D�−�
= ����1−��c1 − c2�+ ce�

+ED�h1�y1 +1−D�+ −h1�y1 −D�+

+ b1�y1 +1−D�− − b1�y1 −D�−�
= ����1−��c1 − c2�+ ce�+h1F �y1�− b1�1− F �y1��

= ���1−��c1 − c2�+ ce− b1 + �h1 + b1�F �y1��

Similarly,

)NH�y1�= ��1−��c1 −h2 − b1 + �h1 + b1�F �y1��

Thus, at each respective minimum, )NL�yL�= ���1−��c1 − c2�+
ce − b1 + �h1 + b1�F �yL� ≈ 0 and )NH�yH� = ��1 − ��c1 − h2 − b1 +
�h1 + b1�F �yH �≈ 0. Or,

yL ≈ F −1

(
b1 −���1−��c1 − c2�− ce

h1 + b1

)
and

yH ≈ F −1

(
b1 +h2 −��1−��c1

h1 + b1

)
�

For yL and yH to exist, we require that the first fraction be nonnega-
tive and that the second fraction be less than or equal to one. So, we
require that b1 −���1−��c1 − c2�− ce ≥ 0 and b1 +h2 −��1−��c1 ≤
h1 + b1, which both hold by Assumption (A5). Under these condi-
tions, we have that 0 ≤ yL ≤ yH ≤�. �

Proof of Lemma 3. To the left of tL, the slope of g+�·� is
−�ce− c2� < 0 and to the right of yH − 1, the slope of g+�·� is h2 +
�1−��c2 > 0. Also note that g+�tL� ≤ g+�tL− 1� by definition of tL.
Thus, any minima of the function occur between tL and yH − 1.
Between these values, g+�·� follows c2w+N�w�, a convex function,
and thus there is exactly one minimum. The minimum value is
positive because

c2w+N�w� = c2w+���1−��c1 − c2�w
+ED��2c1Dh1�w−D�+ + b1�w−D�−�

≥ �1−����c1 + c2�w+ED�b1�w−D�−�≥ 0�
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The first inequality is true because we drop two nonnegative terms.
The second inequality depends on whether or not w is negative.

If w ≥ 0, the second inequality is obvious.
If w < 0, the second inequality is true because we get c2w+

N�w� ≥ �1−����c1 + c2�w− b1w+ ED�D� ≥ 0 by Assumptions (A2)
and (A5). �
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