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ABSTRACT

Among the statistical methods used for seasonal climate prediction, canonical correlation analysis (CCA), a
more sophisticated version of the linear regression (LR) method, is well established. Recently, neural networks
(NN) have been applied to seasonal climate prediction. Unlike CCA and LR, NN is a nonlinear method, which
leads to the question whether the nonlinearity of NN brings any extra prediction skill.

In this study, an objective comparison between the three methods (CCA, LR, and NN) in predicting the
equatorial Pacific sea surface temperatures (in regions Niño112, Niño3, Niño3.4, and Niño4) was made. The
skill of NN was found to be comparable to that of LR and CCA. A cross-validated t test showed that the
difference between NN and LR and the difference between NN and CCA were not significant at the 5% level.
The lack of significant skill difference between the nonlinear NN method and the linear methods suggests that
at the seasonal timescale the equatorial Pacific dynamics is basically linear.

1. Introduction

Many forecasting models have been developed for
the tropical Pacific climate variability, especially that
associated with the El Niño–Southern Oscillation
(ENSO) phenomenon. ENSO prediction models can be
loosely categorized into two types: dynamical models
and statistical models. Barnston et al. (1994) compared
two dynamical models, two statistical models, and one
hybrid dynamical–statistical model for their perfor-
mance in ENSO prediction, and the results indicated
no significant difference in prediction skills among
them.

Of the statistical methods, canonical correlation anal-
ysis (CCA) is widely used (Barnett and Preisendorfer
1987; Graham et al. 1987). CCA is a linear method.
However, the climate system involves many nonlinear
processes, such as convection in the atmosphere and
upwelling in the equatorial ocean. The question arises,
Will a nonlinear statistical model improve the prediction
skill? Recently, there have been studies applying neural
networks (NN), a nonlinear statistical method, to sea-
sonal climate prediction (e.g., Derr and Slutz 1994; Tang
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et al. 1994; Hastenrath et al. 1995; Tangang et al. 1997;
Hsieh and Tang 1998). While a number of claims have
been made, a rigorous comparison of linear and non-
linear statistical models has not been undertaken. The
purpose of this note is to objectively compare the sea-
sonal prediction skills in the tropical Pacific obtained
by three statistical models: simple linear regression
(LR), CCA, and NN.

The data and their processing are described in section
2. The three statistical models are presented in section
3. A cross-validation procedure, used to estimate the
prediction skills, and an approximate significance test
for the difference in skills are described in section 4.
Prediction skills of the three models are presented and
compared in section 5, with discussions provided in
section 6.

2. Data, predictors, and predictands

The data in this study came from two datasets: the
Comprehensive Ocean–Atmosphere Data Set sea level
pressure (SLP) data of the tropical Pacific Ocean for
latitudes from 208S to 208N (Woodruff et al. 1987), and
the National Oceanic and Atmospheric Administration
sea surface temperature (SST) data of the tropical Pacific
Ocean for latitudes from 308S to 308N (Smith et al.
1996; Reynolds and Smith 1994). Both datasets contain
monthly 28 3 28 data with time coverage from January
1950 to December 1997.
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The gridded SLP and SST data went through several
steps of processing. The SLP data were first averaged
to a lower resolution of 48 lat 3 108 long, and then
the missing points were filled by spatial linear inter-
polation. Climatological monthly means, calculated
from 1950 to 1997, were removed from both datasets.
The SLP and SST data were then smoothed by a 3-
month running mean. Empirical orthogonal function
(EOF) analysis was performed on each of the two da-
tasets for the purpose of data reduction. The first 7
EOF time series for SLP and the first 10 EOF time
series for SST were retained. These retained SLP and
SST EOF time series were normalized so they all had
the same variance.

For a given month, we stacked the SLP EOF values
of 3, 6, and 9 months before this month together with
the SLP and SST EOF values of this month. Altogether,
this yielded 38 time series. A second-step EOF calcu-
lation, called the extended EOF (EEOF; Graham et al.
1987), was carried out to reduce the 38 EOF time series
to 12 retained EEOF time series. In this paper, all ex-
periments with the three models used these 12 EEOF
time series as predictors, denoted by {xi(t), i 5 1, . . . ,
12}.

To compare the three models, we calculated the skills
of predicting four ENSO indexes: Niño112, Niño3,
Niño3.4, and Niño4 at a lead time l months ahead. These
ENSO indexes are the averaged SST in specific regions
in the tropical Pacific (see Barnston and Ropelewski
1992, Fig. 2, their P3 being our Niño3.4). In each ex-
periment, one of these four indexes was used as pre-
dictand of the models. The index data were calculated
from the gridded SST dataset after smoothing by the
3-month running mean and the removal of the clima-
tological monthly mean as described above. Since the
28 3 28 gridded SST data have grid lines at the even
latitudes, we modified the latitudinal extent of Niño3,
Niño3.4, and Niño4 to be 48S–48N, instead of the con-
ventional definitions of 58S–58N.

The lead time l here is defined as the time from the
center of the period of the latest predictors to the center
of the predicted period. For example, if the latest pre-
dictors are the SLP and SST of February 1990 (the mean
of 3-monthly data in January, February, and March
1990) and the predictand is the Niño3 of August 1990,
then the lead time is 6 months. This is the same lead
time definition as that of Chen et al. (1995), but different
from that of Barnston et al. (1994), who defined the lead
time as the time from the end of the period of the latest
predictors to the center of predicted period. With the
above example, their lead time would be 4.5 months.

3. LR, CCA, and NN methods

In the present study, the three models, LR, CCA, and
NN, establish empirical relations between the 12 EEOF
time series predictors {xi(t)} and the SST index pre-
dictand z(t 1 l), where z is any one of the Niño112,

Niño3, Niño3.4, and Niño4 indices, and the lead time
l runs from 3 months to 21 months. The predictor–
predictand relation in LR is linear, while NN extends
LR by modeling the relation nonlinearly. CCA is linear
but differs from LR in that it uses a ‘‘global’’ predictand
approach, as will be shown later.

a. The LR model

The LR equation between the predictors {xi(t), i 5
1, . . . , 12} and predictand z(t 1 l) is simply

zmodel(t 1 l) 5 a0 1 a1x1(t) 1 a2x2(t) 1 · · ·

1 a12x12(t),

where {ai, i 5 0, . . . , 12} are calculated by the standard
regression (least squares) procedure.

b. The CCA model

The CCA in this study takes the SST EOF time series
{yi} as the predictands, instead of an SST index z. CCA
first finds a linear combination u1 of {xi(t)} and a linear
combination y 1 of {yi(t 1 l)} so that u1(t) and y 1(t) have
the maximum correlation coefficient. The u1(t) and y 1(t)
are called the first predictor and predictand CCA time
series, respectively. Higher modes of CCA time series
{un, n . 1} and {y n, n . 1} are calculated by de-
manding maximum correlation coefficient between {un}
and {y n}, the linear combinations over the residual from
the previous CCA modes. After the CCA time series
are found, a multiple linear regression relation is estab-
lished between the predictor and predictand CCA time
series {un} and {y n}. A more detailed description can
be found in meteorology literature, for example, Barnett
and Preisendorfer (1987) and Graham et al. (1987), and
in statistics texts, for example, Manly (1986).

In Barnett and Preisendorfer (1987), the CCA pro-
cedure was simplified assuming that the predictors and
predictands are normalized and orthogonal. In the pre-
sent study, due to the cross-validation procedure de-
scribed in section 4, these two conditions did not hold;
thus, the original CCA formula [Eq. (2) in Graham et
al. (1987)] was used.

In the experiments of this note, 10 CCA time series
were used. Experiments showed the CCA performance
was not sensitive to the number of CCA modes as long
as three or more CCA modes were used.

c. The NN model

In the neural network literature, predictors are called
inputs, and predictands are called targets. The optimi-
zation process of finding the model parameters is called
training. We also use the word training to denote the
model construction of LR and CCA.

The NN model used here is the feed-forward NN with
one hidden layer of units (or ‘‘neurons’’). The units in
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the hidden layer take the model inputs and transfer the
signals to the next layer (the output layer), which yields
the model output. In our case, the hidden layer has seven
units, each performing a simple calculation with the
sigmoidal transfer function:

1
o 5 ,i

1 1 exp 2 w x 2 bO ij j i1 2i

where oi is the output from the hidden unit i, and xj are
the 12 inputs to the model. The parameters to be de-
termined in the training process are the weights wij and
the biases bi. The single unit in the output layer trans-
forms the seven values oi to the model output zmodel

through a linear function, whose parameters (the
weights and bias of the output layer) are also determined
in the NN training.

The NN training minimizes the cost function

2J 5 [z (t) 2 z(t)]O model
t

by adjusting the NN parameters, that is, the weights and
biases. The back-propagation equation, which is similar
to the adjoint equation in variational data assimilation,
is used to find the gradient of the cost function with
respect to the NN parameters. A conjugate gradient al-
gorithm and a cubic-interpolation line-search method
are used to find the minimum of the cost function in an
iterative manner (Bishop 1995).

There are two major problems in NN application to
climate prediction as discussed in Hsieh and Tang
(1998). The first one is overfitting. On one hand, the
SLP and SST data records are noisy and short relative
to the characteristic timescale of the seasonal signals of
interest, and on the other hand, the NN model has 99
parameters (compared to the 13 parameters of the LR
model). These two factors combined cause the NN to
learn not only the underlying rules but also the noise
in the data. To reduce overfitting, we stopped the train-
ing after 20 iterations. Other measures for reducing ov-
erfitting were studied and compared in Finnoff et al.
(1993).

The second problem with NN is instability. When the
NN parameters are initialized differently or the training
procedure changes slightly, the training often leads to
a different NN. The NN training is hence known to be
an unstable procedure (Breiman 1996).

To alleviate the problems of overfitting and instabil-
ity, we used an ensemble of 20 NNs. The parameters
in each of them were randomly initialized, and the final
prediction was the average of the 20 individual predic-
tions. When compared to the individual NNs, the en-
semble predictions have significantly higher skills and
are less sensitive to the small changes in the training
procedure. Our study failed to find any correlation be-
tween the spread of individual member predictions and
the skill of the ensemble prediction. Henceforth, the

term ‘‘NN model’’ will be used to denote the ensemble
average of 20 NNs.

4. Estimation of the prediction skill and an
approximate significance test on the skill
difference

We have designed a cross-validation procedure to es-
timate the prediction skills. For each lead time from 3
to 21 months, data from a window of the first 7 con-
secutive years were withheld. A model was constructed
from the remaining data. Predictions, starting from each
month of the first 5 years of the 7-yr window, were
made. Then the 7-yr window were moved forward by
5 yr and the procedure was repeated. This design was
to make sure that there was no training data in the pre-
diction target time. The overlap between the prediction
input data and the training data is legitimate as it also
happens in real-time prediction.

A separate EEOF was done for each window. How-
ever, the first stage EOF (described in section 2) was
done only once for all validation windows, due to its
relatively heavy computation and large number of cross-
validation experiments. We assume that this introduced
the same amount of artificial skill (if any) to the LR,
CCA, and NN models and thus did not alter the con-
clusion of the comparison of the three models.

The predictions in all the 5-yr windows were then
collected to form a prediction time series of the whole
period from 1950 to 1997. The mean (prediction bias)
over the whole period was removed. The model pre-
dictions usually had smaller variance than the observed,
so the predictions over the whole period were scaled to
match the variance with that of the observation time
series, as was done by Barnston and Ropelewski (1992)
and Smith et al. (1995). The correlation coefficient be-
tween the model predictions and the observed index was
taken as a measure of the prediction skill. Following
Barnston et al. (1994), when computing the correlation
skill over shorter subperiods (5-yr periods, as in the
cross-validated t test described later), the mean of the
whole period (which was zero after removing the pre-
diction bias) instead of the mean of the subperiod was
used to calculate the correlation, so that a prediction
that varies in phase but with opposite sign as the ob-
servation resulted in a negative correlation.

Besides correlation skills, root-mean-square errors
(rmse), normalized by the standard deviation of the ob-
servation, can also be used as a skill measure. When
the mean of the prediction is removed and the variance
of the prediction is scaled to match that of the obser-
vation, as was done in all our experiments, there exists
a relationship between the rmse and the correlation r:
rmse 5 [2(1 2 r)]1/2, as also pointed out by Smith et
al. (1995).

The LR and CCA predictions had smaller variances
than the NN prediction; for example, for Niño3, the
variance of the data, the LR, the CCA, and the NN
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predictions are 0.848, 0.278, 0.268, and 0.388C2, re-
spectively. These differences did not affect the corre-
lation skill and could be corrected easily by rescaling
to match the observed variance.

The LR, CCA, and NN models shared the same com-
puter codes for data processing and cross validation.
Only the codes for model building were different. This
guaranteed that the differences in skills among the mod-
els were not caused by any subtle differences in data
processing and cross validation, but by the models them-
selves.

Significance tests on the skill difference from two
models are difficult to carry out. Correlations are rather
weak for deciding whether the skills from two models
are significantly different. For example, using Fisher’s
z transform (Press et al. 1986) and assuming 77 inde-
pendent events (data of 47 yr and a 7.5 months of au-
tocorrelation e-folding time), a model with a correlation
skill of 0.60 is different from another model at the 5%
significance level if the correlation skill of the other
model is below 0.36 or above 0.77. A similar example
was also given in Barnston and Ropelewski (1992).

Lacking a better alternative, we adopted an approx-
imate statistical test called cross-validated t test from
Dietterich (1998). The cross-validated t test goes well
with our cross-validation procedure in skill estimate de-
scribed above. To compare model A with model B, the
cross-validated t test proceeds as follows: For each 5-yr
prediction subperiod in our cross-validation procedure,
the correlation skills r’s for model A and model B are
calculated and are transformed by Fisher’s z transform
z 5 0.5 ln[(1 1 r)/(1 2 r)] to remove the skewness in
the correlation distribution. The difference of the two
transformed skills is calculated. There are 10 subperi-
ods, resulting in 10 skill differences. These 10 differ-
ences are considered to be independent events and sub-
ject to a two-tailed t test to see whether their mean is
significantly different from zero.

Dietterich (1998) studied five approximate statistical
tests and found that the cross-validated t test is the most
powerful one (meaning that it has the largest probability
in detecting skill difference when the difference exists).
For example, for a 4% difference in misclassification
rate, the probabilities for the cross-validated t test to
detect the difference to be significant are 28%, 22%,
and 17% for three different datasets, respectively, com-
pared to 13%, 9%, and 7% of the next most powerful
method (the 5 3 2 cv paired t test). The drawback of
the cross-validated t test is a slightly inflated rate of type
I error (the error of detecting a skill difference when
there exists no difference): When testing on two models
of the same performance, the type I error rates at 5%
significance level were 7%, 8%, and 10% for three da-
tasets, respectively. (The correct rate should be 5%.)
This inflated rate of type I error is due to the violation
of the assumption that each skill difference in a sub-
period is independent of the skill differences in other
subperiods. Although the data in two subperiods are

independent (neglecting the serial correlation over a 5-yr
time), the models in two of the subperiods are trained
with 90% common training data (when the whole period
is divided into 10 subperiods) and thus are somewhat
dependent on each other. Because of this violation and
the resulting inflated rate of type I error, the test is called
an approximate significance test.

5. Skills of the LR, CCA, and NN models

Comparisons of the overall prediction correlation
skills of the three models as well as the persistence, for
the period of 1950–97, are shown in Fig. 1 for the four
indexes. The skills for the lead times of 18 and 21
months are low, generally less than 0.3 in correlation;
henceforth we will limit our discussion to the lead times
from 3 to 15 months.

The three models perform much better than persis-
tence for lead times of 6 months and longer. However,
the skill differences among the three models are small,
usually less than 0.05 in correlation skill. The cross-
validated t test, described in section 4, was applied to
test the differences among the three models. Figure 2
shows the significance levels by which the three pairs
of models (NN vs CCA, NN vs LR, and CCA vs LR)
are different. The figure shows the significance level of
the two-tailed test, and a separate one-tailed test was
carried out (not shown) to reveal which model is better
than the others when the difference is significant. Figure
2a shows that, at the 5% level, the skill differences
between NN and CCA are not significant. This is not
surprising given the small difference in correlation skill.
The NN is not significantly better than LR either, except
for four cases (in Niño4 for 3-month and 6-month lead
times, in Niño3 and Niño3.4 for a 12-month lead time).
However, CCA was detected to be significantly better
than LR for 13 cases out of 28.

This may create an impression of contradiction: NN
is comparable to CCA, NN comparable to LR, but CCA
better than LR. We offer two explanations. First, it
should be remembered that failure to find significant
difference between skills of two models does not prove
the null hypothesis that the skills of the two model are
the same. It can well be that NN is better than LR, or
CCA is better than NN, but we just do not have sufficient
data to be certain.

Second, it can also be that the cross-validated t test
made a type I error for the case of CCA versus LR, that
is, the difference between CCA and LR was actually
not significant. We found that the variance of the skill
differences for the case of CCA versus LR is about 10%
of that for the case of NN versus LR, an indication that
the cross-validated t test might underestimate the var-
iance for the case of CCA versus LR due to the statistical
dependence among the skill differences. Dietterich
(1998) examined the cross-validated t test on various
NN models, and the robustness of the test on linear
models has not been established.
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FIG. 1. The prediction correlation skills of the LR, CCA, and NN models and persistence for the four indices (a) Niño112, (b) Niño3, (c)
Niño3.4, and (d) Niño4, respectively, at various lead times.

Figure 3 shows the prediction skills of NN for Niño3
and Niño4, as functions of lead times and target months.
As has been found by many other studies (e.g., Barnston
and Ropelewski 1992), skills are high during the winter
months and are low during the spring and summer
months. All three models (LR and CCA not shown) have
similar seasonal dependence.

The lowest skill for Niño3 occurs in April or May,
while the lowest skill for Niño4 occurs in July, about
2 or 3 months later. We also calculated the variance of
both indices by the calendar months and found that the
lowest variance for Niño3 occurs in March and that for
Niño4 occurs in June. Thus the month of the lowest
skill roughly lags the month of the lowest variance by
one month for both Niño3 and Niño4.

6. Discussions

Under cross validation, we have calculated and com-
pared the prediction skills of two linear statistical mod-
els (LR and CCA) and a nonlinear statistical model (NN)
in predicting the four tropical Pacific SST indices:

Niño112, Niño3, Niño3.4, and Niño4. All three models
had better skills than persistence. However, the three
models themselves had similar skills, the differences in
correlation skill being less than 0.05. An approximate
significance test revealed that at 5% significance level,
the skill differences between NN and CCA, and between
NN and LR were generally not significant.

Despite its nonlinear capability, NN failed to im-
proved upon the linear methods LR and CCA. We have
obtained far better prediction with NN than LR for other
datasets, for example, the three-variable Lorenz system
(Lorenz 1963), and the laser dataset in the Sante Fe
time-series Prediction Competition (Weigend and Ger-
shenfeld 1994). The question is, then, why for the
monthly data of the tropical Pacific, NN failed to show
improvement over LR and CCA.

There are three possible answers to this question.
The most likely one is that over the seasonal timescale,
the tropical Pacific is basically linear ; nonlinear pro-
cesses play only minor roles in the system. Construct-
ing linear models from the output of the Cane–Zebiak
dynamical model, Xue et al. (1994) found that the skills



292 VOLUME 13J O U R N A L O F C L I M A T E

FIG. 2. Significance level by which the correlation skills of
three paired models are different: (a) NN vs CCA, (b) NN vs LR,
(c) CCA vs LR. When a bar lies below the 5%, the two models
are considered significantly different at the 5% level.

FIG. 3. Prediction skills of NN as a function of lead times and target months for (a) Niño3 and (b) Niño4.

of the linear reconstructed model and the original non-
linear model were comparable. In addition, through
their ‘‘tau-test,’’ Penland and Sardeshmukh (1995)
have argued that tropical Pacific SST data are consis-

tent with a linear dynamical model for lead times of
up to 10 months.

The second answer is that the climate data records
are perhaps not long enough. As a forecasting method,
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NN is in principle more capable than LR and CCA, but
the data requirement is also higher. To extract more than
the linear rules from the data, longer records of better
quality data are needed.

The third possibility is that we have not yet found
the technique to build a good NN model. The process
of building an NN involves more decisions than that of
LR or CCA. The NN is a relatively new method, and
novel techniques appear every year. Several projects are
under way to develop improved NN models, for ex-
ample, NN models that perform nonlinear CCA (given
that CCA appeared to outperform LR).

If the main reason why neural networks fail to im-
prove over the linear methods is that the tropical Pacific
is basically governed by linear dynamics of seasonal
timescales, the next question is, Will neural networks
yield better skills in the extratropics? Many studies (e.g.,
Hoerling et al. 1997; Livezey et al. 1997; Shabbar et
al. 1997) have shown that responses of the extratropics
climate to the tropical SST are quite nonlinear. This
implies that linear statistical methods probably impose
substantial model biases in predicting the extratropical
variables. We are currently investigating the applica-
tions of neural networks to the seasonal predictions of
extratropical variables. However, the short climate data
records may still be a limitation.
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