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The prediction of protein structure depends on the quality of the models
used. In this paper, we examine the relationship between the complexity and
accuracy of representation of various models of protein a-carbon backbone
structure. First, we develop an efficient algorithm for the near optimal fitting
of arbitrary lattice and off-lattice models of polypeptide chains to their
true X-ray structures. Using this, we show that the relationship between
the complexity of a model, taken as the number of possible conformational
states per residue, and the simplest measure of accuracy the root-mean-
square deviation from the X-ray structure, is approximately (Accu-
racy) K (Complexity)-l/* This relationship is insensitive to the particularities.
of individual models, i.e. lattice and off-lattice models of the same complexity
tend to have similar average root-mean-square deviations, and this also
implies that improvements in model accuracy with increasing complexity are
very small. However, other measures of model accuracy such as the
preservation of X-ray residue-residue contacts and the cc-helix, do
distinguish among models.
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In addition, we show that low complexity models, which take into account
the uneven distribution of residue conformations in real proteins, can
represent X-ray structures as accurately as more complex models, which do
not: a selected 6-state model can represent protein structures almost as
accurately (1.7 A root-mean-square) as a 17-state  lattice model (1.6 A
root-mean-square).

Finally we use a novel optimization procedure to generate eight 4-state
models, which fit native proteins to an average of 2.4 A, and preserve 85%
of native residue-residue contacts. We discuss the implications of these
findings for protein fading and the prediction of protein conformation.
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Introduction

.

Two major difficulties plague the search for
methods to predict the conformation of proteins
ab initio: the exponentially large number of possible
protein conformations, and the lack of effective
criteria for differentiating correct from incorrect folds.
The usual approach for dealing with the large number
of possible protein conformations has been: first, to
simplify protein structure by modeling proteins as
chains of one or two interacting centers representing
individual amino acids; and second, to allow these
simplified models to adopt only a small discrete num-
ber of conformational states. For the most part, these

Abbreviat ions used:  c . r .m.s . ,  coordinate  root-mean-
square deviation;  d.r .m.s. , distance root-mean-square
deviation.

simplified, discrete models are lattice models. These
range from a simple tetrahedral model representing
every other residue, with 3(‘1/2)-3  possible conforma-
tions for an n residue protein (Hinds & Levitt, 1992,
1994),  through a tetrahedral lattice presenting all
residues (Skolnick & Kolinski, 1989,1990),  a “knight’s
walk” lattice (Rey & Skolnick, 1991) with 23”-3  pos-
sible conformations, an extended face-centered cubic
lattice with 4Y3 possible conformations (Cove11 &
Jernigan, 1990; Covell, 19921, to an extended knight’s
walk model with 55”-”  possible conformations (Skol-
nicket al., 1993). There are also several instances in the
literature of the use of a 6-state off-lattice model with
6’jm3 conformations (Rooman  et al ., 1991,1992;  Rooman
& Wodak, 1992; Dandekar & Argos, 1994; this model
also has a 7th state reserved for cis-peptides).

Underlying all of these studies are the geometric
characteristics of these various models which make
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them more or less useful for protein structure
prediction, regardless of the actual search and
discrimination strategies used. Two competing
criteria determine how “good” a particular
model is in this sense. First, a model must be as
simple as possible. All other factors being
equal, a model of complexity 2, i.e. one which has
2n-3  possible conformations for a protein of
length n, is superior to one of complexity 10,.
which has 1 0”-3/2’1-3  = 5’lQ3  times more conform-
ations. The smaller the conformational space to
be searched, the more likely one is to find a
“correct” conformation. Second, a model must
represent the actual geometry of protein confor-
mations accurately Models of low complexity tend
to have a lower accuracy than models of high
complexity

To date, there has been no complete systematic
study of these issues of model complexity and
accuracy Various aspects of model properties have
been explored in the literature. Gregoret & Cohen
(1991) looked at the compactness characteristics of a
cubic lattice in comparison to real proteins and a
more realistic non-lattice representation of protein
conformations. Cove11 & Jernigan (1990) pointed out
that superiority of a face-centered cubic lattice to a
simple cubic lattice, in that a face-centered cubic
lattice has pseudo-bond angles and pseudo-torsion
angles more closely matching those found in real
proteins. Godzik et al. (1993) studied the quality of
fit and preservation of the secondary structure of
various lattice models. What is absent from the
literature is a complete analysis of the purely
geometric properties of both lattice and off-lattice
models.

In this paper, we report a study of many different
protein models, both on and off lattice, in order to 9
evaluate their relative utility for the prediction of
protein structure. In particular, we use a novel
method to fit any model to the X-ray coordinates
of a large database of proteins. This method, which
is over lOOO-fold more efficient than previous
methods (Rooman  et al., 1991),  enables us to analyze
the relationship between complexity and accuracy
measured in *both a global  (close fit to X-rav
coordinates) and locar (preservation of native
secondary s tructure) sense. The data obtained
from this exhaustive analysis provide upper
bounds on what degree of accuracy can be expected
from attempts to -fold proteins- with particular
models.

We
accou

note
nt the

also that models which do take into
uneven distribution of residue confor-

mations in real proteins have significant advantages
over those that do not. We find, for example, that
6-state models can be almost as accurate as 1% or
32-state models, and argue that low complexity
off-lattice models are more appropriate for protein
structure prediction than higher complexity lattice
models. To this end, we present a set of optimized
4-state models which can reproduce protein
backbone structure accurately in both the global and
local senses.

Finally we examine all of these models in the
context of protein structure prediction, by pointing
out that the model chosen to represent a polypeptide
structure has a strong effect on the prediction of its
conformation, independent of the search strategy
and discrimination function used. These effects may
place fundamental restrictions on our ability to
predict protein structure.

Results

The build-up method

The build-up method we describe in Materials and
Methods is very efficient, but does not guarantee that
the globally optimal fit will be found. In order to test
the quality of fits obtained, we used short peptides,
the globally best fit of which could be found. We
randomly selected one hundred 12-residue  segments
from our database of X-ray conformations. For each
of these, we exhaustively enumerated all their 41°
possible conformations using one of the optimized
4-state (+, $) models (model C), and found the
globally optimal fit. Then, for each of the segments,
we performed our usual build-up procedure. With
N keep = 200,100 or 50, the build-up method found the
global optimum for 99 of the 100 peptide segments.
Even with Nhep  = lo,88  out of 100 build-up fits were
globally optimal.

For structures much larger than the 12 amino acids
considered here, there are too many possible
conformations for exact enumeration, and we have no
way of knowing how close we are to the exact
optimum. To investigate the characteristics of the
build-up algorithm for large peptides, we fitted a
4-state  model (model C) to each of the proteins in our
database while varying Nkeep.  Figure 1 illustrates the
relationship between the number of conformations
kept at each residue addition and (coordinate
root-mean-square) (( c.r.m.s)),  the average c.r.m.s.
fit. It is plain that one gains very little extra accuracy
by keeping more than Nkeep  = 100 conformations per
round of build-up. Thus, we decided that using 200
saved conformations per build-up round is com-
pletely adequate for the present study

Using Nkeep  = 200,  we can also show that the
algorithm is insensitive to the length of the protein
fitted. Figure 2 shows the final c.r.m.s. fit of a 4-state
optimized model (model C) to each of the proteins
in our database as a function of the length of the
proteins. Although there is considerable variation
from protein to protein, the general trend is plain. Up
to a length of about 100 residues, c.r.m.s. deviations
rise, but bevond that thev remain constant or even
decline slightly This trend is typical of the behavior
for other models. In retrospect, the domain structure
of proteins made this result predictable. Even large
proteins are composed of several lOO-  to 200-residue
domains. Since the build-up algorithm can fit lOO-  to
200-residue proteins well, it can also fit larger
proteins composed of independent domains of
similar size.
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Accuracy assessment of lattice and “naive”
off-lattice models

Having established a robust algorithm that can
fit arbitrary models to X-ray structures, we pro-
ceeded to use it to characterize a large number
of discrete state protein models. We considered
both lattice and off-lattice models of varying com-
plexity For each model, we assessed the quality with
which it could represent each member of our
database of proteins. Each of the measures of fit
quality are reported in Table 1 as sequence length
weighted averages over the entire database of
proteins.
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Figure 1. This shows the depen-
dence of (c.r.m.s.),  the length-
weighted average coordinate r .m.s.
deviation of all our database pro-
teins, with Nkeep,  the number of
part ia l ly  bui l t  conformations saved at
each build-up round. When NkeeF  is
unity the effect is similar, but not
identical, to choosing the closest state
to  each local  z angle.  Such a strategy
is remarkably Oineffective,  giving
(c.r.m.s.) = 8.8 A. Notice that fitting
accuracy reaches a plateau at
(c.r.m.s.) = 2.2 A when IVkceP  is
greater than 100. For all figures,
&MS  denotes c.r.m.s. and Nkeep
denotes ALP.

c.r.m.s. deviations

Figure 3(a) shows the relationship between a
model’s complexity and (c.r.m.s.), averaged over all
of the proteins in our database. Rather surprisingly
the curve is quite smooth. Further, the relationship
seems to depend only on the complexity of a model
and not on its precise nature. For example, the
simple cubic lattice (0~ = 90”, ‘I: = -9O”, O”, 90”, 180”;
a = 180”), with its complexity of 5, generates average
c.r.m.s. fits quite similar to those of the unrelated
off-lattice model, with oc  = 120”  and ‘I: = 108”, -36”,

Y+
36’, 108”, MOO,  which also has a complexity of 5. The
results for the more complex lattice models may seem
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Figure 2. The c.r.m.s. fit of each
protein in our database is  plotted as
a funct ion of  polypeptide length for
the optimized 4-state model C. The
c.r.m.s. deviation rises until the
length is above 100 residues, after
which i t  decl ines  s l ight ly  The behav-
ior  of  this  part icular  model  i s  typical
of  a l l  the  others .
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Table 1
Deviat ions  of  di f ferent  models  fom nat ive  prote in  s tructures

Model (T,  a) or (6,  *>  values
Number c . r . m . s . d . r . m . s . % Native

states <A> (A) Contacts SC  P
Models qf increasing complexify
Tetrahedral/2 cx  = 109.5, ‘5  = 60,60,180”
Tetrahedral cc  = 109.5, ‘ I : = -60,60,180
Half cubic c!  = 90, r = -90,0,90,180;  cc  = 180”
Simple-4 A sc=120,r= -90,0,90,180
Simple-4 B cc  = 120, ‘2: = -135,-45,45,135
(4,  31)  4-state (0,  q,  = (--90,-90>,(90,-90>,(-90,90),(90,90)
Cubic ct  = 90, T = -90,0,90,18O;a  = 180
Simple-5 A rx = 120, T = -144,-72,0,72,144
Simple-5 B 31=  120, ‘t = -108,-36,36,108,180
Simple-6 A ct = 120, ‘ I : = -120,-60,0,60,120,180
BCC Body-centered cubic latticeb
FCC Face-centered cubic latticeb
S+FCC Simple + face-centered cubicC
1  B-s ta te cy = (mean), r = 160,-140,.  . .0,20,.  . . 180d
KW Knight’s walk lattice (2,l  ,O>e
36-state a( mean), ‘ I : = -170,-160,.  . . O,lO,  . . . 180d
XFCC Extended face-centered cubic latticef
XKW Extended knight‘s walk’

Optimized models
A (4,  +) = (-64,-40),(-123;134),(111,-46),(117,105)
B (4,  +) = (-66,-40),(-119,114),(-36,124),(132,-40)
C (6,  \1/>  = (-63,-63),(-132,115),(-42,-41),(-44,127)
D (4,  $)  = (-58,-31),(-127,126),(-97,-24),(109,108)
E (4,  \Ir) = (-71,-57),(-131,122),(-42,-36),(  107,-25)
F (4,  +) = (-58,-51),(-133,135),(-33,174),(114,-40)
G (4,  \J/) = (-56,-48),(-129,128),(-108,35),(-31,-109)
H ($,  \1/>  = (-74,-31),(-131,125),(-101,179),(105,-40)
6-state (0,  I)) = (-57,-47),(-l  39,135),(-l  19,113),

(-49,-26),(-l 06,48),(-l  01,-l  27)
Rooman  et al.8 (4,  $)  = (-65,-42),(-123,139),(-70,138),

(-87,-47),(77,22),(107,-174)

Vary number of kept chains
Nkp = 1 (for model C)
N 2keep =

N k-F =4
N k e e p  =  10

N keep = 50
N keep  =  100
N keep =  400
N key  = 1000

J 3 5.39 4.66 60 NAh NA
3 3 . 6 3 2.99 7 8 6 8 80

J5 4 . 8 1 4.18 8 1 NA NA
4 3.07 2 . 5 1 7 5 0 7 9
4 3.02 2.46 72 68 7 3
4 3.22 2.67 77 29 89
5 2.84 2.34 7 8 0 59
5 2.37 1 . 9 4 82 0 7 6
5 3 .01 2.47 77 6 2 68
6 2.69 2 . 2 1 7 6 56 7 5
7 2.59 2.14 87 5 0 74

1 1 1 . 7 8 1 . 4 6 88 6 6 82
1 7 1 . 6 0 1 .31 8 8 68 80
1 8 1 . 2 4 1 . 0 2 92 90 88
23 1 . 2 4 1 . 0 2 93 67 8 9
36 0.97 0 . 8 0 94 9 1 9 1
4 1 1 . 1 5 0.94 8 9 7 9 83
55 0.90 0.73 96 7 9 8 8

4 2.43 1 . 9 9 85 86 80
4 2 . 3 1 1 . 8 9 86 8 6 74
4 2.22 1 . 8 2 86 7 5 7 5
4 2.28 1 . 8 7 8 5 9 1 7 2
4 2.52 2.08 85 7 5 72
4 2.42 1 . 9 7 84 6 8 7 6
4 2.48 2.03 84 6 1 7 6
4 2.37 1 . 9 4 8 5 94 69
6 1 . 9 0 1 . 5 5 87 7 1 80

6 1 . 7 4 1 . 4 2 89 80 8 1

4 8.76 6.87 56 1 0 22
4 4.89 3.96 69 27 37
4 3.56 2.90 7 6 44 40
4 2 . 7 9 2.28 82 58 38
4 2.33 1 . 9 0 85 67 4 1
4 2 . 2 6 1 . 8 5 86 66 40
4 2.19 1 . 7 9 8 6 67 42
4 2.17 1 . 7 7 86 66 42

a  On these lattices, every other residue is fitted, with lattice spacing d  = 4.95 A  (Hinds &  Levitt, 1992).
b The BCC lattice allows single-step movements which are the vectors ( + 1, +_ 1, + 1).  The lattice dimension is 2.19 A.  The FCC lattice

allows moves which are all cyclic permutations of the vectors ( k  1, + 1,O).  d = 2.69 A.
c The S + FCC lattice is a combination of a simple cubic and a face-centered cubic lattice, allowing moves which are permutations of

the vectors (+  2,0,0) and (+  1, + 1,l);  d  = 2.69 A.
d These lattices use a values at each T value which are the mean values for that z value over our database of proteins.

e  The underlying lattices are cubic. The knight’s walk lattice allows moves which are cyclic permutations of the vectors (+  2, + l,O>.
The extended knight’s walk lattice allows additional ( + 1, + 1, _+  1) moves (Skolnick ef al., 1993). The underlying lattice dimension for both
models is 1.7 A.

f This model allows moves which are permutations of the vectors (+  2,0,0),  (+  2, + 1, + l),  and ( + 1, + 1,O)  (Cove11 &  Jernigan, 1990).
14  Rooman  et al. (1991).
h NA, not applicable.

to belie this. They all have (c.r.m.s.) fits worse than
comparably complex off-lattice models. For example,
the S + FCC lattice has an average c.r.m.s. fit of
1.60 A (for 17 states), compared to 1.28 A for an
off-lattice 1 s-state model. It is, however, an exception
which proves a rule. In practice, each step of a walk
on the S + FCC lattice has aDDroximatelv  12 stericallv
acceptable moves. From F&&e  3(a) we’wouldnexpe&
an average c.r.m.s. deviation of about 1.6 A for a

model with an effective complexity of about 12.
Similarly, the other complex lattices have lower
effective complexities.

Another surprising feature of Figure 3(a) is the
diminishing returns in representational accuracy
with progressively more complex models. For
instance, a 36-state model produces fits only 0.2 A
better than an M-state model. By plotting the data
from Figure 3(a) on a log-log scale (Figure 3(b)),
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we find that the relationship is almost (c.r.m.s.) =
k(Complexity)-‘/‘. In retrospect, such a simple de-
pendence of c.r.m.s. on complexity can be quite
easily explained, as follows.

Assume that residues 1 to i - 1 of a protein have
been fit perfectly by a model of complexity m. What
is the average distance from the fit position of residue
i to its actual position? Residue i lies somewhere on

a sphere of radius b, the fixed bond length, centered
on atom i - 1. The in possible fit positions for atom
i are, we will assume, evenly distributed on the
surface of this sphere, which has a surface area 4xb2.
On average, the surface area per state will be 4n;b2/m,
and the separation of states along the surface of the
sphere will scale as J(47cb2/m  ). This separation is
proportional to the accuracy (c.r.m.s. deviation) with

0a

0 10 20 3 0 40 50 60
Complexity

I
1 0

Complexity

Figure 3. (a)  Values of  (c .r .m.s . ) ,  the sequence length weighted average c .r .m.s .  deviat ions for  best  f i ts  to  al l  proteins
in our database, are plotted as a function of model complexity The diamonds are all the naive models from Table 1.
The crosses correspond to our optimized 4-state models, and 6 and W to our and Rooman’s  selected 6-state models
(Rooman  et  al., 1991) .  Beyond a certain point ,  added complexity improves accuracy very l i t t le .  Optimized models  show
marked improvement over unoptimized models of the same complexity (b)  Values of (c.r.m.s.) are plotted against
complexity on a log-log scale. A linear least-squares fit gives (c.r.m.s.) = 6.59 (complexity)-0.514,  very close to
(c.r.m.s.) = k(complexityP” predicted by a simple analysis (see the text).
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Figure 4. (a)  The average proportion of X-ray contacts preserved by model fits, (% Native Contacts), is plotted as a
funct ion of  model  complexity  The variat ion in  (% Native Contacts)  is  not  as  pronounced as  that  for  (c .r .m.s . ) ,  but  a  s imilar
trend is  apparent .  Optimized or  selected models  (shown as crosses and “6” and “W”)  are once again better than naive
models  of  the  same complexi ty  (b)  The relat ionship between preservation of  native contacts  and (c .r .m.s . ) .  As expected,
they are  c losely related.

which the position of residue i can be fit, so that
c.r.m.s. should depend on J(l/m)  or ,-li2.

Preservation of native contacts

So far, we have only looked at c.r.m.s. fit as a
measure of model accuracy We also require the
pattern of inter-residue contacts to be well preserved.
Most energy functions used to predict protein
conformations depend on empirical estimates of the
relative likelihood of particular residue-residue

contacts (for a recent review, see Wodak & Rooman,
1993). A model whose best representation of a native
protein conformation only poorly reproduces the
native pattern of inter-residue contacts can only
generate relatively poor predictions.

Figure 4(a)  shows the relationship between the
proportion of preserved native contacts and model
complexity First of all, we note that, as with the
(c.r.m.s.) ueYsz.4s  Complexity (Figure 31,  little
improvement in model performance is gained by
models of complexity greater than 18. Second, the
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spread of preservation values is rather narrow,
from 600/o  to 95%,  with most being greater than
70%. Another way of looking at this is shown in Figure
4(b), where the percentage of native contacts is plotted
as a function of (c.r.m.s.) deviation. Structures as far
as 3.0 A (c.r.m.s.) from native folds still preserve more
than 75Yc  of native contacts. Third, the variation in
contact preservations for models of similar complex-
ity is quite high. Notably, the 3-state tetrahedral lattice
preserves a greater than expected 78% of native
contacts, the same as the considerably more complex
5-state simple cubic lattice. The cubic lattice which fits
every other residue also preserves a larger proportion
(81.3%) of native contacts than expected. This,
however, is almost certainly an artifact of lattice
scaling. For this model, we used a lattice dimensions
of 4.95 A, which gives reasonably good c.r.m.s. fits,
but also gives structures with an uncharacteristically
high number of contacts per residue.

. Preservation of secondary structure

Our third criterion for a “good” model of protein
structure is that it preserve a large proportion of
native secondary structure. Protein structure is
hierarchical and, in general, dominated by well-
defined secondary structure. Native conformations
of proteins can be thought of essentially as
arrangements of a-helix and P-sheet. Therefore, a
good model should be capable of reproducing the
secondary structure of native protein conformations.

Figure 5 shows that these characteristics, particu-
larly the preservation of a-helix,  vary much less
regularly with model complexity than c.r.m.s.
deviation or the percentage of preserved native
contacts. In general, more complex models preserve
more secondary structure, but there are large
variations, particularly among the simpler models.
Because of their simpler structural nature, (thev are
straight lines to a first approximation), p-strands are
more easily reproduced. Godzik et al. (1993) have
also noted the relative ease with which lattice models
preserve p-structure.

It is in the preservation of a-helix  that the
deficiencies of complex lattice models are most
apparent (Figure 5(a)). The body-centered cubic,
face-centered cubic, knight’s walk, simple-plus
face-centered, extended face-centered cubic and
extended knight’s walk lattices all reproduce an
abnormally low proportion of z-helix.  In compari-
son, 4-state, 5-state, and 6-state models can each
preserve over 60% of a-helix. Whether a particular 4
or 5-state model preserves a-helix depends on the
model having a z value in the helical region (T = 22.9”
to 71.6”). Thus the model Simple-4B,  which has
z = 45”, performs better than the model Simple-4A,
which has z = 0” and 90’.

Optimization of models

Since many low-complexity models are able to
reproduce the important characteristics of protein
structure, native contacts, secondary structure and

c.r.m.s. deviation, we attempted to find the “best” 4
and 6-state  models. Most of the models we have
discussed in the previous section were naive in that,
even when they were off-lattice models, they made
no use of the added flexibility of not being on a lattice
(for example, Simple-4A). In order to reap the
benefits of stepping off-lattice, a model must take
advantage of the non-uniform distribution of angles
and torsion angles in real proteins. We first followed
Rooman  et 121.  (1991),  by using a 6-state  model in
which each of the (4, Q) states were representative of
the conformational states found in real proteins. The
actual (4, $) values for our sets and Rooman’s  are
shown in Table 1. It is clear that both 6-state  models
are considerabje  improveOments,  with c.r.m.s. devi-
ations of 1.74 A and 190 A, respectively as opposedn
to the 2.7 A expected from naive 6-state  models.

Models with six states are still rather complex, in
that a chain of ten residues will have 61°  (60 million)
conformations. A 4-state model, on the other hand,
would only have a 4” (1 million) conformations.
Encouraged by the ease with which we could
generate-a superior 6-state  model of protein structure
by simply selecting a set of six “reasonable” @,  +)
states, we undertook a more rigorous optimization of
4-state models, using the procedure described in
Materials and Methods. From the initial enumer-
ation of 325 4-state models in stage 1 of the
optimization, we chose the eight best to be brought
through stages 2 and 3. (We designate these as
models A through H.) Each of the eight best models
at this point could fit the small test Droteins  to within
an aveiage  of 2.1 A. Random optimization improved
fits to an average of 2.0 A. Minimization gave a final
average of 1.9 A. Table 2 shows the actual (4, Q)
values and the course of optimization. The final
average c.r.m.s. fit for the eight optimized models

Paver  our 149 protein database was 2.38 A, a large
improvement over the 3.0 to 3.2 A for naive 4-state
models (Table 1 and Figure 3).

The other characteristics of the eight optimized
4-state models are also impressive. They uniformly
manage to preserve 85% of native contacts, as
opposed to 75% for naive 4-state models (Fig-
ure 4(a)). Both the optimized 4-state models and the
selected 6-state  models preserve native contacts
much better than naive models. This is encouraging,
as the 4-state models were optimized to minimize
(c.r.m.s.) deviation, not maximize contact preser-
vation. The proportion of native x-helix preserved
is significantly improved for six of the models; model
H, in particular, preserves 94% of a-helix. Native
P-strand preservation, however, is not improved
(Figure 5).

This concomitant improvement in average c.r.m.s.
fit and preservation of the a-helix is not accidental.
Improvement in a-helix fitting is, in fact, a good way
to improve c.r.m.s. fitting. The explanation for this
hinges on the interaction of local fitting and global
fitting. The build-up algorithm makes no distinction
between these two processes; it simply saves the Nkeep
best conformations each time it adds a new residue
to a growing polypeptide. Depending on the model
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and the residue position in the protein being fitted, able to accurately fit secondary structure with only
the build-up algorithm may save conformations a small number of states, it could force the build-up
which are globally similar but locally diverse, or algorithm to save more globally diverse, but locally
locally similar and globally diverse. One can uniform, conformations when fitting particular
therefore imagine that a cleverly designed model stretches of secondary structure. This smart model
might be able to take advantage of the build-up would then be able to generate better global fits,
algorithm’s flexibility to mimic the hierarchical because it could explore more of the conformational
structure of proteins. For instance, if a model were space.
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Figure 5. The average percentages of (a) X-ray a-helical and (b)  X-ray P-strand structure preserved are plotted as a
function of model complexity The relationships here are much less regular than for (c.r.m.s.) or (% Native Contacts).
This is not entirely surprising, since the naive models know nothing of secondary structure. It is purely chance if a
model  happens to form z angles  within the range characterist ic  of  a-hel ices .  Most  interest ing,  however,  is  the fact  that
complex lat t ice  models  are  bad at  preserving a-hel ices ,  and that  optimizat ion usual ly  improves the preservat ion of  the
X-ray a-hel ix ,  re lat ive  to  naive models ,  while  i t  does  l i t t le  for  the preservat ion of  the  P-strand.  Optimized models  are  shown
as crosses (b)  or as the letters a through h (a). Our 6-state models and that of Rooman  et al. (1991)  are marked by
6 and W.
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Table 2
Optimization of (4, $) states in different 4-state models

Model Set”
Enumeratedb

(6 w Scoree
Random’

(h w Score
Minimizedd

(4,  w Score

a

P
Y
6

a

P
Y
6

a

P

6

a

P
Y
6

(-57,-47)
(-129,124)
(108,-36)
(108,108)

(-57,-47)
(-129,124)
(-36,l  OS)
(1 O&-36)

(-57,-47)
(-129,124)
(-108,-36)
(108,108)

(-57,-47)
(-129,124)
G-108,-36)
(108,108)

(-57,-47)
(-129,124)
C-36,-36)
(108,-36)

(-57,-47)
(-129,124)
(-36,-l 80)
(108,-36)

(-57,-47)
(-129,124)
G-108,36)
(-36,-l 08)

(-57,-47)
(-129,124)
(-108,-l 80)
(108,-36)

2.068

2.077

2.086

2.093

2.094

2.096

2.098

2.102

(-62,-42)
(-129,129)
(108,-36)
(113,103)

(-67,-42)
(-124,119)
(-31,118)
(133,-41)

(-67,-67)
(-139,114)
(-46-46)
(-16,118)

G-57,-32)
(-129,124)
(-98,-31)
(108,108)

(-72,-57)
(-129,lO)
(-41,-36)
(108,-26)

(--57,-52)
(-134,124)
(-31,175)
(113,-41)

(-57,-47)
(-129,124)
C-108,36,)
(-36,-l 08)

(-72,-32)
(-134,124)
(-103,175)
(103,-36)

2.043

1.924

1.932

1.949

1.995

2.047

2.098

2.028

(-64,-40)
(-123,134)
(111,-46)
(117,105)

WC40)
(-119,114)
(-36,124)
(132,-40)

(-63,-63)
(-132,115)
(-42,-41)
GW  27)

(-58,-31)
(-127,126)
(-97,-24)
(109,108)

(-71,-57)
(-131,122)
(-42,-36)
(107,-25)

(-58,-51)
(-133,135)
(-33,174)
(114,-40)

(-56,-48)
(-129,128)
(-108,35)

(-31,-109)

(-74,-31)
(-131,125)
(-101,179)
(105,-40)

1.963

1.783

1.847

1.922

1.996

2.037

a The (4,  $) states are labeled a, P,  y,  6, wherep and P are a-helix and P-sheet, respectively
b The (4,  \1/)  values and scores of the eight best enumerated 4-state models.
’ The (+, \1/)  values and scores after random optimization.
d The (4,  \1/)  values and scores after Nelder-Mead simplex minimization (Press ef  al., 1988).
e The scores are the length weighted averages of the best-fit c.r.m.s. deviations of the models to

each of the eight small test Proteins.

Our optimization procedure seems to have found
versions of this smart model. The optimized models
preserve an unusually large proportion of a-helix,
indicating that they might indeed be forcing the
build-up algorithm to save globally diverse but
locally uniform populations of conformations, and
thus be improving global fits. This hypothesis
becomes certain when we examine the diversity of
residue conformations during the build-up process.
Indeed, for the “helix improved” models, the
build-up algorithm saves fewer locally different
conformations and more globally different confor-
mations when building helices  than when building
non-helical regions. The question remains, however,
of why optimization chooses a-helix fitting to
improve, and not P-strand fitting. The answer comes
from the different characteristics of the two types of
secondary structure. Any a-helix is more or less

identical to any other a-helix, i.e. there is little
structural diversity among them. P-Strands, on the
other hand, are often dissimilar among themselves;
as a class, they have much more flexibility than
a-helices. It is possible, therefore, for a low-complex-
ity model to fit the a-helix well locally without
sacrificing too many of its possible conformational
states. To fit P-strands well locally would require a
model to sacrifice too many states.

Figure 6 makes the improved characteristics
of these selected and optimized models graphically
clear. It illustrates, first, that a selected 6-state
model is almost as good as an M-state naive
model, especially for representing helical proteins,
and second, that an optimized 4-state model
drastically improves the accuracy of representation
of helical proteins, compared to a naive 4-state
model.
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Discussion

The relationship between complexity
and accuracy

We have found the accuracy of fit of lattice and
naive off-lattice models to X-ray structures to follow
a simple law:

(c.r.m.s.) K (Complexity)-‘/2

This indicates that increasing model complexity
above a certain point, yields little improvement in
accuracy Other measures of accuracy however, can
distinguish between models with similar average
c.r.m.s. fits. For instance, when using a simple lattice
representation of protein structure, a tetrahedral
lattice is preferable to a cubic lattice. In addition to
having a complexity 3/5 of that of the cubic lattice,
the tetrahedral lattice preserves X-ray contacts
slightly better with a 78.2% preserved, against 77.6%
for the cubic. The average c.r.m.s. fit for the cubic
lattice is better, at 2.84 A against 3.63 A. Neverthe-
less, for most prediction strategies, which rely on
residue-residue contacts, the value for X-ray contacts
is likelv to be more important. Thus, even though the

Simple-4 B

lmba (RMS=3.90A) 2pcy  (RMS=2.20A)

Optimized 4-State  Set H

?

cubic lattice is capable of representing protein
structures more accurately than the tetrahedral,
there are likely to be many conformations on the
cubic lattice which have a high percentage of X-ray
contacts correct, but are inaccurate in a c.r.m.s. sense.
The reason for the better than expected preservation
of X-ray contacts by the tetrahedral lattice is not clear.
One explanation is that the 109.5” pseudo-bond angle
of the tetrahedral lattice allows a more natural
representation of certain protein structural features,
in particular, P-strands. Indeed, the tetrahedral
lattice preserves an average of 80.2% of X-ray P
structure. It seems likely that the geometry of a
tetrahedral lattice allows not only actual X-ray
P-strands to be preserved, but also strand-strand
contacts.

Another result of these studies is that optimized
off-lattice models can, for the same complexity
represent X-ray protein conformations much more
accurately than lattice models. For example, any one
of our optimized 4-state models is considerably more
accurate than the (5-state)  cubic lattice. A rationally
selected set of &states, either ours or those described
by Rooman  et al. (1991),  is as good as a naive M-
state model. Clearly any attempt to predict protein

18 State

lmba (RMS=lS6A) 2pcy  (RMS=0.98A)

Rooman 6-State

lmba (RMS=1.88A) 2pcy  (RMS=2.30A) lmba (RMS=lS8A) 2pcy  (RMS= 1.69A)

Figure 6.  This  shows f i t ted models  (broken l ines)  superimposed over  the  X-ray conformations  (cont inuous l ines)  of
myoglobin (1 mba)  and plastocyanin (1 pcy). Note the difference between a naive 4-state model (upper left) and an
optimized 4-state model (lower left). The improvement in fit for the all a-protein, 1 mba, is remarkable. There is no
improvement  in  f i t  for  the  a l l -p  prote in ,  1  pcy On the right-hand side,  we compare the fits  of  an M-state model and a “hand”
optimized 6-state model  (Rooman  et  al.,  1991). 1 mba is  f i t ted almost  as  wel l  by the s imple  model  as  by the complex one,
whereas  plastocyanin is  f i t  s ignif icant ly  better  by the complex model .  However ,  for  many purposes ,  the  poorer  f i t  of  the
6-state  model  is  st i l l  adequate.
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structure which uses some form of enumeration
should consider the many advantages afforded by
these simple off-lattice models.

For other kinds of non-enumerative searching
procedures, the loss in continuity of phase
for models

space
of very low complexitv mav make

these I models less suitable. Simulated annealing,
for example, is only useful for finding optima
or fairly smooth functions; when a model makes
large jumps in phase space, a smooth potential
function no longer behaves smoothly and one
can expect Monte Carlo methods, like simulated
annealing, to suffer. If this expectation is born out
in actual practice, the problem of continuity can
be effectively handled by selecting an off-lattice
model which gives the rebuisite smoothness  while
being minima’ily  complex.* Figure 3 shows plainly
that there is little need to resort to exceedinglv
complex models. An 1 s-state model, for instance, will
almost certainly have the necessary continuity in
phase space, and be almost as accurate as a 36-state
model.

In fairness to lattice models, we must note
certa in inherent advantages which thev have
relative to off-lattice models:First,  the computational
load for a lattice model of complexity m is much
lower than that for an off-lattice model of the same
complexity Almost all the geometric book-keeping
for lattice models can be performed with integer
arithmetic. Second, excluded volume effects are
handled automaticallv
for others with little

for many lattice
computational

models, and
cost. These

advantages are significant,- and have been used
successfully Because of the extremely efficient
computational characteristics of the tetrahedral
lattice, Hinds & Levitt (1992, 1994) were able to
exhaustively enumerate all compact conformations
of several small proteins, and find native-like
structures among the energetically best 100 or so.
Skolnick et al. (1993),  using their extremely accurate
55-state lattice model and a Monte Carlo algorithm,
have consistently generated native-like confor-
mations for 4-helix bundles. Cove11 & Jernigan (1990)
used a face-centered cubic lattice to enumerate all
possible conformations for several small proteins on
a lattice bounded by the known protein shapes,
and found that native-like conformations were
always among the energetically best 1 or 2%. All of
these studies were feasible because of the computa-
tionally tractable nature of their respective lattice
models.

However, our results make it clear that off-
lattice models can be computationallv efficient bv
virtue of their low complexity and high accuracy
Indeed, the literature already supports this con-
tention. Rooman  et al. (1991) and Dandekar & Argos
(1994) have 1a ready used a selected 6-state model to
predict early folding segments in proteins and
conformations of 4-helical bundles, respectively We
are currently using our optimized 4-state models to
evaluate the ability of various empirical energy
functions to discriminate native from non-native
folds.

Implications for structure prediction

This study has also shown that for protein
structure prediction, the inherent characteristics of
the models used cannot be ignored. The folding
problem consists of three parts. (1) A model of
protein structure; (2) a conformational search
method; (3) a method for discriminating native from
non-native conformations. In many studies of protein
structure prediction, it is difficult to tell which part
of the investigation is at fault when predictions are
less than perfect. The model, the search method or
the discriminating function may be at fault. Studies
in which some conformational space has been
exhaustively enumerated (Hinds & Levitt, 1992,
1994; Cove11 & Jernigan, 1990) have been very useful
because they have eliminated one of the structure
prediction components, namely the search strategy
so that all shortcomings are attributable either to the
model or the energy function used for discrimi-
nation.

This current study looks at the first part of the
protein folding problem, the models used, in
isolation, and shows that certain of their character-
istics may fundamentally limit their use for the
prediction of protein structure. Each model is limited
in its possible representational accuracy, and thus
limited in its prediction accuracy Beyond this
obvious observation there is also a more subtle
limitation of structure prediction. Every discrete-
state model is limited by its ability to preserve native
residue-residue contacts. The simple cubic lattice,
for instance, has an average best fit c.r.m.s. of 2.84 A;
that best fit, on average, only preserves 77.6% of
native contacts. We expect, therefore, that most
energy functions (which are usually based on
relative residue-residue contact frequencies) will

*elect  many false positives which have poorer
c.r.m.s. deviations from the correct structure, but
which preserve a larger proportion of native contacts.
For geometric reasons, an energy function will not be
able to discriminate native from non-native confor-
mations. Since accuracy in a c.r.m.s. sense, generally
varies closely with a model’s ability to preserve
native contacts, there is an uncertainty principle for
protein structure prediction: the lower the accuracy
of the model used to make the prediction, the more
ambiguous predictions will be, regardless of the
discriminating function or search method used.

Implications for protein folding

Complexity and resolution are intimately associ-
ated with protein folding, in that the folding time
depends on the number of conformations that
have to be searched. A protein chain can change its
conformation at no more than the thermal speed of
its constituent atoms (approximately 3 A/ps,  or the
speed of sound in air). If different conformational
states are further apart than 1 A, a chain could
examine no more than 1Ol3 conformations per second.
Small proteins with fewer than 100 residues take
about 10s3  seconds to fold, and in this time some 10”
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conformations could be examined. On the other
hand, if there are m states per residue, a chain of
length n has m”-’  possible conformations. For modest
values of nz  (5 is often used), a chain of 100 residues
will have an astronomical number of possible
conformation (597  or 10”“).  This argument was used
almost 30 years ago by Levinthal (1968) to pose
the famous “Levinthal Paradox”: a protein has too
many conformations to fold by a random search of
conformational space, and must fold by a directed
pathway With the results of the present study we
have a quantitative relationship between m, the
complexity or number of states per residue, and the
resolution of the resulting conformations (how close
the best one would be to an actual X-ray structure).

For five states, the resolution or c.r.m.s. value is
2.7 A, which is much too low to precisely define a
native conformation. To define main-chain atoms to
a resolution of 0.5 A, the accuracy of a high-resol-
ution X-ray structure, requires some 150 states per
residue (the 100 residue chain would have 10””
possible conformations). Even polypeptide chains as
short as six residues would have too many states to
fold by exhaustive search (1506  = lOI”).

One can also ask what resolution model could be
exhaustively searched in the fastest folding times of
lo-” seconds. This model could only have 1.32 states
per residue (or 4 residues for each 3-state site), as
1.32’* = 1012.  The expected resolution of such a
model is very low, with c.r.m.s. = !O A. Molten
globules with resolutions of about 5 A would have
at least 1O23  possible conformations (two residues
for three states, or J3 states per residue). Clearly
folding to a compact low-resolution intermediate
structure like the molten globule intermediate, also
has to follow a directed pathway rather than a
random search of all conformations. This suggests
that folding of long polypeptide chains, like thos?!
found in proteins, must proceed via a hierarchy of
pathways in which there are a succession of directed
pathways at different levels of resolution. The
organization of this hierarchy is, of course, unknown.
The suggestion has been made that certain segments
of nascent polypeptides have a high propensity for
local structure (p-turns, a-helix), and that these fold
rapidly and help “guide” the polypeptide to its final
three-dimensional conformation (Wetlaufer, 1973).
Another hypothesis is that certain key hydrophobic
residues rapidly form clusters, which then guide the
rest of the folding process (Lesk & Rose, 1981;
Bashford  et al., 1988). Our results show the necessity
of this hierarchical ordering of protein folding,
whatever its precise nature.

Future applications

Our optimized 4-state models provide low-com-
plexity models that fit proteins well, yet have a very
small number of different conformations. These
models, and other models like them, will be useful
for protein structure prediction, loop fitting,
exhaustive enumeration of peptide conformations,

Table 3
Database of  polypeptides
Protein Data Bank four-letter name followed by chain name”
labp lfc2:c 1prc:h 2cab 2 p a b :  a 3b5c 4sgb:i
lacx lfdx lprcl 2 c c y :  a 2PCY 3blm 4tln
lbds lfxl 1 prcm 2cdv 2pka:a 3ca2 4tmn:e
1bmv:l lgrc 1PYP 2cna 2pka:b 3dfr 4tsl :a
1 bmv:2 lhip 1 r b b : a 2CPP 2r06:3 3fxc 5cpa
lbp2 lhoe lrei 2CYP 2rsp:a 3gap 5cpv
lcc5 1 1 1 2 lrhd 2dhf:a 2sbt 3 g a p :  a 5ebx
lcd4 llhl 1rmu:l 2fd2 2sga 3gpd 5 1 d h
1 cho:i llh4 lrnt 2gbp 2sns %s 5mbn
lcla lizl lsgt 2gdl  :o 2sod 3 h m g : a 5tnc
lcms lmba 1 tec:i 2gls:a 2sod:b  3hmg:b  5x ia :a
1  c o h : b lmbd ltim 2gn5 2ssi 3icd 6acn
lcrn lovo 1tnf:a 2 h h b : a 2stv 3pgk 7cat:a
lcsc 1 p09:a lwrp 2 h h b : b 2taa 3Pgm Sadh
lcse lpaz 1  w r p : r 2hla:a 2taa:a 4ait 8 a p i : a
lets 1PCY 1 wsy:b 2hla:b 2tbv 4ape 8 a p i : b
lcy3 1Pfk 2 5 6 b : a 2ilb 2 t b v : a 4dfr:a 8cat
leca 1pfk:a 2aat 2kai:b 2tmv:p 4er4:e 9PaP
lest lphh 2act 2 1 i v 2utg:a 4hvp:a 1fcl:a
lf19:h lPP2 2alp 2 1 z m 2ypi:a 4mdh:a 1prc:c
lfl9:l 1PPt 2 a t l : b  2mev:l 351c 4sbv 2aza
2mev:3  3 a d k

a  Bernstein et al. (1977).

and low-resolution structure determination by NMR
or X-ray crystallography (with fewer possible con-
formations, less experimental data are required).

Materials and Methods
Here, we first list the sets of proteins we used in this

study Then we present methodological details of our
particular implementat ion of discrete state models,
emphasizing their generation and fitting to test set
prote ins ,  and our  cr i ter ia  for  assess ing s tructural  accuracy
Final ly  we present  a  heurist ic  method for  opt imizing the
selection of the (4, $) values which characterize 4-state
models .

Database of well-refined protein structures

Throughout this study we used a database of 149
peptide  chains.  Their  Protein Data Bank designations are
shown in Table  3 .  In  order  to  s impli fy  handling,  the l is t ,
which is based on Hobohm et al. (1992),  was modified to
exclude proteins which had missing residues.  The database
contains polypeptides from 36 to 753 residues in length.
Essent ia l ly ,  a l l  s tructural  moti fs  are  represented.

Test set of proteins

For  part  of  this  s tudy,  in  part icular  the  opt imizat ion of
(+,  \Ir)  parameters of 4-state models, we used eight small
proteins: lctf, lr69, 1~~3,  lubq, 2cro,  3icb,  4pti,  and 4rxn.
We used this set of small proteins (each less than 80
residues  in  length)  to  make our  computat ional ly  intensive
optimizat ion procedure tractable .  In  other  ways,  they are
more  or  less  typica l  o f  a l l  prote ins .

Discrete state models

In this study we worked with discrete state models of
protein chains.  By discrete state,  we mean that  the internal
coordinates  (bond lengths,  bond angles ,  and torsion angles)
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can only  assume certa in  part icular  values .  For  s implic i ty
we only consider  the cc-carbons.  Conventional  represen-
tations use (4, $) coordinates, defined, as usual, by the
torsion angles formed by atoms [Cl,  Ni,  C’, Cl  and [N,,
C:, C, , N, 1.  In models using only C”  atoms, as in this study
it  is  more convenient  to  use  a  dif ferent  pair  of  angles  (a ,  T).
a ,  is  defined as the pseudo-bond angle formed by [Cy-  1,  C:,
C:, J and T, is  def ined as  the pseudo-torsion angle formed
by IC-  1 I c:,  c+  ?t C:,,]  (pseudo because these atoms are
not  connected by chemical  bonds) .  Our nomenclature for
cx  and T  is opposite to that used in earlier studies (Levitt,
1976),  but is more mnemonic, as oc is an “angle” and z is
a “torsion”.

Using (cx,  T)  angles or (4, $) angles converted to (cc, r)
angles (see below), we consider different discrete state
models  of  varying “complexity”,  by which we mean the
number of possible conformations per residue. More
precise ly ,  a  prote in  of  n  amino acid residues,  represented
by a model of complexity ~YZ,  will have mnw3  possible
conformations for an (cc,  T)  based model and nznq2
conformations for a (4, $) based model.

c
Building Cartesian coordinates from (4, \Ir) and
(a, t) coordinates

Internal  coordinates a and z are  the easiest  from which
to generate  Cartesian coordinates ,  but  local  s tates  of  amino
acid residues (e .g.  x-helix,  P-strand)  are  more conveniently
defined in terms of (4, \1/) angles. For an amino acid with
standard bond lengths and angles, there is a strict
dependence of (a, z)  on (4, $): angle ai  is  determined by the
+ and + angles  of  residue i;  tors ion  angle  T, i s  determined
from the  4 and $  angles  of  both residues  i  and i  + 1.  W h i l e
the a angles depends only on the (+,  JI)  angles  of  a  s ingle
residue, the z angle depends on the (4, $) angles of two
adjacent residues. Thus, for a (4, $)-based discrete state
model  of  complexi ty  711,  there  wi l l  be  m  possible  a  values
and m2  possible ‘t  values. While approximate analytical
relationships between the two coordinate systems have
been described by Levitt  (1976),  we use exact  relat ionships
by first generating a tetrapeptide from specific (+,  \I/>
torsion angles and standard bond lengths and angles
(Schulz & Schirmer, 1979),  and then calculating a and ‘I:
angles from the C”  coordinates of the peptide.

From such a set of angles and torsions, 3~;  and T;,  we
generate C”  Cartesian coordinates  for  res idues  1  to  n  in  the
fol lowing way The Cartes ian coordinates  for  the  f i rs t  three
C”  atoms are calculated using:

x1  = 0, y1 = 0, 21  = 0

x2 = 3.8, y2  = 0, 22 = 0

x3  = x2 + 3.8 cos(n  - al),

y3  = y2  + 3.8 sin(n:  - cc;), z3  = 0 (1)
Each additional residue’s coordinates, r, = (xi,yi  ,zi),  are
calculated from the coordinates of the preceding three
residues. We first calculate the three orthogonal unit
vectors u, v, and w:

U
ri-1 - ri;.-2=-

Ic-1  -  c - 2  I

V = (Yi-3 - ri-2)  - [ (Tj-3  - rj-2)‘U]U

Ih-3  - ri-2)  -  [(ri-3  -  ri-2)sulul

W = u x v (2)
The vector u is the unit vector along the pseudo-bond
between Cfm2  and C:-  1.  Vectors u and v together define the
plane containing atoms CTwY,  C:-2,  and C:-  I.  Vector w

simply completes  the r ight-handed coordinate  system. The
Cartesian coordinates  for  the next  residue are  then given
by the  s imple  re lat ion:

rr = r,-l  + 3.8 COS(X - ai-  )U

+ 3.8 sin(n:  - rx,-1)cos(zi-2)v

+ 3.8 sin(x  - a,-1  )sin(Ti-2)w (3)
where 3.8 A is  the standard a-carbon  to a-carbon distance.

c.r.m.s. and d.r.m.s. deviations

There are two commonly used measures for the
similar i ty  of  two sets  of  prote in  coordinates .  The  f i rs t ,  the
coordinate root mean sauared deviation (c.r.m.s.),  is
calculated by:

A

c . r . m . s .  = (4)

where rui  and rbi  are the positions of atom i of structure a
and structure b,  respect ively,  and where structures  a and
b  have been optimally superimposed (Kabsch,  1978).  The
second measure,  the distance root  mean squared deviation
(d.r .m.s . ) ,  is  calculated:

n-l n

C C  (Imi  -  cjl  -  1%  -  hjl12 1’2
. .

d . r . m . s .  = ‘=’  ‘=“;n(n  _ 1)),2 (5)

where mi  and rbi  are defined as before.  This  calculat ion does
not require the superposition of coordinates. For a
part icular  pair  of  s tructures ,  the c .r .m.s .  deviat ion,  which
measures the similarity of atomic positions, is usually
larger than the d.r.m.s. deviation, which measures the
simi lar i ty  of  in teratomic  d is tances .
v
Discrete fitting to X-ray structures

In order to generate accurate discrete state models of
X-ray structures ,  we used a  brute  force bui ld-up algori thm,
reminiscent of a method used to find low-energy con-
formations of peptides  (Vasquez & Scheraga, 1985,1988).
Starting at the N terminus of the target protein, we
enumerated al l  the  possible  conformations  for  the  f i rs t  four
residues,  saving the A7keep  conformations  which were  c losest
in conformation to the first four C”  atoms of the X-ray
structure ( lowest  c .r .m.s .  deviat ion) .  Then we added single
residues to the C terminus of each of the Nkeep  saved
conformat ions  in  a l l  m  possible states,  and again saved the
NkeeF  conformations  with  the  lowest  c . r .m.s .  deviat ion from
the appropriate  port ion of  the X-ray structure.  We repeated
this  i terat ive procedure unti l  the ent ire  protein had been
f i t ted.  The character is t ics  of  the  process  are  i l lustrated in
two dimensions in  Figure 7 .

For  the  more complex lat t ice  models ,  l ike  the  extended
face centered cubic lattice, knight’s walk, and extended
knight’s walk, the use of internal angles is needlessly
complex,  because the possible  internal  angles  for  each step
depend on the previous steps taken.  For these models we
use Cartesian coordinates  to  bui ld a  chain direct ly

Finding the best fit of a model to an X-ray structure is
computat ional ly  equivalent  to  enumerat ing a l l  poss ible
folded structures ,  i .e .  the  problem scales  as  m”, where m i s
the number of possible states per residue and n is the
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Figure 7.  This  i l lustrates  the  bui ld-up algori thm in two
dimensions.  Consider the bold path with residues marked
by squares to be the X-ray conformation. With the first
three residues f i t ted,  the left-hand path (marked with f i l led
circ les)  i s  pla inly  bet ter  than the  r ight  (marked with open
circ les) .  (The s t ippled c irc les  mark the  overlap of  the  left-
and right-hand paths.) However, by the time all six
residues have been buil t ,  the r ight-hand path is  a  better  f i t .
By saving an ensemble of “virtual” paths when adding
each new residue,  the build-up algorithm can f ind global ly
good f i ts  which are  composed of  local ly  sub-opt imal  f i ts .
Note that the model chain paths illustrated here are: (1)
Discrete in that the chain can be continued in two ways
(‘c  = 0 or  180°  with cc  = 135”);  (2)  off- latt ice,  as  evidenced by
the uneven distr ibut ion of  a l lowed posi t ions .

number of  residues.  The best  f i t  among these mfl  p o s s i b l e
folds  is  eas i ly  ident i f ied as  having the  minimum of  c.r.n+s.
deviation.  Despite  the well-defined nature of  the problem,
enumerat ion of  a l l  sn”  poss ib i l i t i es  i s  not  computat ional ly
feasible. Our build-up procedure takes advantage of the
reasonable expectation that a globally optimal fit of a
particular model to an X-ray structure is likely to be
composed of  shorter  segments  which are  local ly  opt imal .
In other words, if, for a segment of 20 residues, a near
opt imal  se t  of  s ta tes  i s  (S,  S,  .  .  .  S2”>,  then any continuous
subset of these states, e.g. (s”, S4, S5, S6, S7),  is likely to be
near optimal for the corresponding section of X-ray
structure .

By keeping a repertoire of good local fits at each
stepwise  residue addit ion,  the build-up procedure is  able
to find good approximations of optimal fits at little
computational cost. For example, with a loo-residue
protein keeping 200 part ial ly  bui l t  conformations at  each
step,  the  bui ld-up algori thm takes  about  one minute  on a
Si l icon Graphics  Indigo (MIPS R3000)  for  a  4-state  model .
The overal l  a lgori thmic  complexi ty  of  the  method can be
derived as  fol lows.  During each round of  build-up,  c .r .m.s .
deviations from the X-ray conformation (the dominant
computational task) for mNkeep  conformations are calcu-
lated. Each of these c.r.m.s. calculations takes time
proportional to k, the number of residues already built.
Therefore, the total running time for a protein of y2  resi-
dues is approximately proportional to C;=  1 mNkeepk,  or
(n2  + n>mhL,,, so that, asymptotically the running time
scales as 112mNk,,,  .

Assignment of secondary structure

Since the models we deal with in this study are
composed of  a-carbon backbones only standard methods
for the assignment of secondary structure to protein
conformat ions  (Kabsch & Sander,  1983) are not applicable
We devised s imple  and fa ir ly  robust  cr i ter ia  for  ass igning
a-helix  and P-strand secondary structure states  to a-carbon
coordinates .  The a  states  are  assigned for  those residues for
which the value of  the pseudo-torsion angle,  T,  is  between
22.9O  and 71.6’ .  More specif ical ly i f  the ‘2:  angle  formed by
residues i, i + 1, i + 2, and i + 3 is between 22.9’ and 71.6”,
then residues i  + 1 and i  + 2 are considered to be oc-helices.
In contrast, P states are assigned in a somewhat less
obvious way,  not  directly dependent on z values.  We define
residue i  to  be in a  p  state i f  the angle between the vector
from residues i - 2 to i + 1 and the vector from residues
i - 1 to i + 2 is less than 30’.

This definition of p state has the desirable property of
being insensi t ive  to  short  k inks ,  which occur  reasonably
frequently in P-strands (especially in discrete models),
while still identifying longer range changes in chain
direct ion,  such as  at  the  termini  of  P-strands.  For  example,
i f  one  considers  conformat ions  in  which oc  = 120’ and z = 0’
or 180’ (cis or bans), our criterion will identify a chain with
conformation trans-trans-cis-trans-bans as a P-strand, but
one with conformation bans-trans-cis-cis-trans-trans  as two
separate short P-strands. This fits very well the
requirement that  P-strands should be regions of  extended
conformat ion.

Residue-residue contacts

Two residues in  a  protein conformation are  considered
to be in contact  i f  the distance between the C”  coordinates
is less than 8.0 A. The proportion of native contacts
preserved by a  model  is  calculated over  a l l  dis t inct  pairs
of residues (i,j), where i < j.

Optimization of (+, JI)  states

To generate an optimal set of (4, $) states for 4-state
models ,  we used the fol lowing procedure.  (1)  As a  start ing
point, we chose two states (+  = 57*,  $ = -47”) and
(4-J = -129”, 9 = 124”)  which represent standard a-helical
and P-strand conformations,  respect ively With these two
states fixed, we then enumerated the possible values for
the other two states at intervals of 72’ in both 4 and JI,
giving 325 different  $-state  models  ( there  are  25  poss ible
individual (@, $) states (5 4 values and 5 \I/  values) and
(25*25  + 25)/2  = 325 unique pairs of states). (2) The
build-up procedure, defined above, is then used to
generate  coordinates  of  each of  the  smal l  test  proteins  for
each 4-state model.  We calculated the weighted average of
their  c . r .m.s .  deviat ions  f rom their  X-ray  coordinates  as  a
measure of how well a particular 4-state model fits real
protein structures .  (3)  We optimized the e ight  models  (A
through H)  with the best  c .r .m.s .  values  further  by making
small random changes in each of the (+,  9) values. If the
perturbed set produced a better overall fit of the test set
of  proteins  to  their  X-ray coordinates ,  we accepted this  new
set as the next starting point. We repeated this until no
further improvement was found.  (4)  Final ly we optimized
these states further using a Nelder-Mead simplex mini-
mizer to reduce the average c.r.m.s. value (Press et al.,
1988).
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