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A greedy randomized adaptive search procedure (GRASP) is a
metaheuristic for combinatorial optimization. In this paper, we
describe a GRASP for a matrix decomposition problem arising
in the context of traffic assignment in communication satellites.
We review basic concepts of GRASP: construction and local
search algorithms. The local search phase is based on the use
of a new type of neighborhood defined by constructive and
destructive moves. The implementation of a GRASP for the
matrix decomposition problem is described in detail. Extensive
computational experiments on literature and randomly gener-
ated problems are reported. Moreover, we propose a new pro-
cedure Reactive GRASP, in which the basic parameter that
defines the restrictiveness of the candidate list during the con-
struction phase is self-adjusted according to the quality of the
solutions previously found. The approach is robust and does
not require calibration efforts. On most of the literature prob-
lems considered, the new Reactive GRASP heuristic matches
the optimal solution found by an exact column-generation with
branch-and-bound algorithm.

W e consider in this work a matrix decomposition problem
arising in the context of traffic scheduling in satellite-
switched time-division-multiple-access (SS/TDMA) sys-
tems. A geostationary communication satellite operating un-
der SS/TDMA mode has a number of spot beam antennas
that cover geographically distributed zones. According to
the slot-switching configuration of the onboard switch, the
uplink traffic received at the satellite has to be immediately
sent to ground zones through a set of transponders. The
number of available transponders determines the maximum
number of connections that can be simultaneously estab-
lished through the satellite. The slot-switching configura-
tions are determined through the solution of a time slot
assignment problem, which is equivalent to the decomposi-
tion of a nonnegative traffic matrix into the sum of a family
of switching-mode matrices. Several variants of this problem
have been extensively studied in the literature, taking into
account different objective functions and constraint config-
urations.[1–5, 7, 9–11, 12, 15]

Let T � {tij}i�1, . . . ,n
j�1, . . . ,n be a n � n traffic matrix in which each

entry tij represents the amount of traffic to be sent (or the
connection duration) from a transmitting antenna i to a
receiving antenna j. We consider the problem of determining
an optimal sequence of slot switching configurations, mini-
mizing the overall time needed to transmit the whole traffic

matrix T through a SS/TDMA satellite using no more than n
transponders without allowing preemption (i.e., whenever
two antennas i and j are connected, they cannot be discon-
nected until after all traffic tij from i to j is sent). This
problem has been shown to be NP-hard by Rendl[17] (see
also Refs. 8, 9, and 16 for other complexity results).

In this paper we present a greedy randomized adaptive
search procedure (GRASP) for the above problem. More-
over, we extend the basic ideas of GRASP to propose a new
procedure Reactive GRASP, whose basic parameter is self-
adjusted according to the quality of the solutions found. In
Section 1, we give the detailed formulation of the matrix
decomposition (or time slot assignment) problem, together
with a simple, purely greedy heuristic for its approximate
solution. Section 2 describes a greedy randomized adaptive
search procedure for the time slot assignment problem. In
Section 3, we present computational results on randomly
generated and literature problems, illustrating the efficiency
of the GRASP approach. In Section 4, we propose a new
procedure called Reactive GRASP, in which the restricted
candidate list parameter is self-adjusted according to the
quality of the solutions found, and we show that it further
improves the computational results. Concluding remarks
are made in Section 5.

1. Formulation of the Time Slot Assignment Problem
The time slot assignment problem described in the previous
section may be viewed as a special case of a scheduling
problem under purely disjunctive constraints. Given the
traffic matrix T � {tij}i�1, . . . ,n

j�1, . . . ,n with m strictly positive entries,
it consists in finding a decomposition of T into a sum of q
(switching mode) matrices, i.e.,

T � �
k�1

q

Pk,

meeting the following conditions:

• for all k � 1, . . . , q, Pk � {pij
k}i�1, . . . ,n

j�1, . . . ,n is a switching mode
matrix, i.e., it has no more than one nonzero entry in each
row or column;

• for all k � 1, . . . , q, pij
k � 0 f pij

k � tij, @i � 1, . . . , n, j �
1, . . . , n, i.e., there is no preemption and each nonzero
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entry of the original traffic matrix should appear in one
and exactly one of the matrices of the decomposition; and

• the objective function F(P1, . . . , Pq) � ¥k�1
k�q cmax(Pk) is

minimized, where cmax(Pk) � maxi�1, . . . ,n; j�1, . . . ,n{pij
k} de-

notes the L� norm of matrix Pk, k � 1, . . . , q.

We notice that the total number q of switching mode
matrices appearing in the decomposition is not imposed.
However, it is also possible to refer to the case where it is
fixed: just take q equal to any upper bound on the number of
matrices appearing in the decomposition (e.g., q � m, the
number of nonzero entries in T) and allow some of the
matrices Pk to be null. This matrix decomposition problem
may be formulated as a very large set partitioning problem
(e.g., see Refs. 1, 14, and 19). Ribeiro et al.[19] used this
formulation to exactly solve the problem using a branch-
and-bound procedure combined with column generation
and a ranking technique. Computational results are reported
for literature problems involving traffic matrices with di-
mensions up to n � 15.

Given an n � n switching mode matrix P, a row index i �
{1, . . . , n}, and a column index j � {1, . . . , n}, let X(P, i, j) be
the following compatibility function:

X�P , i , j�

� � 1, if all elements in row i and all elements in
column j of matrix P are zero,

0, otherwise.

Then, if X(P, i, j) � 1, a nonzero entry can be inserted at
position (i, j) of mode matrix P without violating the one-
element-per-row-and-column restriction. A very simple
greedy heuristic for the time slot assignment problem is
described in the pseudo-code of Fig. 1. The procedure takes
as input the original traffic matrix T to be decomposed. The
decomposition is initialized in line 1. The loop from line 2 to
line 11 assigns each positive entry of the original traffic
matrix T to exactly one of the switching mode matrices Pk,
k � 1, . . . , q in the decomposition. In line 3, we make use of
the compatibility function above defined to examine if there
are unassigned positive entries of T compatible with the
current switching mode matrix Pk being constructed (i.e.,

which do not violate the one-element-per-row-and-column
restriction). If such an entry exists, in line 5 we determine the
largest one among all possible candidates, and in line 6 we
insert it into Pk. Otherwise, in case all unassigned entries
conflict with Pk, a new switching mode matrix is initialized
in line 9 to accommodate them. The number q of matrices
into which T was decomposed is set at line 12, and the
solution S � {Pk, k � 1, . . . , q} formed by the matrices
appearing in the decomposition is returned in line 13.

We now evaluate the complexity of procedure Construct-
GreedySolution. First, the m positive entries of T are sorted
in non-decreasing order in O(m log m) � O(n2 log n) time.
This is followed by an O(m) scan of the sorted list for each
mode matrix in the decomposition, leading to an additional
O(qm) � O(qn2) time. Then, the overall complexity amounts
to O(n2(q � log n)), which is roughly O(qn2) because, in
practice, q � n.

Example: Below we give an example of the application of
the greedy heuristic. Let the traffic matrix be

T � �
30 40 15

0 0 60

20 15 10
� .

We start the construction of the first mode matrix by
placing the largest nonzero entry t23 � 60 into P1. The next
largest entry t12 � 40 is also compatible with P1. Since t11 �
30 is not compatible with P1, we complete its construction by
inserting t31 � 20, which is the largest remaining nonzero
entry. We repeat the same steps, placing the largest yet
unselected entry t11 � 30 in P2, and so on. At the end, we
obtain the decomposition T � P1 � P2 � P3 � P4, with:

P1 � �
0 40 0

0 0 60

20 0 0
� , P2 � �

30 0 0

0 0 0

0 15 0
� ,

P3 � �
0 0 15

0 0 0

0 0 0
� , and P4 � �

0 0 0

0 0 0

0 0 10
� .

The cost of this solution is F(P1, P2, P3, P4) � cmax(P1) �
cmax(P2) � cmax(P3) � cmax(P4) � 60 � 30 � 15 � 10 � 115.

2. A GRASP for Time Slot Assignment
In this section, we apply the concepts of GRASP to the time
slot assignment (or matrix decomposition) problem. A
GRASP[6] is an iterative process in which each GRASP iter-
ation consists of two phases: construction and local search.
The construction phase builds a feasible solution, whose
neighborhood is explored by local search. The best solution
over all GRASP iterations is returned as the result.

We summarize below the basic concepts of GRASP, as
presented in Resende and Ribeiro.[18] In the construction
phase, a feasible solution is built, one element at a time. At
each construction iteration, the next element to be added is
determined by ordering all elements in a candidate list with

Figure 1. Pseudo-code of the purely greedy construction
procedure.
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respect to a greedy function that estimates the benefit of
selecting each element. The probabilistic component of a
GRASP is characterized by randomly choosing one of the
best candidates in the list, but usually not the top one.

The solutions generated by a GRASP construction are not
guaranteed to be locally optimal. Hence, it is almost always
beneficial to apply a local search to attempt to improve each
constructed solution. A local search algorithm works in an
iterative fashion by successively replacing the current solu-
tion by a better one from its neighborhood. It terminates
when there are no better solutions in the neighborhood.
Success for a local search algorithm depends on the suitable
choice of a neighborhood structure, efficient neighborhood
search techniques, and the starting solution. The GRASP
construction phase plays an important role with respect to
this last point, since it produces good starting solutions for
local search.

GRASP can be seen as a metaheuristic that captures good
features of pure greedy algorithms (e.g., fast local search
convergence and good quality solutions) and also of random
construction procedures (e.g., diversification). Fig. 2 illus-
trates a generic GRASP implementation in pseudo-code. The
algorithm takes as input parameters the candidate list size,
the maximum number of GRASP iterations, and the seed for
the random number generator. We describe in the next
subsection how the greedy heuristic procedure Construct-
GreedySolution presented in Section 1 may be used to yield
a randomized greedy algorithm that will constitute the con-
struction phase of a GRASP to the time slot assignment
problem.

2.1 Construction Phase
Algorithm ConstructGreedyRandomizedSolution outlined
in the pseudo-code of Fig. 3 takes as input the original traffic
matrix T to be decomposed, the restricted candidate list
(RCL) parameter � (0 	 � 	 1), and a seed for the pseudo
random number generator. The decomposition is initialized
in line 1. The loop from line 2 to line 12 assigns each positive
entry of the original traffic matrix T to exactly one of the
switching mode matrices Pk, k � 1, . . . , q, in the decompo-
sition. In line 3 we examine if there are unassigned positive
entries of T compatible with the current switching mode
matrix Pk being constructed (i.e., which do not violate the
one-element-per-row-and-column restriction). If such an en-
try exists, in line 5 we determine the maximum value tmax

among all entries satisfying this condition. Next, in line 6 all
yet unselected entries (i, j) compatible with the current
switching mode matrix Pk being constructed whose values tij

are in the range [(1 
 �)tmax, tmax] are placed in the RCL. A
single entry is selected at random from the list in line 7, and
in line 8 we insert it into Pk. Otherwise, in case all unas-
signed entries conflict with Pk, a new switching mode matrix
is initialized in line 11 to accommodate them. The number q
of matrices into which T was decomposed is set at line 14
and the solution S � {Pk, k � 1, . . . , q} formed by the
matrices appearing in the decomposition is returned in line
15.

2.2 Local Search
Since the solution produced by the construction phase is not
necessarily a local optimum, local search can be applied as
an attempt to improve it. The first step towards the imple-
mentation of a local search procedure consists in identifying
an appropriate neighborhood definition. Commonly used
neighborhoods, such as pairwise exchanges, are not suitable
for the time slot assignment problem since they usually do
not lead to feasible neighbors. To illustrate it, let pab

k1 and pcd
k2

be two entries to be exchanged, respectively, from matrices
Pk1 and Pk2. Because in many cases matrices Pk1 and Pk2 will
have nonzero entries in most of their rows and columns,
neither element tab will be compatible with Pk2 or element tcd

with matrix Pk1. Although Dell’Amico, Maffioli, and Tru-
bian[4] have used this kind of neighborhood for a similar
problem, they pointed out themselves[13] that, for their ver-
sion of the time slot assignment problem, many rows and
columns do not have any nonzero entry, making it easy to
generate a new feasible decomposition through the ex-
change of pairs of nonzero entries from two matrices ap-
pearing in the decomposition.

We propose a new type of neighborhood for this problem.
Instead of defining the neighborhood itself, we describe in
Fig. 4 the pseudo-code of the local search algorithm used to
generate a set of moves that lead to neighbors of the current
solution S � {Pk, k � 1, . . . , q}. The best neighbor S� of the
current solution S is returned. Procedure LocalSearch basi-
cally makes use of two types of moves. Insertion moves are
based on taking each mode matrix Pk in the current decom-
position with strictly less than n elements in turn, filling up

Figure 2. A generic GRASP pseudo-code.

Figure 3. Pseudo-code of GRASP construction phase.
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Pk as much as possible by adding nonzero entries of the
original traffic matrix to it, and recomputing a decomposi-
tion by applying the greedy procedure ConstructGreedySo-
lution described in Fig. 1 to the remaining nonzero entries of
the original traffic matrix. Analogously, elimination moves
are based on taking each complete mode matrix in the
current decomposition with exactly n nonzero entries in
turn, eliminating some of them, and recomputing a decom-
position as above.

Insertion moves are generated and evaluated by proce-
dure InsertMoves, which takes as input the original traffic
matrix T, the mode matrix Pk under investigation for inser-
tion moves, a parameter max_permutations which defines
the maximum number of neighbors that will be evaluated,
and a seed for the pseudo random number generator. In line
1 we create a list L with all nonzero entries of the traffic
matrix T that could be inserted into Pk without violating the
one-element-per-row-and-column restriction with respect to
Pk. In line 2 we initialize the value of the best neighbor
associated with insertion moves from mode matrix Pk.
Within the loop from line 3 to line 21, up to max_permuta-
tions neighbors of the current decomposition are generated
and evaluated. To do so, in line 4 we initialize the new mode
matrix P̄, which will replace Pk in the neighbor being con-
structed. Each neighbor is associated with a random permu-
tation L� of list L that is computed in line 5. The loop from
line 6 to line 10 searches list L� for nonzero entries compat-
ible with the new mode matrix P̄ under construction. Line 6
is used to initialize the loop. The l-th element (i, j) of list L is
identified in line 7 and checked for feasibility in line 8. If it
does not violate the one-element-per-row-and-column re-
striction with respect to P̄, then it is inserted into the latter in
line 9. At the end of this loop, a new mode matrix P̄ has been
constructed and will be used as the basis for the computa-
tion of a neighbor solution. In line 11, we compute the
partial traffic matrix T̄ obtained from T by the elimination of
the nonzero entries already assigned to P̄. The greedy algo-
rithm ConstructGreedySolution is applied in line 12 to find a
decomposition S̄ of this partial traffic matrix T̄ into q̄ mode
matrices P̄s, s � 1, . . . , q̄. The neighbor under generation is
completed in lines 13–15 by appending matrix P̄ as the (q̄ �
1)-th one in the decomposition. In line 16, we compare the
cost of the neighbor S̄ just generated with the value of the

best neighbor obtained by insertion moves so far. In case the
former is better, we update the best neighbor and the best
insertion neighbor value in lines 18 and 19. The best neigh-
bor Sk found is returned in line 22.

Example: We illustrate below an example of the generation
and evaluation of insertion moves, taking the same traffic
matrix T and the decomposition S � {P1, P2, P3, P4} obtained
with the greedy algorithm, as described in Section 1. The
cost of this solution is F(S) � 60 � 30 � 15 � 10 � 115. We
consider the neighbors being generated by insertions into

P4 � �
0 0 0

0 0 0

0 0 10
� .

The list of elements of the original traffic matrix T com-
patible with P4 is L � {(1, 1), (1, 2)}. Only two permutations
of L can be constructed: (1, 1) 
 (1, 2) and (1, 2) 
 (1, 1). If
we consider the first permutation, only element (1, 1) may be
inserted in P4 and we obtain

P� � �
30 0 0

0 0 0

0 0 10
� .

The application of the greedy algorithm to T̄ � T 
 P̄
leads to the completion of the decomposition with mode
matrices

�
0 40 0

0 0 60

20 0 0
� and �

0 0 15

0 0 0

0 15 0
� ,

corresponding to an improving neighbor with cost 105. If we
consider the second permutation, element (1, 2) would be
inserted into P4, leading to a neighbor formed by mode
matrices

�
30 0 0

0 0 60

0 15 0
� , �

0 0 15

0 0 0

20 0 0
� , and �

0 40 0

0 0 0

0 0 10
� ,

whose cost is 120, larger than that of the current solution.
Then, for k � 4, procedure InsertMoves returns the best
neighbor

S4 � �
0 40 0

0 0 60

20 0 0
� , �

0 0 15

0 0 0

0 15 0
� , and

�
30 0 0

0 0 0

0 0 10
� ,

with cost F(S4) � 105.
Elimination moves are generated and evaluated by pro-

cedure DeleteMoves, which takes as input the original traffic

Figure 4. Pseudo-code of local search phase.
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matrix T, the mode matrix Pk under investigation for elim-
ination moves, a parameter max_eliminations which defines
the maximum number of neighbors that will be evaluated,
and a seed for the pseudo random number generator. In line
1, we create a list L with the n nonzero entries of Pk. In line
2, we initialize the value of the best neighbor associated with
elimination moves from mode matrix Pk. Within the loop
from line 3 to line 18, max_eliminations neighbors of the
current decomposition are generated and evaluated. To do
so, in line 4 we initialize the new mode matrix P̄, which will
replace Pk in the neighbor being constructed. We choose an
element of L at random in line 5 to be eliminated from the
current mode matrix Pk in line 6. The new mode matrix P̄ so
constructed will be used as the basis for the computation of
a neighbor solution. List L is updated in line 7. In line 8, we
compute the partial traffic matrix T̄ obtained from T by the
elimination of the nonzero entries already assigned to P̄. The
greedy algorithm ConstructGreedySolution is applied in line
9 to find a decomposition S̄ of this partial traffic matrix T̄
into q̄ mode matrices P̄s, s � 1, . . . , q̄. The neighbor under
generation is completed in lines 10–12 by appending matrix
P̄ as the (q̄ � 1)-th one in the decomposition. In line 13, we
compare the cost of the neighbor S̄ just generated with the
value of the best neighbor obtained by elimination moves so
far. In case the former is better, we update the best neighbor
and the best elimination neighbor value in lines 15 and 16.
The best neighbor Sk found is returned in line 19.

Example: Below we present an example of the generation
and evaluation of elimination moves, taking again the same
traffic matrix T and the decomposition S � {P1, P2, P3, P4}
obtained with the greedy algorithm, as described in Section
1. We consider the neighbors being generated by elimina-
tions from

P1 � �
0 40 0

0 0 60

20 0 0
� .

Let us take max_eliminations � 1 and eliminate element
p31

1 � 20, leading to the new mode matrix

P� � �
0 40 0

0 0 60

0 0 0
� .

The application of the greedy algorithm to T̄ � T 
 P̄
leads to the completion of the decomposition with mode
matrices

�
30 0 0

0 0 0

0 15 0
� , �

0 0 15

0 0 0

20 0 0
� , and �

0 0 0

0 0 0

0 0 10
� ,

corresponding to a worst neighbor with cost 120.
According to the above description and to the pseudo-

codes in Figs. 4, 5, and 6, procedure ConstructGreedySolu-
tion described in Section 1 is applied many times during the
neighborhood generation and evaluation. Since it has com-

plexity O(qn2), the overall complexity of finding the best
neighbor of the current solution is O(tq2n2), where q is the
number of mode matrices in the current solution and t �
max{max_permutations, max_eliminations} is an upper
bound to the number of neighbors generated from each of
them. Since in practice q � n, this amounts to O(tn4). Due to
this high computational cost, we implemented procedure
LocalSearch as outlined in Fig. 4, just as the search for the
best neighbor S� of the current solution and not as a com-
plete local search seeking a local optimum, which could be
attained from S. The correctness of this choice was con-
firmed by the computational experiments reported later in

Figure 5. Pseudo-code of the generation and evaluation
of insertion moves.

Figure 6. Pseudo-code of the generation and evaluation
of elimination moves.
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Table II, in which different strategies for the implementation
of the local search are compared. The pseudo-code with the
complete description of procedure GRASP_for_TSA for the
time slot assignment problem is given in Fig. 7.

3. Experimental Results
In this section, we present experimental results obtained
with a Fortran implementation of the GRASP for time slot
assignment GRASP_for_TSA shown in Fig. 7. Randomly
generated test problems were used in the first phase of the
computational experiments to set the best strategy for our
GRASP. In the second phase, such best strategy is applied to
a set of realistic literature problems whose optimal solutions
are known. The computational experiments have been con-
ducted on an IBM 9672 model R34 mainframe computer.
The code was written in Fortran 77 and compiled with the
IBM VS Fortran compiler (version 2, release 5).

3.1 Random Problems
A set of 30 randomly generated test problems was used in
the first phase of the experiments. For each value of n � 15,
18, and 21, we generated 10 test problems. The density of the
traffic matrices was taken as 63% (which is also the average
density of the literature problems reported and exactly
solved by Ribeiro et al.[19]). The nonzero entries are integers
and have been generated according to a uniform distribu-
tion between 1 and 800. Throughout the computational ex-
periments with random instances reported in this section,
we have always performed 1000 GRASP iterations (i.e.,
max_iterations � 1000).

We first ran GRASP_for_TSA with the restricted candi-
date list parameter � � 0.1, 0.3, 0.5, and 0.0 (greedy choice),
max_permutations equal to the number of elements in the
list L, and max_eliminations � 1. Statistics of the computa-
tional results are displayed in Table II. For each test prob-

Table I. Run Statistics on Random Instances with � � 0.1, 0.3, 0.5, and 0.0

Problem n

� � 0.1 � � 0.3 � � 0.5 � � 0.0

Best ITR Secs Best ITR Secs Best ITR Secs Best

R.01 15 6724 8 377 6724 41 377 6724 601 376 6760
R.02 15 6771 1 349 6771 100 353 6771 279 362 6771
R.03 15 6475 693 351 6504 707 352 6499 306 354 6518
R.04 15 6342 7 385 6344 410 378 6361 932 366 6388
R.05 15 6415 626 349 6435 313 352 6440 582 349 6477
R.06 15 7550 1 412 7550 1 420 7550 1 423 7550
R.07 15 6889 55 430 6900 97 416 6903 258 410 6900
R.08 15 6076 586 334 6076 939 341 6103 60 340 6145
R.09 15 6434 41 336 6422 7 336 6428 977 336 6510
R.10 15 6525 5 382 6525 410 384 6527 264 384 6540
Average 15 6620 202 371 6625 303 371 6631 426 370 6656

R.11 18 7682 135 914 7713 265 900 7706 902 891 7736
R.12 18 7693 580 855 7702 880 837 7707 112 796 7698
R.13 18 7524 718 957 7545 198 928 7556 691 929 7546
R.14 18 8254 65 841 8254 478 856 8259 425 871 8270
R.15 18 8021 1 951 8021 1 937 8021 1 957 8021
R.16 18 7755 30 917 7755 253 909 7755 982 920 7764
R.17 18 8032 222 1017 8025 828 974 8025 273 949 8033
R.18 18 7234 156 792 7264 877 792 7297 684 805 7322
R.19 18 6858 947 720 6876 409 693 6922 76 702 7086
R.20 18 8027 183 1054 8028 259 1034 8034 850 1049 8055
Average 18 7708 304 902 7718 445 886 7728 500 887 7753

R.21 21 9287 769 1821 9290 4 1813 9290 48 1829 9290
R.22 21 8890 958 1972 8893 585 1955 8896 249 1949 8914
R.23 21 9145 906 2095 9142 93 2036 9145 169 2084 9187
R.24 21 8464 491 1784 8473 24 1692 8476 239 1724 8464
R.25 21 8511 855 1742 8508 135 1703 8520 215 1730 8535
R.26 21 8838 172 2129 8852 216 2065 8880 690 2050 9000
R.27 21 7980 108 1729 7980 597 1638 7994 530 1646 7980
R.28 21 9407 4 2393 9407 3 2305 9407 14 2380 9407
R.29 21 8693 514 1805 8696 957 1804 8706 286 1819 8713
R.30 21 9816 45 2398 9823 589 2366 9817 985 2385 9816
Average 21 8903 482 1988 8906 320 1938 8913 343 1960 8931
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lem, this table lists the dimension of the traffic matrix (n), the
value of the best solution found (best), the iteration on which
the best solution was found (itr), and the computation time
in seconds (secs) for the 1000 iterations. Average results for
the 10 instances associated with each problem size are also
presented.

We observe from the results in Table II that smaller values
of the RCL parameter � seem to lead to better results. For all
30 randomly generated instances, the best solution was al-
most always found with � � 0.1. Also, � � 0.3 performed
better than � � 0.5. Based on these results, we set � � 0.1
throughout the additional computational experiments re-
ported below. We also notice that this setting leads to sys-
tematically better solutions than those obtained with the
greedy choice followed by local search (� � 0.0; last column
of Table II).

To investigate the behavior of the local search procedure,

we implemented three versions of it. The first version repro-
duces algorithm LocalSearch outlined in Fig. 4, in which we
only investigate the neighborhood of the solution con-
structed by procedure ConstructGreedyRandomizedSo-
lution, even if an improving move was found. The second
version corresponds to an iterative improvement algorithm,
which always moves to the first found improving neighbor
of the current solution. The third implementation is a steep-
est-descent approach, which examines the whole neighbor-
hood and moves to the best neighbor. These three versions
of the local search procedure are referred to respectively as
BN (for best neighbor of the constructed solution), II (for
iterative improvement), and SD (for steepest descent). Com-
putational results comparing the results obtained by these
three approaches for the 30 randomly generated instances
are presented in Table I. For each test problem, and for each
of these three versions, this table lists the dimension of the

Table II. Run Statistics on Random Instances Comparing Local Search Approaches

Problem n

BN II SN

Best Secs Best Secs Best Secs

R.01 15 6724 377 6724 470 6724 887
R.02 15 6771 349 6771 575 6771 1041
R.03 15 6475 351 6476 606 6475 966
R.04 15 6342 385 6342 504 6342 989
R.05 15 6415 349 6409 502 6409 904
R.06 15 7550 412 7550 498 7550 899
R.07 15 6889 430 6889 644 6889 1145
R.08 15 6076 334 6075 413 6076 810
R.09 15 6434 336 6420 459 6424 868
R.10 15 6525 382 6525 566 6525 1048
Average 15 6620 371 6618 524 6618 956

R.11 18 7682 914 7679 1197 7669 2423
R.12 18 7693 855 7691 1086 7691 2267
R.13 18 7524 957 7530 1151 7524 2365
R.14 18 8254 841 8254 1160 8254 2342
R.15 18 8021 951 8021 1331 8021 2395
R.16 18 7755 917 7755 1387 7755 2696
R.17 18 8032 1017 8016 1529 8025 3175
R.18 18 7234 792 7234 1014 7232 1902
R.19 18 6858 720 6871 1158 6858 2082
R.20 18 8027 1054 8027 1799 8027 3452
Average 18 7708 902 7708 1281 7706 2510

R.21 21 9287 1821 9289 2420 9287 4948
R.22 21 8890 1972 8887 2481 8887 5603
R.23 21 9145 2095 9141 2712 9145 5887
R.24 21 8464 1784 8464 2398 8464 4997
R.25 21 8511 1742 8505 2421 8504 5139
R.26 21 8838 2129 8829 2581 8819 5462
R.27 21 7980 1729 7975 2556 7975 5064
R.28 21 9407 2393 9407 2580 9407 5874
R.29 21 8693 1805 8693 2501 8693 4923
R.30 21 9816 2398 9816 2567 9816 6145
Average 21 8903 1988 8901 2522 8900 5404
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traffic matrix (n), the value of the best solution found (best),
and the computation time in seconds (secs) for the 1000
iterations. Average results for each problem size are also
given. We can see that the computation times observed for
the BN (best neighbor of the constructed solution) version of
the local search are considerably smaller on the average than
those obtained with II and SD, with a very small loss in
terms of solution quality. For this reason, we decided to use
the original LocalSearch procedure for the local search
phase of our GRASP, as presented in Section 2.

The most time-consuming phase of algorithm GRASP_
for_TSA is certainly the local search, since it is based on the
successive application of procedure ConstructGreedySolu-
tion, which has the same computational complexity as pro-
cedure ConstructGreedyRandomizedSolution applied only
once during the construction phase. To speed up algorithm
GRASP_for_TSA, we have then investigated the use of a
filter to eliminate runs of LocalSearch originating from un-
promising bad solutions generated by the construction
phase. To do so, we store the average value � of the ratio
(F(S) 
 F(S�))/F(S), i.e., the average reduction obtained by
the local search phase with respect to the solution con-
structed in the first phase. After the first 100 iterations, we
make use of this information to decide whether each con-
structed solution will be submitted to local search or not.
The idea is based on the rationale that if some reasonable
threshold applied to the cost of the constructed solution
leads to a value much higher than the cost of the best
solution already found, it is unlikely that LocalSearch could
produce a better solution than the current best. We use 90%
of (1 
 �) as this threshold, to give more chances to the local
search. The pseudo-code of algorithm GRASP_with_filter_
for_TSA for this extended version of the GRASP described in
Section 2 is outlined in Fig. 8.

We ran both algorithms GRASP_for_TSA and GRASP_
with_filter_for_TSA with the same parameter settings. Statis-
tics of the computational results obtained for the 30 ran-
domly generated instances are displayed in Table III. For
each test problem, and for each of these algorithms, this
table lists the dimension of the traffic matrix (n), the value of
the best solution found (best), the index of the iteration on
which the best solution was found (itr), the number of times

LocalSearch is effectively performed (#_LS), and the com-
putation time in seconds (secs). Average results for each
problem size are also given.

In a final step to tune the best strategy for our GRASP, we
evaluated a variant of GRASP_with_filter_for_TSA in which
one considers only two permutations of the list L of possible
insertion moves. Statistics of the computational results ob-
tained for the 30 randomly generated instances are dis-
played in Table IV. For each test problem, and for each of
these algorithms, this table lists the dimension of the traffic
matrix (n), the value of the best solution found (best), the
index of the iteration on which the best solution was found
(itr), the number of times LocalSearch is effectively per-
formed (#_LS), and the computation time in seconds (secs).
Average results for each problem size are also given. We
notice that GRASP_with_filter_for_TSA using max_permu-
tations � 2 performs better than with the previous setting,
since it achieves significant reductions in computation times
while obtaining solutions with the same overall quality.

3.2 Literature Problems
Further computational experiments have been performed
with the application of algorithm GRASP_with_filter_
for_TSA with the final parameter settings (max_permuta-
tions � 2) to a set of literature problems exactly solved by
Ribeiro et al.[19] We report computational results obtained
with our GRASP approach for 36 of the 42 original instances
(we discarded very small instances with n � 5 as well as
problem P.39 whose data were not available). Computa-
tional results obtained with max_iterations � 1000 and all
other parameter settings as described above are summarized
in Table V. For each problem we present the dimension of
the traffic matrix (n), the number of nonzero entries in the
traffic matrix (m), the value of the optimal solution (z*)
found by the branch-and-bound algorithm proposed in Ref.
19, the value of the best solution (GRASP) found by algo-
rithm GRASP_with_filter_for_TSA, an indication on
whether this solution is optimal or not, the index of the

Figure 7. Pseudo-code of GRASP for time slot
assignment.

Figure 8. Pseudo-code of the GRASP with filter for time
slot assignment.
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iteration on which the best solution was found (itr), the
number of times LocalSearch was effectively performed
(#_LS), and the computation time in seconds (secs). These
results show that the GRASP with filter algorithm was able
to find the exact optimal solution for 23 of 36 instances of
literature problems reported in this table. In the next section
we present a new procedure that further improves these
computational results.

4. Reactive GRASP
The restricted candidate list parameter � is basically the only
parameter to be set in a practical implementation of a
GRASP. Feo and Resende[6] have discussed the effect of the
choice of the value of � in terms of solution quality and
diversity during the construction phase and how it impacts
the outcome of a GRASP procedure. In this section, we
present a new procedure called Reactive GRASP, for which

the restricted candidate list parameter � is self-adjusted
according to the quality of the solutions previously found.

Instead of using a fixed value for the parameter �, which
determines which elements will be placed in the restricted
candidate list at each iteration of the construction phase, we
propose to randomly select it from a discrete set � �
{�1, . . . , �m} containing m predetermined acceptable values.
Using different values of � at different iterations allows for
building different restricted candidate lists, eventually lead-
ing to the construction of different solutions which would
never be built if a single, fixed value of � was used. For
example, one may consider �1 � 0.1, �2 � 0.2, . . . , and �10 �
1, as reported in Section 3 for the current application to the
time slot assignment problem. Let pi be the probability as-
sociated with the choice of �i, for i � 1, . . . , m. We take the
initial values pi � 1/m, i � 1, . . . , m, corresponding to a
uniform distribution.

Table III. Run Statistics on Random Instances with the GRASP with Filter Algorithm

Problem n

GRASP_for_TSA GRASP_with_filter_for_TSA

Best ITR #_LS Secs Best ITR #_LS Secs

R.01 15 6724 8 1000 377 6724 8 758 278
R.02 15 6771 1 1000 349 6771 1 1000 348
R.03 15 6475 693 1000 351 6475 693 997 350
R.04 15 6342 7 1000 385 6342 7 993 377
R.05 15 6415 626 1000 349 6415 626 989 350
R.06 15 7550 1 1000 412 7550 1 1000 411
R.07 15 6889 55 1000 430 6889 55 999 423
R.08 15 6076 586 1000 334 6078 219 994 328
R.09 15 6434 41 1000 336 6434 41 999 332
R.10 15 6525 5 1000 382 6525 5 994 375
Average 15 6620 202 1000 371 6620 166 972 357

R.11 18 7682 135 1000 914 7689 532 485 434
R.12 18 7693 580 1000 855 7698 235 973 811
R.13 18 7524 718 1000 957 7530 394 987 939
R.14 18 8254 65 1000 841 8254 65 1000 840
R.15 18 8021 1 1000 951 8021 1 1000 950
R.16 18 7755 30 1000 917 7755 30 1000 915
R.17 18 8032 222 1000 1017 8032 222 1000 1023
R.18 18 7234 156 1000 792 7246 169 455 377
R.19 18 6858 947 1000 720 6858 694 907 649
R.20 18 8027 183 1000 1054 8027 183 1000 1062
Average 18 7708 304 1000 902 7711 253 881 800

R.21 21 9287 769 1000 1821 9287 769 999 1823
R.22 21 8890 958 1000 1972 8890 958 1000 1974
R.23 21 9145 906 1000 2095 9145 906 1000 2075
R.24 21 8464 491 1000 1784 8464 491 1000 1741
R.25 21 8511 855 1000 1742 8511 855 1000 1700
R.26 21 8838 172 1000 2129 8838 172 1000 2081
R.27 21 7980 108 1000 1729 7980 108 1000 1694
R.28 21 9407 4 1000 2393 9407 4 1000 2335
R.29 21 8693 514 1000 1805 8693 514 999 1779
R.30 21 9816 45 1000 2398 9816 45 1000 2381
Average 21 8903 482 1000 1988 8903 482 1000 1958
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We propose to periodically update the probability distri-
bution pi, i � 1, . . . , m, using information collected during
the search. Different strategies for this update operation can
be explored. We describe below an absolute qualification
rule, based on the average value of the solutions obtained
with each value of �, which is just one among such possible
strategies. Recall that at each iteration some value of � � �i

is randomly selected from � using the probability distribu-
tion pi, i � 1, . . . , m. At any GRASP iteration, let F(S*) be the
value of the overall best solution already found. Moreover,
let Ai be the average value of the solutions obtained taking
� � �i in the construction phase. The probability distribution
will be updated after the execution of each block of block_
iterations iterations (we used block_iterations � 100 in our
implementation). To do so, compute

qi � � F�S*�

Ai
� �

for all i � 1, . . . , m, and obtain by normalization from the qi

the new values of the probabilities pi, i � 1, . . . , m, given by

pi � qi/��
j�1

j�m

qj� .

We notice that the most suitable some value of � � �i

reveals itself to be (i.e., Ai is relatively smaller), the higher
the associated value of qi and, consequently, the higher the
updated value of the probability pi. Accordingly, in the next
block of block_iterations iterations, the values of � that lead
to better solutions will have higher probabilities and, con-
sequently, will be more frequently used in the construction
phase of the GRASP procedure. The exponent � may be used
and explored to differently atenuate the updated values of
the probabilities pi.

We call the above described approach Reactive GRASP

Table IV. Run Statistics on Random Instances with GRASP_with_filter_for_TSA Using max_permutations � 2

Problem n

max_permutations � �L� max_permutations � 2

Best ITR #_LS Secs Best ITR #_LS Secs

R.01 15 6724 8 758 278 6724 54 729 196
R.02 15 6771 1 1000 348 6771 1 1000 287
R.03 15 6475 693 997 350 6475 36 992 275
R.04 15 6342 7 993 377 6342 4 988 285
R.05 15 6415 626 989 350 6435 4 982 254
R.06 15 7550 1 1000 411 7550 1 1000 280
R.07 15 6889 55 999 423 6889 217 991 275
R.08 15 6078 219 994 328 6075 421 993 273
R.09 15 6434 41 999 332 6429 313 999 266
R.10 15 6525 5 994 375 6525 102 994 293
Average 15 6620 166 972 357 6622 149 967 268

R.11 18 7689 532 485 434 7681 340 475 145
R.12 18 7698 235 973 811 7696 387 948 569
R.13 18 7530 394 987 939 7530 423 983 660
R.14 18 8254 65 1000 840 8254 10 1000 665
R.15 18 8021 1 1000 950 8021 1 1000 685
R.16 18 7755 30 1000 915 7755 260 1000 688
R.17 18 8032 222 1000 1023 8033 19 999 709
R.18 18 7246 169 455 377 7257 101 482 218
R.19 18 6858 694 907 649 6866 982 827 365
R.20 18 8027 183 1000 1062 8027 83 1000 712
Average 18 7711 253 881 800 7712 261 871 542

R.21 21 9287 769 999 1823 9287 281 1000 1749
R.22 21 8890 958 1000 1974 8888 696 999 1828
R.23 21 9145 906 1000 2075 9145 316 1000 1970
R.24 21 8464 491 1000 1741 8464 319 1000 1627
R.25 21 8511 855 1000 1700 8502 14 1000 1586
R.26 21 8838 172 1000 2081 8840 392 1000 1751
R.27 21 7980 108 1000 1694 7980 72 995 1459
R.28 21 9407 4 1000 2335 9407 9 1000 2032
R.29 21 8693 514 999 1779 8693 367 999 1535
R.30 21 9816 45 1000 2381 9816 40 1000 2032
Average 21 8903 482 1000 1958 8902 251 999 1757
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because the value of the parameter � is not fixed but, in-
stead, is self-adjusted according to the quality of the solu-
tions found during the search. The pseudo-code of algo-
rithm Reactive_GRASP implementing this scheme for the
time slot assignment problem is outlined in Fig. 9.

We summarize in Table VI the computational results ob-
tained with the Reactive GRASP approach for the same 36
literature instances, using � � 10 and max_iterations � 1000.
For each problem, we present the value of the best solution
(R-GRASP) found by the reactive approach implemented
through algorithm Reactive_GRASP, an indication of
whether this solution improves on the solution previously
found by algorithm GRASP_with_filter_for_TSA, another in-
dication of whether this solution is optimal or not, the index
of the iteration on which the best solution was found
(#_iter), the value (�̄) of � that led to the best solution found

by algorithm Reactive_GRASP, and the computation time
in seconds (secs).

These results show that the Reactive_GRASP algorithm
was able to find the exact optimal solution for 7 of the 13
instances for which GRASP_with_filter_for_TSA failed. The
value of exponent � was fixed once and for all, and im-
proved solutions were obtained without time-consuming
calibrations involving the parameter �.

We also notice that, for most of the literature problems (18
of the 36 instances), the best solution found by algorithm
Reactive_GRASP was obtained with �̄ � 0.1, coinciding
with the best value found for parameter � in Section 3.1. This
result shows that the reactive procedure for updating the
probability distribution can effectively be used to replace a
time-consuming calibration process, with the additional ad-
vantage that it also gives chances to other values of �, which

Table V. Run Statistics on Literature Problems with Algorithm GRASP_with_filter_for_TSA

Problem n m z* GRASP Optimal? ITR #_LS Secs

P.06 5 16 565 565 yes 6 100 0.9
P.07 5 24 3771 3771 yes 1 1000 4.4
P.08 5 24 4049 4149 no 38 139 1.2
P.09 5 25 3388 3443 no 1 100 1.1
P.10 6 16 3983 3983 yes 1 1000 4.1
P.11 6 18 3380 3380 yes 1 1000 4.8
P.12 6 26 657 657 yes 5 605 3.7
P.13 6 34 3220 3245 no 1 964 9.2
P.14 7 31 3157 3157 yes 1 900 11.3
P.15 7 34 341 349 no 2 100 2.9
P.16 7 34 2343 2358 no 1 1000 15.4
P.17 7 34 3281 3359 no 4 132 3.6
P.18 7 37 3228 3228 yes 3 525 6.7
P.19 8 36 3710 3710 yes 1 1000 13.1
P.20 8 37 1830 1860 no 1 538 13.6
P.21 8 38 3660 3660 yes 6 386 10.4
P.22 8 38 1912 1925 no 7 1000 20.9
P.23 8 44 3770 3810 no 2 368 10.4
P.24 9 34 661 661 yes 1 1000 27.8
P.25 9 36 504 504 yes 1 647 17.8
P.26 9 37 520 520 yes 1 723 22.4
P.27 9 44 216 216 yes 152 100 7.0
P.28 10 44 1729 1729 yes 1 858 40.7
P.29 10 53 3470 3470 yes 1 1000 65.7
P.30 10 60 4891 4902 no 72 1000 54.3
P.31 11 47 620 620 yes 1 1000 70.9
P.32 11 51 2480 2480 yes 1 1000 72.9
P.33 11 56 3018 3018 yes 1 1000 61.5
P.34 12 74 1980 1980 yes 1 1000 133.3
P.35 12 86 2140 2140 yes 1 1000 134.7
P.36 12 101 7210 7210 yes 1 969 156.3
P.37 13 87 6360 6370 no 7 1000 222.3
P.38 13 94 2130 2130 yes 208 997 172.4
P.40 14 85 4879 4984 no 14 1000 222.9
P.41 14 116 2688 2688 yes 15 997 320.9
P.42 15 138 2466 2475 no 565 1000 402.0
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in the present case allowed finding the best solution for
several test problems.

5. Concluding Remarks
In this paper we described a GRASP for finding approxi-
mate solutions to the time slot assignment problem, arising
in the context of the optimal operation of TDMA satellite
systems. The first contribution of this work consists in the
use of a new, original type of neighborhood during the local
search phase, based on constructive and destructive moves.
This neighborhood definition allows overcoming the diffi-
culty of using more standard neighborhoods, such as ex-
change or insertion neighborhoods. The use of a filtering
technique to bypass local search computations from un-
promising solutions was another feature explored within
this procedure. Extensive computational experiments on
both randomly generated and literature problems illustrated
the effectiveness of the proposed GRASP approach.

The major contribution of this paper consists in the de-
velopment of a new variant of the GRASP approach, in
which the parameter � which defines the restrictiveness of
the candidate list is self-adjusted according to the quality of
the solutions previously found. In the Reactive GRASP ap-
proach, instead of using a fixed value for the parameter �,
we randomly select it from a discrete set of acceptable val-
ues. The associated probability distribution is periodically
updated.

The experimental results on literature problems indicated
that the new Reactive GRASP approach outperforms the
basic GRASP algorithm for the time slot assignment prob-
lem, finding improved solutions for most of the problems
for which the pure GRASP failed in finding the exact opti-
mal solution. Since different values of � are used throughout
the algorithm, this feature incorporates an additional diver-
sification strategy to the basic GRASP. Moreover, the ap-
proach is robust and tuning is much more simple, in that the
value of � is self-adjusted and no preliminary calibration
efforts are needed.
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