
Abstract
In remote sensing studies of land surface temperatures (LST),
thematic land-use and land-cover (LULC) data are frequently
employed for simple correlation analyses between LULC types
and their thermal signatures. Development of quantitative
surface descriptors could improve our capabilities for
modeling urban thermal landscapes and advance urban
climate research. This study developed an analytical
procedure based upon a spectral unmixing model for
characterizing and quantifying the urban landscape in
Indianapolis, Indiana. A Landsat Enhanced Thematic
Mapper Plus image of the study area, acquired on 22 June
2002, was spectrally unmixed into four fraction endmem-
bers, namely, green vegetation, soil, high and low albedo.
Impervious surface was then computed from the high and
low albedo images. A hybrid classification procedure was
developed to classify the fraction images into seven land-use
and land-cover classes. Next, pixel-based LST measurements
were related to urban surface biophysical descriptors derived
from spectral mixture analysis (SMA). Correlation analyses
were conducted to investigate land-cover based relationships
between LST and impervious surface and green vegetation
fractions for an analysis of the causes of LST variations.
Results indicate that fraction images derived from SMA were
effective for quantifying the urban morphology and for
providing reliable measurements of biophysical variables
such as vegetation abundance, soil, and impervious surface.
An examination of LST variations within census block groups
and their relationships with the compositions of LULC types,
biophysical descriptors, and other relevant spatial data
shows that LST possessed a weaker relation with the LULC
compositions than with other variables (including urban
biophysical descriptors, remote sensing biophysical vari-
ables, GIS-based impervious surface variables, and popula-
tion density). Further research should be directed to refine
spectral mixture modeling. The use of multi-temporal
remote sensing data for urban time-space modeling and
comparison of urban morphology in different geographical
settings are also feasible.

Introduction
The receipt and loss of radiation of urban surfaces corre-
spond closely to the distribution of land-use and land-cover
(LULC) characteristics. Because of this correspondence, there

Urban Surface Biophysical Descriptors and
Land Surface Temperature Variations

Qihao Weng, Dengsheng Lu, and Bingqing Liang

has been a tendency to use thematic LULC data, not quantita-
tive surface descriptors, to describe urban thermal land-
scapes (Voogt and Oke, 2003). This trend of qualitative
description of thermal patterns and simple correlations
between LULC types and their thermal signatures has slowed
down the development of remote sensing of land surface
temperature (LST) and thus surface temperature heat islands
(Voogt and Oke, 2003). Clapham (2003) suggests using of a
continuum-based classification for satellite imagery, which
aims to provide continuous data for the “functional classes.”
The idea of a continuum-based classification has long been
pursued in urban landscape analysis. One of the major
contributions is Ridd’s (1995) vegetation-impervious surface-
soil (V-I-S) model for characterizing urban environments.
This model assumes that urban land-cover is a linear
combination of three biophysical components: vegetation,
impervious surface, and soil, and has recently been success-
fully implemented by using the technique of spectral
mixture analysis (Ward et al., 2000; Madhavan et al., 2001;
Rashed et al., 2001; Small, 2001; Phinn et al., 2002; Wu and
Murray, 2003, Lu and Weng, 2004). The Ridd model pro-
vides the potential for a link between remote sensing-
derived urban biophysical components and LST, and may be
applied to establish parameters for describing urban con-
struction materials and fabrics to improve our understanding
of urban surface energy budget and heat islands.

The focus of this research is placed on the development
of a methodology to examine the interplay between LST and
urban morphology. A Landsat ETM� image of 2000 that
covers the City of Indianapolis, Indiana was used in con-
junction with other types of spatial data for the analysis.
Specific objectives of this research are: (a) to employ
spectral mixture modeling to derive urban surface biophysi-
cal attributes, and to apply spectrally unmixed results to
characterize the urban landscape; (b) to analyze the causes
of LST variations, which were derived from Landsat thermal
infrared data by linking LST with remotely sensed urban
surface descriptors; and (c) to examine the spatial variations
of LST at the census block group level, so that implications
for urban planning may be explored.

The City of Indianapolis, located in Marion County,
Indiana (Figure 1), is the nation’s twelfth largest city, with
approximately 0.8 million population (over 1.6 million in
the metropolitan area). Situated in the middle of the coun-
try, Indianapolis possesses several other advantages that
make it an appropriate choice. It has a single central city,
and other large urban areas in the vicinity have not
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influenced its growth. The city is located on a flat plain and
is relatively symmetrical, having possibilities of expansion
in all directions. Like most American cities, Indianapolis is
increasing in population and in area. The areal expansion is
through encroachment into the adjacent agricultural and
non-urban land. Certain decision-making forces have
encouraged some sectors of Metropolitan Indianapolis to
expand faster than others. Detecting and analyzing its urban
thermal landscape is significant to control and plan the
city’s future development.

Thermal Remote Sensing of Urban Surface Temperatures
In urban areas, natural vegetation is often removed and
replaced by non-evaporating, non-transpiring impervious
surfaces. Under such alteration, the partitioning of incoming
solar radiation into fluxes of sensible and latent heat is
skewed in favor of increased sensible heat flux as evapotran-
spirative surfaces are reduced. A higher level of latent heat
exchange is found with more vegetated areas, while sensible
heat exchange is more favored by sparsely vegetated urban
areas that have large amounts of impervious surfaces (Oke,
1982). The LST pattern is a manifestation of existing surface
energy balance and has been extensively studied with
thermal remote sensing technology.

Satellite thermal infrared sensors measure top of the
atmosphere (TOA) radiances from which brightness tempera-
tures of land surfaces (also known as blackbody tempera-
tures) can be derived using Plank’s law (Dash et al., 2002).

The difference between the TOA and land surface brightness
temperatures ranges generally from 1 K to 5 K in the 10 to
12 �m spectral region, subject to the influence of the
atmospheric conditions (Prata et al., 1995). Research on LST
shows that the partitioning of heat fluxes and thus surface
energy response is a function of varying surface soil water
content and vegetation cover (Owen et al., 1998). For non-
vegetated areas, LST measurements typically represent the
radiometric temperatures of sunlit surfaces, such as bare soil
and impervious surface. As the amount of vegetation cover
increases, the radiative temperature recorded by a sensor
approximates more closely the temperatures of green leaves
and the canopy temperature at spectral vegetation maximum
or complete canopy cover (Goward et al., 2002). The
observed portion of vegetation and non-vegetation surfaces
can vary with the viewing angle, thus the amount of vegeta-
tion (ground) alters as the observation angle increases
(Caselles et al., 1992a and 1992b).

Generally speaking, LST are a function of four surface
and subsurface properties: albedo, emissivity, thermal
properties of urban construction materials, and the composi-
tion and structure of urban canopy (Goward, 1981). Moisture
is included in the thermal properties of materials. Each of
these characteristics displays a wide range of variation in
urban contexts. Following discussion focuses on the rela-
tionship between LST and the three urban landscape compo-
nents identified in the Ridd model: vegetation, impervious
surface, and soil.

Fractional vegetation cover depicts the amount and
nature of vegetation cover, and modulates the proportions of
vegetation and ground visible to a sensor. The relationship
between LST and vegetation cover has been extensively
studied by using vegetation indices such as the Normalized
Difference Vegetation Index (NDVI). However, the relation-
ship between NDVI and fractional vegetation cover is not
singular. A recent study indicates that NDVI does not provide
areal estimates of the amount of vegetation (Small, 2001).
Plant species, leaf area, soil background, and shadow may
all contribute to the NDVI variability (Jasinski, 1990). More
quantitative, physically based measures of vegetation
abundance are called for, especially for applications that
require biophysical measures (Small, 2001). Weng et al.
(2004) found that LST possessed a slightly stronger negative
correlation with vegetation fraction derived from a spectral
mixture modeling, than with NDVI for all LULC types across
the spatial resolution from 30 to 960 meters.

Impervious surfaces refer to two major functional
categories of urban surfaces: rooftops and the transportation
system (roads, parking lots, driveways, and sidewalks)
(Schueler, 1994). Impervious surfaces trigger local decreases
in infiltration, percolation and soil moisture, reductions in
natural interception and depression storage and increases in
runoff (Brun and Band, 2000). As a result, impervious
surfaces in the urban context experience an almost dichoto-
mous wet/dry behavior, affecting local partitioning of
daytime radiant energy (Oke, 1982). The surface energy
balance of impervious surfaces is characterized by partition-
ing of the net radiance into sensible heat and heat con-
ducted to the substrate (i.e., storage heat flux) (Oke, 1982).
The energy balance systems may vary considerably with site
geometries and construction materials. The influence of
geometry may vary with the changes in building density,
height, and size, and street canyon orientation. High-rise
buildings are found to be cooler than low-rise buildings and
non-built areas because the latter have a greater portion of
active horizontal surface and low buildings cast shorter
shadows, while smaller buildings with smaller building
mass tend to have lower thermal inertia, leading to a quicker
heat accumulation during the daytime (Nichol, 1996).
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Figure 1. Study area: City of Indianapolis, Indiana.

05-030  10/7/06  12:40 PM  Page 1276



For any surface material, certain internal properties,
such as heat capacity, thermal conductivity and inertia, play
important roles in governing the temperature of a body at
equilibrium with its surroundings (Campbell, 2002). These
thermal properties vary with soil type and its moisture
content (Sandholt et al., 2002). Dry, bare, and low-density
soils, for example, are linked to high LST owing to relatively
low thermal inertia (Carnahan and Larson, 1990). The
emissivity of soils is a function of soil moisture conditions,
and soil density (Larson and Carnahan, 1997).

Methods
Image Pre-processing
Landsat 7-Enhanced Thematic Mapper Plus (ETM�) image
(Row/Path: 32/21) dated on 22 June 2000 was used in this
research. The data acquisition date has a highly clear
atmospheric condition, and the image was acquired through
the USGS Earth Resource Observation Systems Data Center,
which has corrected radiometric and geometrical distortions
of the image to a quality level of 1G before delivery. The
Landsat image was further rectified to a common Universal
Transverse Mercator coordinate system based on 1:24000
scale topographic maps, and was resampled using the nearest
neighbor algorithm with a pixel size of 30 m by 30 m for all
bands including the thermal band. The resultant root mean
square error (RMSE) was found to be less than 0.5 pixel.

Spectral Mixture Analysis
Linear Spectral Mixture Analysis (LSMA) is a physically-
based image processing method. It assumes that the spec-
trum measured by a sensor is a linear combination of the
spectra of all components within the pixel (Adams et al.,
1995; Roberts et al., 1998a). The mathematical model of
LSMA can be expressed as:

(1)

where i � 1, . . . , m (number of spectral bands); k � 1, . . . ,
n (number of endmembers); Ri is the spectral reflectance of
band i of a pixel which contains one or more endmembers;
fk is the proportion of endmember k within the pixel; Rik is
the known spectral reflectance of endmember k within the
pixel on band i; and ERi is the error for band i. Endmembers
are recognizable land-cover materials/features that have
homogenous spectral properties all over the image. A
constrained least-squares solution was used in this research,
assuming that the following two conditions are satisfied
simultaneously:

(2)

(3)

Estimation of endmember fraction images with LSMA
involves (a) image processing, (b) endmember selection, and
(c) unmixing solution and evaluation of fraction images. Of
these steps, selecting suitable endmembers is the most
critical one in the development of high quality fraction
images. Two types of endmembers can be applied: image
endmembers, and reference endmembers. The former are
derived directly from the image itself, while the latter are
derived from field measurements or laboratory spectra of
known materials (Roberts et al., 1998a). For most remote
sensing applications, image endmembers are utilized, since
they are easily obtained and capable of representing the

RMSE � B 1 ami�1
ERi
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fkRik � ERi

spectra measured at the same scale as the image data
(Roberts et al., 1998a). Image endmembers are derived from
the extremes of the image feature space, based on the
assumption that they represent the purest pixels in the
image (Roberts et al., 1998a; Mustard and Sunshine, 1999).

After the implementation of atmospheric correction and
geometrical rectification of the ETM� image, principal
component analysis (PCA) was used to convert the ETM�
bands 1 through 5 and 7 into principal components. It is
found that most of the information content was concentrated
in the first three components (accounting for proximately 99
percent of the total variance). The scatter plots of PC1-PC2
and PC2-PC3 (Figure 2) were constructed to identify end-
members. Four endmembers, namely, high albedo, low
albedo, soil, and green vegetation (GV), were selected. Figure 3
shows the spectral reflectance characteristics of these
endmembers. A constrained least-squares solution was
applied to compute four fraction images (Figure 4).
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Figure 2. Scatterplots of principal components showing
the locations of potential endmembers: (a) PCA 1 (x-
axis) and PCA 2 (y-axis), and (b) PCA 2 (x-axis) and PCA
3 (y-axis).
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Impervious Surface Estimation
Impervious surface was estimated based on the spectral
relationship between high and low albedo fractions and
impervious surfaces following a procedure developed by Wu
and Murray (2003). Before developing an impervious surface
image, impacts from low reflectance materials (e.g., water
and shade) and high reflectance materials (e.g., clouds and
sand) were isolated and removed. Green vegetation and soil
endmembers were considered not to contribute to impervi-
ous surface estimation. After removing these pixels, a pure
impervious surface was calculated with low and high albedo
endmembers by using a fully constrained linear mixture
model (Figure 5). Our analysis indicated that the majority of
commercial and industrial areas in the central business
district had greater than 75 percent of impervious surface
and rural areas near zero. The residential areas had a range
from 25 percent to 75 percent of impervious surface.

Land-use and Land-cover Classification
The fraction images were used for LULC classification using a
hybrid procedure that combined maximum likelihood and
decision tree algorithms. A total of 156 sample plots were
identified from high spatial resolution aerial photographs,
covering initially ten LULC types: commercial and industrial,
high-density residential, low-density residential, bare soil,
crop, grass, pasture, forest, wetland, and water. On average,
10 to 16 sample plots for each class were selected. A window
size of three by three was applied to extract the fraction value
for each plot. The mean and standard deviation values were
calculated for each LULC class. The characteristics of fractional
composition for selected LULC types were then examined.
Next, the maximum likelihood classification algorithm was
applied to classify the fraction images into ten classes,
generating a classified image and a distance image. A distance
threshold was selected for each class to screen out the pixels
that probably do not belong to that class and was determined
by examining interactively the histogram of each class in the
distance image. Pixels with a distance value greater than the
threshold were assigned a class value of zero in the thematic
image. A distance tree classifier was then applied to reclassify
these pixels. The parameters required by the distance tree
classifier were identified based on the mean and standard
deviation from the sample plots of each class. Finally, the

accuracy of the classified image was checked with a stratified
random sampling method against the reference data of 150
samples collected from large-scale aerial photographs. Seven
LULC types were identified, including: (a) commercial and
industrial urban land, (b) residential land, (c) cropland, (d)
grassland, (e) pasture, (f) forest, and (g) water. An overall
accuracy of 89 percent and a Kappa index of 0.8575 were
determined.

Estimation of LST
LSTs were derived from radiometrically and geometrically
corrected ETM� TIR band (10.44 to 12.42 �m). The ETM�
thermal band has a spatial resolution of 60 meters, and the
thermal imagery from Landsat-7 is generally well-calibrated
to ground truth data (Arvidson, 2002). The local time of
satellite overpass was in the morning (approximately 1114).
After converting the digital numbers (DN) of the ETM� Band
6 into absolute radiance values, at-satellite brightness
temperatures (i.e., blackbody temperature, TB) were com-
puted under an assumption of unity emissivity and using
pre-launch calibration constants (Landsat Project Science
Office, 2002). Next, correction for spectral emissivity (�) was
conducted according to the nature of land-cover. Each of the
LULC categories was assigned an emissivity value by refer-
ence to the emissivity classification scheme proposed by
Snyder et al. (1998). The emissivity corrected LSTs were
computed using Equation 4 (Artis and Carnhan, 1982).

(4)

where: � � wavelength of emitted radiance (for which the
peak response and the average of the limiting wavelengths
(� � 11.5 �m) (Markham and Barker, 1985) will be used), 
� � h * c/� (1.438*10	2 m K), � � Boltzmann constant (1.38 *
10	23 J K	1), h � Planck’s constant (6.626*10	34 J sec), and c �
velocity of light (2.998 * 108 m s	1). The effects of atmosphere
and surface roughness on LST were not taken into account in
this study. Lack of atmospheric correction may introduce a
temperature error of 4° to 7 °C for the mid-latitude summer
atmosphere (Voogt and Oke, 1998). The magnitude of atmos-
pheric correction depends upon image bands used as well as
atmospheric conditions and the height of observation. How-
ever, the horizontal variation could have been minimized,
because this study used an image acquired in a highly clear
day and covering a small area. Errors due to urban effective
anisotropy depend upon surface structure and relative sensor
position, and can yield a temperature difference of up to 6 K
or higher in downtown areas (Voogt and Oke, 1998).

Results
Urban Surface Biophysical Descriptors
Figure 4 shows the four fraction images created, GV, soil,
high albedo, and low albedo. An impervious surface fraction
(Figure 5) was created by combining high and low albedo
fraction images. Pixel values of a fraction image represented
areal proportions of each biophysical descriptor within a
pixel. GV fraction image showed a large dark area (low
values) at the center of the study area that corresponds to
the central business district of the city. Bright areas of high
GV values were found in the surrounding areas. Various
types of crops were still at the early stage of growth or were
before emergence, as evidenced by medium gray to dark
tone of the GV fraction image in the southeastern and
southwestern parts of the city. Table 1 displays GV fraction
values by LULC type. Forest apparently had the highest GV
fraction values (0.715), followed by grassland (0.370). In

LST �
TB

1�(l * TB/r) ln�
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Figure 3. Spectral reflectance characteristics of the
selected endmembers.
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contrast, commercial and industrial land displayed the
lowest GV values (0.119). Little vegetative amount was found
in water bodies, as indicated by the GV fraction value
(0.161). Residential land, pasture, and cropland yielded a
mediate GV fraction value around 0.25. Residential land GV
was slightly higher value than that of pasture and cropland.
Cropland standard deviation was the highest, suggesting that
cropland may be characterized by various amounts of
vegetation coverage.

The percentage of land covered by impervious surfaces
may vary significantly with LULC categories and sub-cate-
gories (Soil Conservation Service, 1975). This study shows a
substantially different estimate for each LULC type, as this

study applied a spectral unmixing model to the remote
sensing images, and the modeling had introduced some
errors. For example, a negative impervious fraction value was
found in water. Generally speaking, a LULC type with a
higher GV fraction appeared to have a lower impervious
fraction. The highest impervious coverage was discovered in
commercial and industrial land with a value of 0.491 (Table 1).
Residential land ranked second, with a fraction value of
0.254. Grassland, pasture, and cropland returned a lower
value of impervious surface ranging from 0.11 to 0.14, owing
largely to their exposed bare soil, confusion with commercial
and residential land, and computational errors. Forestland
received a minimal impervious fraction value below 0.1.
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Figure 4. Fraction images derived from spectral mixture analysis of the Landsat ETM� image: (a)
vegetation, (b) soil, (c) high albedo, and (d) low albedo.
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Soil fraction values were generally low in the majority
of the urban area, but high in the surrounding areas.
Especially, in agricultural fields located in the southeastern
and southwestern parts of the city, the soil fraction image
was very bright since various types of crops were still at
the early stage of growth. Table 1 shows that both pasture
and cropland observed a high fraction value (pasture:
0.373; cropland: 0.3). Grassland possessed a medium
fraction value of 0.211. Built-up lands, including residen-
tial, commercial and industrial land, displayed substan-
tially lower soil fractions with 0.147 and 0.101, respec-
tively. A minimal amount of soil was detected in forestland
(fraction: 0.01). Water had a negative fraction value. Like
GV fraction, soil fraction displayed the highest standard
deviation value in cropland due to various amount of
emerged vegetation.

The V-I-S composition may be examined by taking
samples along transects. Figure 6 show ternary plots of two
transects running across the geometric center of the city:
sample 1 from west to east; and sample 2 from north to
south. Errors from the spectral unmixing modeling are not
included in these diagrams due to their low values cluster-
ing to near zero. Along the east to west transect, nearly all
pixels sampled showed a GV fraction of less than 0.8, but
the majority were in the range of 0.3 to 0.65. Soil fraction
values were mostly below 0.4. A clustering pattern was
apparent, if impervious fraction values were observed in the
range from 0.2 to 0.6. However, a considerable number of
pixels exhibited a high impervious fraction, having the
fraction value up to 1.0. Sample 2 exhibited a more dis-
persed pattern of pixel distribution, suggesting a variety of
V-I-S composition types. Pixels along the transect yielded a
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Figure 5. Impervious surface image derided from high-albedo and low-albedo fractions: (a) impervious
surface, (b) adjusted impervious surface in which those pixel values greater than 75 percent or less
than 25 percent were masked out, and (c) residential impervious surface in which those pixels of non-
residential area were masked out.
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GV fraction value from 0.0 to 0.8, and impervious fraction
value ranged between 0 and 1. Soil fraction values were
below 0.65. When mean signature values of the fractions of
each LULC type is plotted (Figure 7), quantitative relation-
ships among the LULC types in terms of the V-I-S composition
can be examined. Our current research includes examining
the use of multi-temporal remote sensing data for urban
time-space modeling and comparison of urban morphology
in different geographical settings.

LST and Urban Surface Biophysical Descriptors
Calculated values of LST ranged from 289.63 K to 319.02 K,
with a mean of 302.14 K and standard deviation of 3.24 K.
Previous remote sensing studies have demonstrated that
LULC changes, especially urban development, can alter the
patterns of LSTs (Weng, 2001). Since changes in LULC would
lead to changes in the composition of image fractions, it is
reasonable to think that the magnitude and spatial distribu-
tion of each fraction image are related to the pattern of
surface temperatures. Correlation analysis was therefore
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TABLE 1. STATISTICS OF THE BIOPHYSICAL DESCRIPTORS BY LULC TYPE, AND THEIR CORRELATIONS WITH LST
(SIGNIFICANT AT 0.05 LEVEL)

Land-use Mean LST Mean Vegetation Mean Impervious
Land-cover (Standard Cover (Standard Surface (Standard Mean Soil Fraction LST/Impervious
Type Deviation) Deviation) Deviation) (Standard Deviation) LST/GV Fraction Surface

Commercial and 305.29 (3.10) 0.119 (0.14) 0.491 (0.226) 0.101 (0.234) 	0.6559 0.5254
Industrial

Residential 303.80 (1.94) 0.276 (0.155) 0.254 (0.098) 0.147 (0.144) 	0.6763 0.5373
Cropland 299.47 (1.28) 0.248 (0.333) 0.129 (0.045) 0.3 (0.252) 	0.7538 0.5558
Grassland 300.47 (1.56) 0.37 (0.198) 0.112 (0.045) 0.211 (0.145) 	0.3760 0.4742
Pasture 299.45 (1.04) 0.258 (0.166) 0.138 (0.097) 0.373 (0.146) 	0.4105 0.5890
Forest 298.16 (1.37) 0.715 (0.104) 0.057 (0.030) 0.01 (0.077) 	0.7343 0.3267
Water 298.20 (4.43) 0.161 (0.178) 	0.029 (0.090) 	0.109 (0.156) 	0.2416 0.3538

Figure 6. V-I-S composition along sampled transects: (a)
Sample 1: west to east transect, and (b) Sample 2:
north to south transect.

Figure 7. Quantitative relationships among the LULC types
in respect to the V-I-S model. The order of the variables
within the parenthesis associated with each LULC type:
vegetation, soil, and impervious surface fractions.
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conducted between the LST map with GV and impervious
surface faction images by using all pixels in the images
as observation units. The significance of each correlation
coefficient was determined using a one-tail Student’s t-
test. Results indicate that LST was positively correlated
with impervious surface fraction (coefficient � 0.5704),
but negatively correlate with GV fraction (coefficient �
	0.4629). If negative values for each GV and impervious
surface fraction were rounded to zero, the associations
between LST and the two fractions would become closer.
Correlation coefficients between LST and impervious surface
would reach 0.5789, whereas the relationship between LST
and GV fraction would improve to a higher level of negative
correlation with a coefficient of 	0.5239. These relation-
ships of LST with GV and impervious surface fractions
suggest that both vegetation cover and impervious surface
fractions contributed to the spatial variations of LSTs. As
impervious surface is usually inversely related to vegetation
cover in urban areas, LST tends to increase as vegetation
cover decreases and impervious cover increases in a pixel.

To understand better the relationship between LST and
urban surface biophysical descriptors, mean and standard
deviation values of LST, impervious fraction, and vegetation
fraction by LULC type were obtained by superimposing LULC
image with the images of LST, impervious, and GV fractions.
The result of the GIS overlays is shown in Table 1. It is clear
that commercial and industrial land exhibited the highest
temperature followed by residential land. The lowest
temperature was observed in forest followed by water
bodies. This implies that urban development brought up LST
by approximately 6 K by replacing natural environment
(forest and water) with commercial, industrial, or residential
uses. The standard deviation value of LST was large for
commercial and industrial land, indicating that these
surfaces experienced a wide variation in LST because of
different construction materials and the possibility to
contain much larger buildings and a wide range of building
sizes within the IFOV. In contrast, the standard deviation
value of LST was relatively small for residential land owing
to their homogeneity. Residential land also possessed a
smaller mean value than commercial and industrial land,
where buildings were frequently mixed with forest and
grassland. Grassland had a median LST value, as it combined
sparse vegetation and exposed bare soil. Similarly, pasture
and agricultural land had a median LST value. Forests
showed a considerably lower LST, because dense vegetation
can reduce amount of heat stored in the soil and surface
structures through transpiration. All vegetative cover,
regardless of natural or man-made, exhibited an extremely
small temperature variation. Water tended to get warm
slowly during the summer owning to its rather high thermal
inertia, and to convection and turbulence (e.g., wave action).
Different water bodies (e.g., rivers, lakes, reservoirs, and
ponds) exhibited different LSTs, subject to the impact of the
size and depth of the water body and whether there is a
flow of water through the body.

The demonstrated relationship between LULC and the
three biophysical parameters, LST, GV, and impervious
surface fractions suggests that it would be helpful to investi-
gate the interplay of these environmental variables by LULC
type. A pixel-by-pixel correlation analysis was conducted by
computing Pearson’s correlation coefficients between LST
and GV fraction, and between LST and impervious surface
fraction. Results are displayed in the last two columns of
Table 1. For all LULC types, LST values were negatively
correlated with GV fraction values, but were positively
correlated with impervious fraction values. The strongest
negative correlation existed between LST and GV fraction
values in agricultural land and forest. The correlation

coefficient values dropped slightly for residential, and
commercial and industrial land, with a sharp decrease for
pasture and grassland. The least correlation was found in
water. On the other hand, the strongest positive correlation
between LST and impervious fraction values was found in
pasture and agricultural land, followed by residential land,
commercial and industrial land, and grassland. The weakest
correlations were observed in forestland and water.

LST Variations at the Census Block Groups
Census blocks, block groups, and tracts are basic units
designed for population and socioeconomic census in the
United States, and are widely used in urban planning and
environmental management practices. In order to assess the
environmental consequences of planning decisions and to
facilitate environmental governance, LST and urban biophysi-
cal descriptors should be examined at the levels of census
units. Remote sensing data can then be integrated with
population and socioeconomic census in a GIS environment.
To this end, mean LSTs were computed for each census
block group, so were minimum, maximum, and standard
deviation values (Figure 8). Mean values of the urban
biophysical descriptors (including GV, impervious surface,
and soil fractions) and the composition of LULC types in the
census block groups were also calculated to elucidate further
the relationships between LSTs and the these environmental
variables. Similarly, remote sensing derived variables,
namely, NDVI and principal component 2 (derived from the
six spectral bands), were included as potential explanatory
variables for LST spatial variability, since they have been
demonstrated to correlate significantly with LSTs at the pixel
level. Given the significance of various types of impervious
surface in urban surface energy exchange, GIS data layers of
building footprints and pavements were obtained to create
four imperviousness variables: (a) areal percentage of
pavement in the census block groups; (b) areal percentage of
all buildings; (c) areal percentage of residential buildings;
and (d) areal percentage of commercial and industry build-
ings. Finally, population density per census block group was
computed as a surrogate variable of anthropogenic heat,
which relates to automobiles, air conditioning units, air
pollution, and heat loss from buildings. These four groups of
variables (Table 2) have been identified as major factors
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Figure 8. Mean land surface temperature by block
group. Data are classified into five equal intervals.

05-030  10/7/06  12:41 PM  Page 1282



contributing to LST variations and thus the urban heat island
effect (Oke, 1982), and are therefore appropriate for LST
modeling.

Relationships between mean, maximum, minimum, and
standard deviation values of LST per block group and the
variables identified were initially examined by correlation
analysis. Table 2 shows the Pearson’s correlation coeffi-
cients, which are significant at the 0.05 level as determined
by a one-tail Student’s t-test. Mean LST values were found
negatively correlated to all vegetation related variables, but
positively to imperviousness related variables, regardless the
remote sensing derived biophysical measurements or those
reflecting the LULC composition. Furthermore, a positive
correlation was detected between LST values and all GIS
derived imperviousness variables. The areal percentages of
all buildings in the block group exhibited the strongest
correlation, trailed by the areal percentages of pavement.

The correlation of imperviousness with LST became weaker
when buildings were separated into residential and commer-
cial/industrial ones. Population density from Census 2000
was discovered to have moderately positively correlated
with LST (coefficient: 0.547). Clearly, housing structure and
pavement pattern possessed more explanatory power over
the LST variations than population distribution.

The significant correlations between LST and the
identified variables promise a potential success for using
multivariate regression models to assess the relative impor-
tance of different factors underlying the urban LST variations
and to identify most significant factors for prediction. A
stepwise multiple regression model was built for examining
the relationship between mean LST values and the areal
proportions of each LULC types in each census block group
(Table 3). This regression model produced a multiple
coefficient of determination of 0.878 at a significant level of

PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Novembe r  2006 1283

TABLE 2. CORRELATION OF MEAN, MAXIMUM, MINIMUM, AND STANDARD DEVIATION OF LST PER BLOCK GROUP AND SELECTED

EXPLANATORY VARIABLES (SIGNIFICANT AT 0.05 LEVEL)

Categories of Variables Variables Mean LST Max. LST Min. LST Std Dev.

LULC Composition Per_Crop 	0.361 	0.042 	0.178 	0.045
Per_Water 	0.265 0.09 	0.313 0.465
Per_Past 	0.339 	0.029 	0.178 	0.049
Per_Fore 	0.719 	0.119 	0.413 0.279
Per_Comind 0.510 0.448 0.04 0.296
Per_Resi 0.293 	0.341 0.47 	0.615
Per_Grass 	0.724 	0.081 	0.502 0.351

Remote Sensing Derived Per_Veg 	0.58 	0.406 	0.125 	0.069
Biophysical Variables Per_Imper 0.944 0.202 0.587 	0.293

Mean_NDVI 	0.801 	0.365 	0.34 0.008
Mean_PCA 	0.709 	0.21 	0.44 0.039

GIS-based Imperviousness Per_Rok 0.709 	0.214 0.684 	0.56
Variables Bldg_BG 0.853 0.116 0.623 	0.369

Per_Rear 0.476 	0.324 0.602 	0.639
Per_Comind 0.594 0.465 0.145 0.212

Population Density from Census Pop_Sqkm 0.547 	0.216 0.587 	0.569

Note: PER_CROPL: percentage of cropland per blockgroup;
PER_WATER: percentage of water per blockgroup;
PER_PAST: percentage of pasture per blockgroup;
PER_FORE: percentage of forest per blockgroup;
PER_COID: percentage of commercial and industry per blockgroup;
PER_RESI: percentage of residential per blockgroup;
PER_GRAS: percentage of grassland per blockgroup.
Pop_Sqkm: population density;
Per_Imper: percentage of impervious surface;
Bldg_BG: percentage of building area;
Per_NDVI: percentage of NDVI;
Per_PCA: percentage of PCA;
PER_Rok: percentage of pavement area;
Per_REAR: percentage of residential building area;
PER_ComInd: percentage of commercial and industry building area;
PER_VEG: percentage of vegetation.

TABLE 3. STEPWISE MULTIPLE REGRESSION MODEL BETWEEN MEAN LST AND DATA EXTRACTED FROM LULC IMAGE

Un-standardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

Constant 305.541 .061 5004.925 .000
PER_GRAS 	7.839E-02 .003 	.529 	29.489 .000
PER_CROP 	8.840E-02 .021 	.214 	4.164 .000
PER_FORE 	7.233E-02 .005 	.271 	15.243 .000
PER_WATE 	.104 .006 	.247 	17.453 .000
PER_COID 1.897E-02 .001 .223 14.692 .000
PER_PAST 	7.056E-02 .028 	.127 	2.504 .013
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0.01. All LULC variables were included in the model, except
for the areal proportion of residential land-use. This result
indicates that LST values were associated with LULC charac-
teristics at the block group level. Therefore, changes in LULC
composition in these units will lead to changes in LST
pattern and the surface energy balance. Another stepwise
multiple regression model was constructed to correlate mean
LST values per census block group with all non-LULC compo-
sition variables, including remote sensing derived biophysi-
cal variables, GIS-based imperviousness variables, and
population density. The modeling results are shown in
Table 4. The multiple regression model yielded a multiple
coefficient of determination of 0.927 at a significant level of
0.02, indicating that LST had a stronger relationship with
these variables than with the LULC compositions. Three
variables that did not enter the model were NDVI, principal
component 2, and the areal percentage of commercial and
industry buildings. The most significant variable was
impervious fraction, followed by the areal percentage of all
buildings, both of which had a positive relationship with
mean LST. Other variables possessed substantially smaller
correlation coefficients. It is concluded that LST had a more
direct relationship with imperviousness related variables
than vegetation related variables and population density.

Geographically referenced, statistical models may be
built based on the composition of LULC types within a
census unit, because the spatial arrangement and areal
extent of different LULC types regulate largely the variations
of spectral radiance and texture in LST (Weng et al., 2004).
With the presence of a surface energy balance model, the
spatial variations of LST may be modeled based on such
factors as imperviousness, green vegetation coverage and
abundance, and population density, which have been
identified to relate directly or indirectly to the radiative,
thermal, moisture, and aerodynamic properties in the urban
surface and subsurface. This is because thermal spectral
response for each pixel and therefore the thermal signature
for each LULC type are largely controlled by the dynamic
relationship between vegetative abundance and impervious
surface coverage. This dynamics would produce an aggre-
gated effect on the surface energy balance for each census
unit. Population distribution, closely related to land-use
zoning, affects the generation of anthropogenic heat and thus
yields an impact on the surface energy exchange.

Discussion and Conclusions
The need is apparent for developing and applying quantita-
tive surface descriptors to describe urban thermal landscapes
in remote sensing studies. To make these happen, remote
sensing techniques must enable a parsimonious separation
of urban LULC types into values directly related to their scale
and signature (Phinn et al., 2002). This study has demon-

strated that SMA, based on the V-I-S model, can provide a
physically based solution for characterizing and quantifying
urban landscape compositions, and that SMA-derived fraction
estimates can be used as reliable urban surface biophysical
descriptors. Moreover, since image endmembers were
utilized in this research, they were capable of representing
the spectra measured at the same scale as the image data.
Thus, pixel-based LST measurements were able to relate
effectively to the biophysical descriptors. A linkage between
the two types of data has made it possible for an analysis of
the causes of LST variations in Indianapolis.

Simple correlations between pixel-based thematic LULC
data and the thermal signatures were criticized for impeding
progress towards a better understanding of urban thermal
landscapes and the urban heat island phenomena (Voogt and
Oke, 2003). As a comparison, this study has examined the
relationship between LST values and the compositions of
LULC types within the census block groups, as well as the
relationships between LST and the urban biophysical
descriptors derived from SMA, and other relevant spatial
data. Results indicate that LST possessed a stronger relation-
ship with these variables than with the LULC compositions.

This study demonstrates that SMA provides a suitable
model to decompose the spectral mixtures of L-resolution
data such as Landsat TM/ETM�. The scene elements in the 
L-resolution data are smaller than the resolution cell of the
sensor, and are therefore not detectable (Strahler et al.,
1986). Thus, a more realistic representation and quantifica-
tion of urban surfaces are possible, in comparison to that
provided by the assignment of a single dominant class to
every pixel by statistical models. With the availability of
multi-temporal satellite images, stable and reliable fraction
estimates derived from SMA may be more effective for a LULC
change detection than traditional pixel-by-pixel comparison
methods, because the fractional characteristics of LULC types
at one date are comparable with other dates of fraction
images. Fraction images may also be easily translated into
significant environmental variables such as impervious
surface and vegetation abundance. By relating LST to chang-
ing fraction constituency over time with urban growth, the
effect of urbanization on LST may be examined.

SMA, as a remote sensing analytical procedure for the V-I-S
model, needs to be refined in order to objectively characterize
urban morphology and to examine the environmental conse-
quences. Because of the complexity of impervious surface,
urban areas may have substantially different impervious
surfaces. Identifying a suitable endmember to represent all
types of impervious surfaces is challenging. Moreover,
impervious surfaces tend to be confused with dry soils. On
the other hand, shade is an important component captured by
optical remote sensors, which is not included in the V-I-S
model. Three possible approaches may be taken to overcome
these problems: by stratification of the image, by use of
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TABLE 4. STEPWISE MULTIPLE REGRESSION MODEL BETWEEN MEAN LST AND OTHER DATA

Un-standardized Standardized
Coefficients Coefficients

Model B Std. Error Beta t Sig.

Constant 298.708 .229 1305.348 .000
MEAN_IMP 8.916E-03 .001 .517 17.790 .000
BLDG_BG 11.271 .873 .360 12.917 .000
PER_VEG 	2.428 .414 	.100 	5.862 .000
PER_ROK 7.737E-02 .011 .126 6.916 .000
PER_REAR 	3.436E-02 .009 	.100 	3.855 .000
POP00_SQMI 3.312E-05 .000 .051 2.308 .021

05-030  10/7/06  12:41 PM  Page 1284



multiple endmembers, and by use of hyperspectral imagery.
More endmembers require more spectral bands to be used,
since the maximum number of endmembers is directly
proportional to the number of spectral bands. The vastly
increased dimensionality of a hyperspectral sensor can
effectively remove the sensor-related limit on the number of
endmembers available. More significantly, the fact that the
number of hyperspectral image channels far exceeds the likely
number of endmembers for most applications readily permits
the exclusion from the analysis of any bands with low signal-
to-noise ratios or with significant atmospheric absorption
effects (Lillesand et al., 2004, p. 614). In addition, a multiple-
endmember SMA approach has shown a better performance
than a standard SMA approach, when a large number of
endmembers are required to be modeled across a scene
(Painter et al., 1998; Roberts et al., 1998b; Okin et al., 2001).
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