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THERMO-CHEMO-MECHANICAL MODEL FOR CONCRETE.
II: DAMAGE AND CREEP

By Miguel Cervera,1 Javier Oliver,2 and Tomás Prato3

ABSTRACT: In this work a coupled thermo-chemo-mechanical model for the behavior of concrete at early ages
is proposed. This paper presents the formulation and assessment of the mechanical aspects of the model. Short-
and long-term mechanical behaviors are modeled via a viscoelastic damage model that accounts for the aging
effects. The short-term model is based on the framework of the continuum damage mechanics theory. A novel
normalized format of the damage model is proposed, so that the phenomenon of aging is accounted for in a
natural fashion. Long-term effects are included by incorporating a creep model inspired in the microprestress-
solidification theory.
INTRODUCTION

In the companion paper (Cervera et al. 1999) the formula-
tion and assessment of the thermochemical aspects of the pro-
posed model were presented. This second part presents the
complete thermo-chemo-mechanical model that considers
many of the relevant features of the mechanical behavior of
concrete at early ages, in a format suitable for its implemen-
tation in the general framework of the finite-element method.
First, a thermo-chemo-mechanical model is proposed to de-
scribe the short-term behavior of concrete at early ages. The
reference model is based on the theory of continuum damage
mechanics and it incorporates two separate scalar internal var-
iables to represent damage under both tension and compres-
sion conditions. The damage model is reformulated in a suit-
able normalized format so that it can incorporate the
phenomenon of aging. Second, the proposed model is ex-
tended to include the long-term mechanical behavior. This is
done by incorporating a creep model inspired in the recently
proposed microprestress-solidification theory and coupling it
to the aging-damage model proposed in the first part of the
paper. Finally, different available experimental data sets are
used to compare the observed behavior of conventional and
high-performance concrete mixes at early ages with the sim-
ulations obtained using the proposed model.

SHORT-TERM MECHANICAL BEHAVIOR

The mechanical behavior of concrete, like other geomater-
ials, is complex and highly nonlinear, even for moderate stress
levels. A reasonable model should contemplate features such
as: (1) a large difference in the tensile and compressive
strengths, leading to rather distinct stress-strain curves ob-
tained under tension or compression; (2) stiffness recovery on
load sign reversal, that is, passing from tension to compres-
sion, or vice versa; (3) strength enhancement under 2D or 3D
stress states, when compared with uniaxial tests; (4) plastic
deformation after unloading; (5) rate sensitivity, etc. The avail-
able literature includes models based on the theories of hy-
poelasticity, hyperelasticity, plasticity, fracture mechanics,
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plastic-fracture, or continuum damage, to name only some of
the more popular models used. The present work will make
use of a continuum damage model to characterize the me-
chanical behavior of concrete. The continuum damage theory
was first introduced by Kachanov (1958) in the context of
creep-related problems, but it was later accepted as a valid
alternative to deal with complex material behavior. It is pres-
ently used for materials such as metals, ceramics, rock, and
concrete, and within a wide range of applications (creep, fa-
tigue, progressive failure, etc.). The reason for its popularity
is the intrinsic simplicity and versatility of the approach, as
well as its consistency, based on the theory of thermodynamics
of irreversible processes.

Among the different possibilities that such a framework of-
fers (Lemaitre and Chaboche 1978; Lemaitre 1984; Simó and
Ju 1987a,b; Chaboche 1988a,b; Mazars and Pijaudier-Cabot
1989), this work will make use of an isotropic damage model,
with only two scalar internal variables to monitor the local
damage under tension and compression, respectively. This will
provide a simple constitutive model which, nevertheless, is
able to capture the overall nonlinear behavior of concrete in-
cluding a strain-softening response and stiffness degradation
and regradation under multiple stress reversals. Furthermore,
the model can be implemented in a strain-driven form that
leads to an almost closed-form algorithm to integrate the stress
tensor in time. This is a most valuable feature for a model
intended to be used in large-scale computations. The damage
model presented here is an extension of the one described in
Cervera et al. (1995, 1996) and Faria et al. (1998), extended
to account for temperature effects and the phenomenon of ag-
ing. For simplicity, only the rate independent format of the
model will be considered, and no plastic deformations will be
included.

Effective Stresses

The continuum damage mechanics theory (CDMT) is based
on the definition of the effective stress concept, which is in-
troduced in connection with the hypothesis of strain equiva-
lence (Lemaitre and Chaboche 1978): The strain associated
with a damaged state under the applied stress s is equivalent
to the strain associated with its undamaged state under the
effective stress In the present work the (second-order) ef-s̄.
fective stress tensor will assume the following hyperelastics̄

s̄(« , k) = D(k) :« (1)e e

where «e = (second-order) elastic strain tensor; D(k) = usual
(fourth-order) linear-elastic constitutive tensor; and : denotes
the tensorial product contracted on two indices.

As our aim is to use a scalar damage model with separated
internal damage variables for tensile and compressive stress
contributions, a split of the effective stress tensor into tensile
ct to ASCE license or copyright; see http://pubs.asce.org/copyright



and compressive components is needed. To identify contribu-
tions clearly with respect to each one of these independent
effective stress tensors, 1 and 2 indices will be extensively
used, referring to tensile and compressive entities, respectively.
In this work, the stress split will be performed as in Cervera
et al. (1995, 1996) and Faria et al. (1998)

3

1 2 1s̄ = ^s̄ &p J p ; s̄ = s̄ 2 s̄ (2a,b)j j jO
j=1

where denotes the jth principal stress value from tensor ;s̄ s̄j

pj represents the unit vector associated with its respective prin-
cipal direction; and the symbol J denotes the tensorial prod-
uct. The symbols ^ & are the Macaulay brackets (^x & = x, if x
$ 0, ^x & = 0, if x < 0).

Free Energy and Constitutive Equation

In this section we will consider the short-term mechanical
behavior of concrete. The denomination ‘‘short term’’ is used
in relation to the time scale in which the hydration and aging
phenomena take place; that is, we will only consider in this
section those situations in which the mechanical process can
be considered as instantaneous [compared with the chemical
and aging phenomena, see Part I, Cervera et al. (1999)]. An
extended model, applicable to the modeling of long-term me-
chanical behavior will be described in the next section. The
denomination ‘‘long term’’ is used to describe those situations
of sustained loading or the straining due to the thermal and
chemical effects arising from the hydration process itself.

In the situation of instantaneous, short-term loading, the me-
chanical model can be defined assuming that the aging degree
has a fixed value, k = . Consequently, all of the relatedk̄
mechanical properties are also considered at fixed values f
2 f 1 E and Therefore, the free energy1 2(k̄), (k̄), (k̄), G (k̄), G (k̄).f f

and the constitutive equation will not be considered explicitly
dependent on the hydration and aging degrees j and k. Also,
all terms depending on their time derivatives, and k, will bej̇
neglected in the definition of the mechanical dissipation.

Let us define the elastic free energies associated with the
tensile and compressive effective stresses in the form

16 6 6 21W = W (« ) = s̄ :D :s̄ (3)e e e 2

where the superindex (6) may mean tension or compression,
as convenient. Some algebra is needed to show that $ 0.6We

Let us also introduce two internal-like variables, d1 and d2,
the damage indices under tension and compression, respec-
tively, whose definition and evolution in terms of the real in-
ternal variables will be given later.

Following Faria et al. (1998), the mechanical free energy
term for the damage model is defined by combining these el-
ements in the form

1 2C = W(« , d , d ) (4a)e

1 1 2 2C = W (« , d ) 1 W (« , d ) (4b)e e

1 1 2 2C = (1 2 d )W (« ) 1 (1 2 d )W (« ) (4c)e e e e

From this, and provided that 0 # d1, d2 # 1, it can be shown
that W $ 0.

The constitutive equation for the damage model is obtained
using Coleman’s method as

1 1 2 2s =  C = (1 2 d )s̄ 1 (1 2 d )s̄ (5)εe

The mechanical dissipation can be expressed as

1 1 2 2˙ ˙$ = W d 1 W d $ 0 (6)mech e e
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provided that the damage indices increase monotonically, 1ḋ ,
$ 0.2ḋ

Characterization of Damage

To clearly define concepts such as loading, unloading, or
reloading for general 3D stress states, a scalar positive quan-
tity, termed normalized equivalent stress, will be defined. This
will permit the comparison of different 3D stress states, even
for different degrees of hydration. With such a definition, dis-
tinct tridimensional stress states can be mapped to a single
normalized equivalent unidimensional stress test, which makes
their quantitative comparison possible.

As a consequence of the stress split, two separate equivalent
effective stress norms are necessary: (1) A normalized equiv-
alent effective tensile norm t1; and (2) a normalized equivalent
effective compressive norm t2. In the present work they will
assume the following form:

1/2
6s̄ s̄ 16 6 6 6 1/2t = :C : = [s̄ :C :s̄] (7)FS D S DG6 6 6f f fe e e

where two nondimensional fourth-order metric tensors C6

have been introduced. Tensors C6 do not depend on the aging
degree. The role of these tensors is to define the shape of the
damage bounding surfaces in a normalized effective stress
space, as it will be explained below. Note that the two metric
tensors can be different for the tensile and compressive norms,
C1 and C2, respectively.

The normalizing factors are introduced in (7) to ac-6f (k̄)e

count for the dependency of the mechanical strengths on the
aging degree. From the physical point of view, they represent
the values of the tensile and compressive uniaxial1 2f fe e

stresses that define the onset of damage under uniaxial tension
and compression, respectively. These values can be taken as
proportional to the corresponding peak strengths f 6 defined by
the aging model (see Part I) as = and =2 2 2 1f (k̄) l f (k̄) f (k̄)e e e

respectively.1 1l f (k̄),e

With the above definitions for the equivalent effective
stresses, two separated damage criteria, g1 and g2, are intro-
duced for tension and compression, respectively:

6 6 6 6 6g (t , r ) = t 2 r # 0 (8)

Variables r1 and r2 = normalized internal strain-like variables
that can be interpreted as current damage thresholds, in the
sense that their values control the size of the (monotonically)
expanding damage surfaces. Due to its normalized nature, the
initial values are unitary, = = 1.1 2r r0 0

This means that the damage criteria are defined in a nor-
malized effective stress space (or in a normalized strain space).
The shape of the two damage bounding surfaces in the nor-
malized effective stress space does not depend on the aging
degree. This is a very attractive feature of the present nor-
malized format for the damage model. In fact, the shape of
the damage criteria is defined by the metric tensors C6. These
tensors must be isotropic and positive definite, in the form

6 6 6 6C = (1 1 g )I 2 g 1 J 1 with 0 # g < 1 (9)

where I = fourth-order unit tensor; 1 = second-order unit ten-
sor; and g6 = parameter related to the equibiaxial tensile/com-
pressive strengths. Calling r6 to the ratio between the biaxial
and uniaxial strengths, it is

16g = 1 2 (10)6 22(r )

Fig. 1 shows a 2D representation of the damage criteria for
two possible selections of these tensors: g6 = 0, C6 = I rep-
resents a rounded Rankine-type of criterion with r6 = 1/ 2Ï
JOURNAL OF ENGINEERING MECHANICS / SEPTEMBER 1999 / 1029
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FIG. 1. Two Different Damage Criteria

FIG. 2. Mapping From: (a) Normalized to; (b) Real Stress Space
= 0.707; whereas g6 = 0.622 represents a much more realistic
criterion for concrete with r6 = 1.15. A third possibility is to
use g6 = n, C6 = D̄21 = (D/E)21, which represents criteria
related to the (normalized) tensile and compressive elastic free
energies, but leads to a quite small r6 = 0.767. Note that the
first and the last selections are identical if the effect of Pois-
son’s ratio is disregarded.

The damage bounding surfaces defined in the normalized
effective stress space by (8) can also be defined in the real
effective stress space in the form

6 6 6 6 6 6 6 6 6ĝ (t̂ , r̂ ) = f g (t , r ) = t̂ 2 r̂ # 0 (11)e

where and are unscaled versions of t6 and r6, respec-6 6t̂ r̂ ,
tively

6 6 6 1/2 6 6 6t̂ = [s̄ :C :s̄] ; r̂ = f r (12a,b)e

Therefore, it is clear that the scaling factors play the role6f (k)e

of aging (chemical) hardening parameters, as they define the
mapping of the damage bounding surfaces to the current ef-
fective stress space, and thus, the growth of their size as a
result of the aging process. Because and are not nec-2 1f fe e

essarily proportional (see the Aging Model section in Part I),
the damage surfaces for different hardening degrees are not
necessarily homothetical.

Fig. 2 shows a 2D representation of the mapping of the
damage criteria from the normalized effective stress space to
the real effective stress space, in terms of the aging degree.

Evolution of Damage

The evolution (expansion) of the damage bounding surfaces
in the normalized space for loading, unloading, and reloading
1030 / JOURNAL OF ENGINEERING MECHANICS / SEPTEMBER 1999
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conditions is controlled by the Kuhn-Tucker relations and the
damage consistency condition, which can be written as

6 6 6 6 6ṙ6 $ 0, g # 0, ṙ g = 0; ṙ ġ = 0 (13a,b)

leading, in view of (8), to the loading condition = This,6 6ṙ ṫ .
in turn, leads to the explicit definition of the current values of
the internal variables in the form

6 6 6r = max[r , max(t )] (14)0

Note that (14) allows computation of the current values for r6

in terms of the current values of t6, which in turn, depend
explicitly on the current strains, temperature, and degree of
aging [see (1) and (7)]. For a given degree of aging, an in-
crease of the elastic strains (and, consequently, effective
stresses) would lead to an expansion of the bounding surfaces
due to the evolution (increase) of damage. Alternatively, for a
given state of strain and corresponding r6 values, an increase
in the aging degree would lead to an expansion of the bound-
ing surfaces without evolution of damage (this is called chem-
ical hardening).

Finally, the damage indices d1 and d2 are explicitly defined
in terms of the corresponding current values of the damage
thresholds, so that they are monotonically increasing functions
such that 0 # d6(r6) # 1. Let us drop the superindex 6 in
the following for the sake of brevity, and let us introduce the
values re = 1/le = establishing the size of the bound-f(k̄)/f (k̄),e

ing damage surface for the onset of damage and rp $ re, es-
tablishing the size of the bounding damage surface at peak
strength. These two values define the strain-hardening part of
the uniaxial stress-strain curve for the material. Note that rp $
re $ r0 = 1. For the limit case rp = re = r0 = 1, the material
t to ASCE license or copyright; see http://pubs.asce.org/copyright



FIG. 3. Uniaxial Stress-Strain Curves
would exhibit softening immediately after the onset of dam-
age, which is an option often used for tension strain softening.

In this work, we will use the functions
2

r r 2 1e
d(r) = A , r # r # r (15)d 0 pS Dr r 2 1p

r 1 r 2 re p
d(r) = 1 2 exp , r # r (16)pS Dr B rd e

where the constants Ad and Bd are defined as

r 2 rp e
A = (17)d

re

1 r 1 EGp f ¯B = 2 1 B (18)d d22 r l* fe

where B̄d = 6re(rp 2 1)2. In (18), the fracture3A (r 2 3r 1 2)/d p p

energies (under tension and compression) of the material Gf

and the characteristic length l* have been introduced to ensure
mesh-size objective results (Oliver 1989).

Note that the dependence of the fracture energies on the
aging degree defined by the aging model (see Part I) imply
that the fraction EGf /f 2 be independent of k, so that EGf /f 2 =

where the subscript ` means values at the end of2E G /f ,` f` `

the hydration process. This means that the parameter Bd is
independent of the aging degree.

Note also, that for the limit case r0 = re = rp, (17) and (18)
yield Ad = 0 and Bd = 1/2 2 EGf /l*f 2, a well-known result
for exponential softening (Cervera et al. 1995, 1996).

Fig. 3(a) shows a schematic representation of a uniaxial
stress versus strain curve, which explains the role of param-
eters re and rp. Fig. 3(b) shows the evolution of the stress
versus strain curves for different increasing aging degrees.

LONG-TERM MECHANICAL BEHAVIOR

The mechanical model introduced in the previous section is
able to describe the short-term mechanical behavior of con-
crete at early ages. In this section the inclusion of the long-
term behavior will be addressed. The denomination ‘‘long
term’’ is used to describe those situations of sustained loading
or the straining due to the thermal and chemical effects arising
from the hydration process itself. As in the long-term behavior,
the time scale in which the loading takes place is comparable
with that in which the hydration and aging processes occur,
both the hydration and aging degrees will be explicitly con-
sidered in the definition of the model.

The basic idea in the following is to use a viscoelastic aging
model, able to reproduce the creep and relaxation phenomena
typical of the long-term behavior of concrete. This must be
J
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coupled to the damage model described above, also consid-
ering the relevant thermal and chemical effects.

Solidification Theory

In classical viscoelasticity, the mechanical behavior is char-
acterized by the relaxation function or the compliance func-
tion, and the constitutive relationships are formulated in the
form of Volterra integral equations (Bazant 1988). This ap-
proach is clearly unsuitable for numerical computations be-
cause of its memory and CPU time requirements.

Following previous work regarding the long-term behavior
of concrete (Cervera et al. 1992), and the recommendations of
Carol and Bazant (1993), we will consider the relaxation func-
tion of concrete expanded into a Dirichlet series, and retain
only a finite number of terms, say N. This achieves a double
goal: First, the constitutive laws for the viscoelastic material
can be written in terms of a finite number of internal variables,
and only these need to be stored from one time step to the
next, thus providing huge computational advantages compared
with the hereditary integral equations. Second, the resulting
rheological model can be interpreted as a generalized Maxwell
chain, where a number of springs and dashpots are arranged
in parallel. Alternatively, the compliance function of concrete
can be considered and expanded in a Dirichlet series. This
leads to a generalized Kelvin chain with a series arrangement
(Bazant and Prasannan 1989; Carol and Bazant 1993; Bazant
et al. 1997).

Although both approaches are completely equivalent (if a
large enough number of terms is considered in the Dirichlet
series), the first one leads to first-order differential equations
to be solved for the evolution of the internal variables, whereas
the second approach leads to second-order differential equa-
tions. Therefore, the Maxwell chain model is preferred here,
with the elastic moduli E i and the dashpot viscosities hi of the
i = 1, . . . , N Maxwell elements of the chain as material pa-
rameters. It is also helpful to consider the elastic moduli Ei

and the relaxation times of the dashpots, defined as ti = hi /
Ei, as an alternative characterization of the chain. It is con-
venient to take t1 = ` in the series expansion, so that E1 can
be considered as the asymptotic elastic modulus of concrete.

Fig. 4 shows a schematic representation of the rheological
model used for long-term behavior, in the form of a Maxwell
chain. In the framework of aging models the general case of
such a rheological model would consist of independently var-
ying elastic moduli and dashpot viscosities. However, it is
usual to restrict the model to the consideration of proportional
varying elastic moduli and constant relaxation times. This
greatly reduces the complexity and mathematical difficulties
of determining the material parameters, as well as preventing
OURNAL OF ENGINEERING MECHANICS / SEPTEMBER 1999 / 1031
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FIG. 4. Rheological Model for Long-Term Behavior

the controversial topic of the divergence of the creep curves
for different ages at loading (Carol and Bazant 1993).

In the following we will assume that during the aging pro-
cess all of the elastic moduli vary proportionally to the aging
function defined by the aging model, Ei(k) = (whereil (k)EE `

are values at the end of the hydration process, and E` =iE`

), and that the relaxation times ti remain constant. TheN i( Ei=1 `

total stress sustained by the Maxwell chain is evaluated as

N

is = s (19)O
i=1

Choosing the stress in each Maxwell element of the chain
si as internal variables, it was shown in Carol and Bazant
(1993) that the first-order differential equations governing the
evolution of these variables are

isi i ¯ṡ 1 = l (k)E D«̇, i = 1, . . . , N (20)E `it

where tensor entities are used as the multidimensional coun-
terparts of the scalar ones used for uniaxial models; « = total
strain tensor and the nondimensional tensor D̄ = (1/E)D has
been used.

The basic assumption in the derivation of (20) and behind
the solidification theory is that when new layers of material
solidify, they join the previously existing in a parallel cou-
pling. We have identified the nondimensional solidified frac-
tion function v(t) introduced in Bazant (1977) with the elastic
modulus aging function lE(k) introduced in the aging model.

Microprestress Theory

The proposed model (and the underlying solidification the-
ory) cannot be the final solution of long-term aging because
the duration of creep for a fixed load decreases significantly
with an increasing age at loading, even after many years,
whereas the hydration degree essentially stops before 1 year
of age. This experimental evidence was considered in the so-
lidification theory (Bazant and Prasannan 1989) by including
a flow element with a time-dependent viscosity connected in
series to an aging Kelvin chain. In Bazant et al. (1997) a more
fundamental approach is followed to justify the physical ex-
istence of such a flow term. A physical model is formulated
to obtain the viscosity of the flow dashpot as a function of the
tensile microprestress carried by the bonds and bridges
crossing the gel pores in the hardened cement gel. The long-
1032 / JOURNAL OF ENGINEERING MECHANICS / SEPTEMBER 1999
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term creep is assumed to originate from viscous shear slips
between the opposite walls of micropores in which the bonds
that transmit the microprestress break and reform. Let sm be
the value of the microprestress and hm be the value of the
viscosity of the corresponding flow term.

Let sm0 and hm0 be their initial values. Let us assume that
the viscosity is inversally proportional to the microprestress,
so that

s hm m0= = m (21)
s hm0 m

where m = variable that can be regarded as the normalized
value of the microprestress. Note that initially m(t = 0) = 1.

If humidity effects are not considered (sealed specimens,
basic creep), the evolution of the normalized microprestress
can be explicitly determined as

1
m(t) = (22)

1 1 c tm0

where cm0 = material property (Bazant et al. 1997). Then the
viscosity can be computed as hm = hm0 /m. Note that as time
increases, the microprestress decreases, and so the viscosity of
the flow term increases. Eventually, the microprestress will
vanish, the viscosity will tend to infinity, and the flow term
will become inactive.

Although in the mentioned references the flow element was
connected in series to a Kelvin chain with aging elastic mod-
uli, the same behavior can be obtained with a generalized
Maxwell chain with aging elastic moduli. To this end let us
define the relaxation time of the flow term as

h h /m tm m0 m0
t = = = (23)m

E l E l mE ` E

where tm0 = hm0 /E` = material property. Now, (20) must be
modified to include the effect of the nonlinear flow term

1 1i i i ¯ṡ 1 1 s = E (k)D«̇, i = 1, . . . , N (24)S Dit tm

Note that the effect of the flow term is completely defined
with two additional material properties: tm0 and cm0. The first
one defines the initial value of the viscosity, and the second
one governs its rate of evolution.

Viscous Strains

In the following, we will select the viscous strains in each
Maxwell element «i rather than the stress si as internal vari-
ables. The relationship between them is

i i i¯s = E (k)D : (« 2 « ) (25)

Substitution of (25) into (24) leads to the evolution law for
the viscous strains

1 1 1 1i i i«̇ = 1 1 (« 2 « ) = (« 2 « ), i = 1, . . . , N (26)S Di it t t t̂m a

with ta(k) = representing the aging effect on the elastic˙l /lE E

modulus. Note that even if ti and tm are sufficiently large, there
would be some viscous straining as long as the aging pro-
gresses and the elastic modulus varies As time in-˙(l ≠ 0).E

creases, the rate of hydration decreases, and so the viscosity
due to aging increases. Eventually, ta (t = `) = ` and the
model would revert to a standard Maxwell viscoelastic ar-
rangement.

Eq. (26) represents the evolution law for the viscous strains.
Details on the numerical integration of (26) are given in Cer-
vera et al. (1992).
ect to ASCE license or copyright; see http://pubs.asce.org/copyright



Thermodynamic Framework

In the long-term behavior of concrete, both the hydration
and aging degrees j and k, respectively, play a significant role,
and consequently, they will be explicitly considered in the def-
inition of the free energy of the model and in the state equa-
tions. Also, the corresponding terms, depending on their time
derivatives, will be considered in the expression of the me-
chanical dissipation.

Let us define the elastic free energy associated to each el-
ement in the Maxwell chain in the form

1i i i i i 21 i¯W = W (« , k) = s : (E (k)D) :s (27a)e e e 2

1i i i i i i¯W = W (« , k) = « : (E (k)D) :« (27b)e e e e e2

where the elastic strain tensor is defined as = « 2 «i, fori«e

each element. The total elastic free energy associated to the
Maxwell chain is obtained by adding the contributions of the
elements

N

i i iW = W (« , k) = W (« , k) (28)e e e e eO
i=1

Using Coleman’s method, the total stress can be obtained
as

N N N

i i i i¯s =  W =  W = E (k)D :« = s (29)« e e eO ε O Oe e
i=1 i=1 i=1

Note that the introduced viscous strains «i are the thermody-
namic forces conjugated to the stresses in the chain elements

Also, the mechanical dissipation for thei is (s = 2 W ).i« e

Maxwell chain can be computed as
N

2 2 1 i$ = 1 1 W $ 0 (30)mech eO S Dit t tm ai=1

where ti, tm, ta and have already been defined.iWe

Aging Viscoelasticity and Damage

Finally, let us consider the coupling of the viscoelastic
model described above with the aging damage model also de-
scribed above, as well as including the relevant thermal and
chemical couplings. The basic hypothesis is that the stress sus-
tained by the Maxwell chain is the effective (undamaged)
stress rather than the total stress. This idea is based on the
CDMT concept that it is the effective stress that is the one
acting on the effective (undamaged) solid concrete, while the
total stress acts on the whole (damaged) solid.

Let us begin by defining the effective stresses and the elastic
strains for one element of the Maxwell chain as

i i i i¯s̄ (« , k) = E (k)D :« (31)e e

with
i i i« («, « , T, j) = « 2 « 2 « 2 « (32)e T j

where the thermal «T = aT(T 2 Tref) 1 and chemical «j = ajj1
volumetric strains affect all of the elements in the same way,
but the (second-order) viscous strain tensor «i is different for
each Maxwell element. Let us also define the stress split for
each element, as

3

i1 i i i i2 i i1s̄ = ^s̄ &p J p ; s̄ = s̄ 2 s̄ (33a,b)j j jO
j=1

where denotes the jth principal stress value from tensoris̄j

represents the unit vector associated with its respectivei is̄ ; pj
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TABLE 1. Material Properties for Numerical Simulations

Properties
(1)

C-30
(2)

C-100
(3)

L (OPC)
(4)

L (HPC)
(5)

w/c 0.50 0.25 0.50 0.30
s/c 0.00 0.09 0.00 0.10
C (106 J/m3 7C) 2.07 2.43 — —
kT (103 J/m h 7C) 5.21 6.42 — —
T0 (7C) 21.0 21.0 — —
j` 0.75 0.58 0.75 0.75
kj /hj0 (106 1/h) 0.14 4.00 1.00 (1.20) 1.00 (1.30)
h̄ 7.50 6.00 7.50 (6.00) 7.50 (6.00)
Aj0 /kj (1024) 1.00 1.00 1.00 0.01
Ea /R (103 K) 4.00 4.00 4.00 4.00
Qj (108 J/m3) 1.58 2.72 — —
jset 0.20 0.20 0.10 0.10
Af 1.82 4.24 2.56 2.56
Bf 0.40 0.49 0.37 0.37

(MPa)2f ` 34.5 109.0 47.5 (35.2) 95.3 (79.0)
E` (GPa) 29.6 46.4 44.1 (38.5) 53.8 (49.4)
Tref (7C) 21.0 21.0 — —
TT (7C) 100.0 100.0 — —
hT 0.42 0.00 — —

2re 2.76 2.72 — —
2rp 4.74 3.74 — —

N — — 2 2
E 1 :E 2 — — 3:1 3:1
t1 (h) — — ` `
t2 (h) — — 15.0 75.0 (15.0)
tm0 (103 h) — — 0.70 1.00
cm0 (1023 1/h) — — 6.00 20.0

principal direction; and the symbol J denotes the tensorial
product.

Let us define the elastic free energy associated with the ten-
sile and compressive effective stresses for each element in the
form

1i1 i1 i i1 i 21 i¯W = W (« , k) = s̄ : (E (k)D) :s̄ (34a)e e e 2

1i2 i2 i i2 i 21 i¯W = W (« , k) = s̄ : (E (k)D) :s̄ (34b)e e e 2

Some algebra is needed to show that $ 0 [seei1 i2W , We e

Faria et al. (1998) for details]. The total elastic free energy
associated with the Maxwell chain is obtained by adding the
contributions of the elements

i 1 i 2 iW = W (« , k) = W (« , k) 1 W (« , k) (35a)e e e e e e e

N N

i i1 i i2 iW = W (« , k) = W (« , k) 1 W (« , k) (35b)e e e e e e eO O
i=1 i=1

Introducing the damage indices under tension and compres-
sion d1 and d2, respectively, the mechanical free energy term
is defined by combining previously defined items in the form

i 1 2W = W(« , k, d , d ) (36a)e

1 i 1 2 2 i 1 2W = W (« , k, d , d ) 1 W (« , k, d , d ) (36b)e e

1 1 i 2 2 iW = (1 2 d )W (« , k) 1(1 2 d )W (« , k) (36c)e e e e

Note that this term is very similar to that in (4), and it already
includes the thermomechanical and chemomechanical cou-
plings through (31) and (32). It can be shown that W $ 0.

The free energy for the complete thermo-chemo-mechanical
model can be expressed in terms of two external variables, the
strain tensors « and the temperature T, the N viscous strain
tensors «i, the two damage indices, d1 and d2, and the hydra-
tion and aging degrees j and k, in the form

i 1 2C = C(« , k, d , d ) (37a)e
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i 1 2C = W(« , k, d , d ) 1 V(T ) 1 L(T, j) 1 H(j) (37b)e

where the thermal V(T ), the chemical H(j), and the coupling
thermochemical L(T, j) terms were described in the hydration
model.

The state equations for the thermo-chemo-mechanical
model are obtained from (37) using Coleman’s method. The
expression for the entropy and the chemical affinity are

1
S = 2 C = [C(T 2 T ) 2 Q(j)] (38)T 0

T0

Aj0
A = 2 C = k 1 j (j 2 j) (39)j j j `S Dk jj `

where the coupling terms 2TW in (38) and 2jL, 2jW in
(39) have been neglected because they can only be significant
for very specific applications, with concrete subjected to high
temperature and/or pressure.

The stresses are obtained as

1 2s =  C =  W 1  W (40a)« « «e e e
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N N

1 i1 2 i2s =  C = (1 2 d ) s̄ 1 (1 2 d ) s̄ (40b)« O Oe
i=1 i=1

1 1 2 2s =  C = (1 2 d ) s̄ 1 (1 2 d ) s̄ (40c)«e

so that the same final form as in (5) is obtained for the damage
model.

The definition of the damage surfaces and the evolution of
the damage indices and thresholds can be done in terms of the
total tensile and compressive parts of the effective stress, 1s̄
and as explained in the previous section.2s̄ ,

The total dissipation can be split into its chemical and me-
chanical parts, $ = $chem and $mech, with

˙$ = A j $ 0 (41)chem j

N
2 2 1 i 1 1 2 2˙ ˙$ = 1 W 1 W d 1 W d $ 0 (42)mech e eO S Dit t tm ai=1

provided that the elastic modulus and the damage indices in-
crease monotonically, $ 0.1 2˙ ˙t̂ , d , da
FIG. 5. Numerical versus Experimental Results for C-30 Concrete
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FIG. 6. Numerical versus Experimental Results for C-100 Concrete
NUMERICAL SIMULATIONS

This section presents an assessment of the thermo-chemo-
mechanical model described above. All of the problems pre-
sented are solved by advancing step-by-step in time. The so-
lution of the purely chemomechanical problems consists of,
for each time step, solving the mechanical equilibrium equa-
tion, together with the differential equation governing the
chemical process (see Part I). The solution of the coupled
thermo-chemo-mechanical problems consists of, for each time
step, first solving the thermal equation, together with the dif-
ferential equation governing the chemical process, and then
solving the mechanical problem, using the computed temper-
ature and hydration degree.

Short-Term Mechanical Model

This subsection compares available experimental data with
numerical predictions obtained using the short-term mechani-
cal model proposed above. The objective is to demonstrate that
the model can adequately reproduce the evolution of the me-
chanical properties of concrete at early ages and predict the
Downloaded 24 Feb 2009 to 147.83.143.248. Redistribution subject
experimental stress versus strain response at different stages
of the hydration process. Both isothermal and adiabatic curing
conditions are considered.

The experimental tests were carried out at McGill Univer-
sity, Montreal, Canada (Khan et al. 1995). The samples were
concrete cylinders, 100 3 200 mm, cast in special plastic cyl-
inder molds designed to enable demolding at very early ages
without disturbing the concrete. Details on the composition
and properties of the concrete used are listed in Khan et al.
(1995). We will consider two mixes: (1) An ordinary Portland
concrete, referred to here as C-30; and (2) a high-strength con-
crete, referred to here as C-100 (i.e., the approximate 28-day
concrete strengths in MPa). C-30 is a Type 10 cement concrete
mix, without the addition of superplasticizer. C-100 used a
Type 10 blended cement containing 9% silica fume and a high
dose of superplasticizer. Table 1 presents the numerical values
that have been used for the numerical simulation of the tests.
Note that the same material properties have been used to sim-
ulate the hydration process under adiabatic and isothermal cur-
ing conditions. This is intended to show the capability of the
model to simulate properly the influence of temperature in the
hydration and aging phenomena.
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Adiabatic Tests

Figs. 5 and 6 show results for the tests conducted on the C-
30 and C-100 mixes, respectively, cured in (quasi) adiabatical
conditions. Fig. 5(a) shows the comparison between the evo-
lution of the temperature rise obtained from the model and
that obtained in the experiment for the first 36 h. The dots
represent the experimental values, the solid line is the predic-
tion by the model. Unfortunately, experimental temperatures
beyond the first 24 h cannot be considered realistic, as a cer-
tain temperature drop is reported. This is not possible in an
adiabatic test, particularly as a maintained increase in the com-
pressive strength is measured until the 7th day of age. This
fact can be related to heat losses due to conduction or other
experimental fault. Despite this, the agreement between nu-
merical and experimental results is good.

Fig. 5(b) shows the evolution of the compressive strength
with the hydration degree (adiabatic test). The solid line rep-
resents the results obtained from the simulation, while the
black dots represent experimental values. The experimental
values of the hydration degree are obtained from the experi-
mental temperature rise versus time curve in the form indi-
cated in Part I of the paper.

Fig. 5(c) shows stress-strain curves for uniaxial compression
tests carried out at different ages of the concrete. Only those
curves obtained for hydration degrees j $ 0.4 have been se-
lected for comparison. For lower values of the hydration de-
gree the free water content in the mix is still high, and the
experimental stress-strain curves exhibit a marked viscous
character. The agreement between the computed and experi-
mental results is remarkable, both in the prediction of the ag-
ing effect (corresponding to the evolution of the compressive
strength and the elastic modulus) and in the description of the
nonlinear part of the stress-strain curves. This shows how the
proposed damage model agrees with the experimental behav-
ior. Only results up to peak strength are shown, as the behavior
during the strain-softening part of the curve would be depen-
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reported from the experiments.

Figs. 6(a)–(c) show analogous results for the adiabatic tests
performed with the C-100 concrete mix. As before, only those
curves obtained for hydration degrees j $ 0.4 have been se-
lected for comparison. Good overall agreement is achieved.
Note how the model is able to reproduce the displayed retar-
dation of hydration (more than 12 h) due to the high dosage
of superplasticizers used for this mix.

Isothermal Tests

Again. Figs. 5 and 6 show results for the tests conducted
on the C-30 and C-100 mixes, respectively, now cured in
(quasi) isothermal conditions. Fig. 5(d) shows stress-strain
curves for uniaxial compression tests carried out at different
ages of the concrete. The agreement between the computed
and experimental results is remarkable, both in the prediction
of the aging effect (corresponding to the evolution of the com-
pressive strength and the elastic modulus) and in the descrip-
tion of the nonlinear part of the curve. Fig. 6(d) shows anal-
ogous results for the isothermal tests performed with the C-100
concrete mix.

Fig. 5(e) shows the evolution of the compressive strength
with time, both for the adiabatic and isothermal tests. Note
that even the same material properties have been used for the
simulation of the hydration and aging phenomena; quite dif-
ferent results are obtained, depending on the curing conditions.
Concrete gains strength more rapidly when subjected to adi-
abatic curing. On the other hand, the ultimate compressive
strength attained under isothermal curing is 31% higher than
under adiabatic curing. Fig. 5(f) shows the evolution of the
elastic modulus with time, for both the adiabatic and isother-
mal tests. The observed evolution trend is very similar to the
evolution of the compressive strength. Note that both the ev-
olution of the compressive strength and the elastic modulus is
very well captured by the proposed aging model. Fig. 6(e) and
FIG. 7. Monotonic Loading Simulation. Laplante’s Tests
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6(f) show analogous results for the adiabatic and isothermal
tests performed with the C-100 concrete mix. Note that the
effect of the curing temperature on the ultimate compressive
strength is much smaller for high-performance concretes than
for conventional concretes.

Long-Term Mechanical Model

This subsection compares available experimental data with
numerical predictions obtained using the long-term chemo-
mechanical model proposed above. The objective is to dem-
onstrate that the model can adequately reproduce the evolution
of the mechanical properties of concrete at early ages and pre-
dict the experimental strain versus time response for sustained
loading applied at different stages of the aging process. Drying
effects have not been considered in this work; thus, only basic
creep experiments will be considered here for comparison. The
experimental setups for these experiments try to enforce iso-
thermal conditions to exclude the influence of temperature
from the observed creep phenomena. Therefore, all of the sim-
ulations in this subsection are conducted in isothermal condi-
tions. The material properties used for the numerical simula-
Downloaded 24 Feb 2009 to 147.83.143.248. Redistribution subjec
tions are listed in the last two columns of Table 1. Note that
only two Maxwell elements are used in the simulation. It is
convenient to take t1 = `, so that E 1 can be considered as the
asymptotic elastic modulus of concrete. A relation E 1 :E 2 =
3:1 has been used for the two elastic moduli in the chain. Note
also that only the values for tm0 and cm0 are needed for the
simulation of the evolution of the microprestress at all ages.

Laplante’s Monotonic Tests

This set consists of tests carried out at the Ecole Nationale
des Ponts et Chaussées, Paris, France, and reported in Laplante
(1993). The specimens were cylinders of diameter 160 mm
and length 100 mm. Two different concrete mixes were tested.
The first was a w/c = 0.5 ordinary portland concrete (OPC)
without additives. The second was a w/c = 0.3 high-perfor-
mance concrete (HPC) with silica fume and superplasticizers.

Figs. 7(a) and 7(b) show the comparison between the ex-
periments and the model simulation for the evolution of the
compressive strength and elastic modulus, respectively, for
both mixes.

The specimens were subjected to an axial compressive stress
FIG. 8. Cyclic Loading Simulation. Laplante’s Tests
JOURNAL OF ENGINEERING MECHANICS / SEPTEMBER 1999 / 1037

t to ASCE license or copyright; see http://pubs.asce.org/copyright



of 30%, the compressive strength at the age of loading. Fig.
7(e) shows strain versus time curves for OPC loaded at dif-
ferent ages, t = 18 h, 1, 3, 7, and 28 days. Fig. 7(f) shows
strain versus time curves for HPC loaded at different ages, t
= 21, 24 h, 3, 7, and 28 days. Note that the experimental
methodology used in these tests is different from the ones
presented above. On one hand, the applied load is increased
with the age at loading, on the other, tests were conducted at
very early ages, less than 1 day. Nevertheless, the agreement
between the experiments and the model simulation is notably
good.

Laplante’s Cyclic Tests

This set consists of tests carried out at the Ecole Nationale
des Ponts et Chaussées, Paris, France, and reported in Laplante
(1993). The specimens were cylinders of diameter 300 mm
and length 120 mm. Two different concrete mixes were tested.
The first was a w/c = 0.5 OPC without additives. The second
was a w/c = 0.3 HPC with silica fume and super-plastifiers.

The material properties used for the numerical simulation
are listed in Table 1. The concrete mixes used for the cyclic
tests are slightly different from the ones used for the static
tests. When the material properties used in the simulation dif-
fer, the values used for the cyclic tests are indicated in paren-
theses.

Figs. 8(a) and 8(b) show the comparison between the ex-
periments and the model simulation for the evolution of the
compressive strength and elastic modulus, respectively, for
both mixes.

The specimens were subjected to a cyclic axial compressive
stress that varied according to Fig. 8(c) (for the OPC) and Fig.
8(e) (for the HPC). Figs. 8(d) and 8(f) show strain versus time
curves for both concrete mixes. The dots and dashed lines
represent the experimental results, and the solid lines represent
the numerical simulation. The agreement between the experi-
ments and the model simulation is notably good. The model
is capable of adequately reproducing the experimentally ob-
served loading and unloading jumps as well as the in-between
creep behavior.

CONCLUSIONS

This paper describes a thermo-chemo-mechanical model
that accounts for many of the features observed in the behavior
of concrete at early ages. An appropriate thermodynamic
framework is provided for these irreversible processes. Ex-
pressions for the free energy are provided from which the state
equations are derived. Positive dissipation is guaranteed in all
situations. The short-term mechanical behavior is based on the
CDMT. The novel normalized format proposed for the damage
model is found to be particularly attractive, as it accommo-
dates in a natural fashion the phenomenon of aging (with both
the elastic moduli and the strength depending on the aging
degree). The long-term mechanical behavior is based on the
recently proposed microprestress-solidification theory. The
model is well suited for its implementation in a finite element
devised for thermomechanical analysis, and its strain-driven
format allows the possibility of large-scale computations. The
capabilities and potentiality of the model are shown by per-
forming numerical simulations of adiabatic and isothermal
tests in concrete samples. The qualitative and quantitative
agreement between the model results and the available ex-
perimental data is remarkably good in all situations.
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APPENDIX II. NOTATION

The following symbols are used in this paper:

Ad, Bd = material properties for hard-softening behavior;
Aj, Aj0 = chemical affinity, initial chemical affinity;

C = heat capacity per unit volume;
C6 = tensile/compressive metric (fourth-order) tensors;

D, D̄ = constitutive (fourth-order) tensor; normalized
idem;

$chem, $mech = chemical dissipation, mechanical dissipation;
d6 = compressive/tensile damage;

E, E` = elastic modulus, final elastic modulus;
E i = elastic modulus for Maxwell element i;

f 6, 6f` = tensile/compressive strength, final values;
6f e = elastic limit in uniaxial tests (tension/compres-

sion);
6Gf = tensile/compressive fracture energy;

ĝ6, g6 = damage criteria, normalized damage criteria;
I = unit (fourth-order) tensor;

K, G = bulk and shear moduli;
L = thermomechanical contribution to free energy;
l* = characteristic length;
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pj = unit vector associated with principal direction j;
Qj = latent heat per unit of hydration degree;

r̂6, r6 = damage tensile/compressive thresholds, normal-
ized damage tensile/compressive thresholds;

6re = normalized elastic tensile/compressive thresholds;
6rp = normalized peak values for tensile/compressive

thresholds;
S = entropy;

s/c = silica fume/cement mass ratio;
T, T0 = temperature, initial temperature;

Tref = reference temperature;
V = thermal contribution to free energy;
v = solidified fraction;

W, We = mechanical contribution to free energy, elastic me-
chanical contribution to free energy;

W 6, 6W e = tensile/compressive mechanical part of free en-
ergy, elastic tensile/compressive mechanical part
of free energy;

i6W e = elastic tensile/compressive mechanical contribu-
tion to free energy of Maxwell element;

w/c = water/cement mass ratio;
aT, aj = thermal and chemical expansion coefficients;

g6 = parameter to define metric tensors;
«, «e = strain tensor, elastic strain tensor;
J
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«ii« ,e = elastic, viscous strain tensor for Maxwell element
i;

«T, «j = thermal strain tensor, chemical strain tensor;
hm, hm0 = viscosity of flow term; initial viscosity;

k = aging degree;
lE = elastic modulus aging function;

6le = elastic threshold aging functions;
6lf = tensile/compressive strength aging functions;
m = normalized microprestress;
n = Poisson’s ratio;

j, j` = hydration degree, final hydration degree;
r6 = ratio biaxial/uniaxial strengths;

s, s̄ = stress tensor, effective stress tensor;
s̄j = principal effective stress value j;

sm, sm0 = microprestress; initial microprestress;
ti = relaxation time for Maxwell element i;

tm, tm0 = relaxation time associated to flow term, initial
value;

C = free energy;
1 = unit (second-order) tensor;
˙ = time derivative or rate;

J = tensorial product;
: = doubly contracted tensorial product; and

^ & = Macaulay brackets.
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