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Predicting Heavy Metal Partition Equilibrium in Soils: 
Roles of Soil Components and Binding Sites

Soil Chemistry

The reactivity and bioavailability of heavy metals in soils are controlled by 
their binding to reactive soil components, including soil organic matter 
(SOM), metal (hydr)oxides, and clay minerals. In this study, we specifically 
investigated how soil components and SOM binding sites controlled metal 
partition at various chemistry conditions. We used the Windermere Humic 
Aqueous Model (WHAM 7) to predict the solid-solution partition and specia-
tion of Cd, Cu, Ni, Pb, and Zn based on compiled literature data including 
98 soil samples from five continents. Based on the root-mean-square-error 
(RMSE) values of logarithm of dissolved metal concentrations between model 
predictions and experimental results, WHAM 7 reasonably predicted metal 
partition equilibrium over a wide range of reaction conditions, with RMSE 
less than 0.5 for Cd and Zn, and less than 1.0 for the other three metals. Soil 
organic matter dominated metal binding at most acidic to neutral pH, clay 
minerals were significant at low pH, and iron (hydr)oxides might effectively 
compete with SOM for metal binding when pH was high. For all five heavy 
metals, WHAM 7 predicted the bidentate bindings were the dominant form 
of metal complexes, in which both complexes formed by two carboxylic sites 
and that by one carboxylic and another phenolic sites were major complex-
es. The formation of monodentate complexes and electrostatic outer-sphere 
complexes was significant at low pH, while tridentate complexes were only 
significant at high pH values. The modeling results help to accurately predict 
the environmental behavior of heavy metals in pH 3 to 7 soil environments.

Abbreviations: CCM, constant capacitance model; CD-MUSIC, Charge Distribution 
and Multisite Surface Complexation; DLM, diffuse layer model; DOC, dissolved organic 
carbon; DOM, dissolved organic matter; ECOSAT, Equilibrium Calculation Of Speciation 
And Transport; FA, fulvic acid; HA, humic acid; LFER, linear free energy relationship; 
NICA-Donnan, Non Ideal Competitive Adsorption Donnan; ORCHESTRA, Objects 
Representing CHEmical Speciation and TRAnsport; ROC, reactive soil organic carbon; 
ROM, reactive soil organic matter; SCM, surface complexation model; SHM, Stockholm 
humic model; SOC, soil organic carbon; SOM, soil organic matter; WHAM, Windermere 
Humic Aqueous Model.

Predicting heavy metal partition equilibrium between soil and solution is 
crucial for environmental risk assessment and effective soil remediation. 
Soil contains multiple reactive components capable of metal binding, in-

cluding soil organic matter (SOM), Al/Fe/Mn (hydr)oxides, and clay minerals. 
Traditional isotherm models (e.g., Langmuir model and Freundlich equation) have 
been widely used to describe heavy metal adsorption in soil (Sparks, 1995) due to 
their simplicity, but they usually have limited applicability when soil compositions 
and solution chemistry conditions vary. Statistically regression models have been 
developed to relate the metal partition coefficients to the key soil and solution 
chemistry parameters, such as pH, SOM contents, mineral contents, etc. ( Janssen 
et al., 1997; Sauve et al., 2000, 2003). Statistical models may have good applicabil-
ity within the conditions in which the experimental data were collected and model 
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parameters were derived, but little is known about the reaction 
mechanisms, especially the roles of different soil binding sites.

Over the past decades, computer software containing 
mechanistic chemical speciation models, such as WHAM 
(Windermere Humic Aqueous Model) (Tipping, 1994, 1998; 
Tipping and Hurley, 1992; Tipping et al., 2011), Visual MINTEQ 
(Gustafsson, 2015; Gustafsson et al., 2003), ORCHESTRA 
(Objects Representing CHEmical Speciation and TRAnsport) 
(Meeussen, 2003), and ECOSAT (Equilibrium Calculation Of 
Speciation And Transport) (Weng et al., 2001), have been de-
veloped, which are capable of describing metal distribution be-
tween soil and solution phases. Those modeling tools are based 
on mechanistic descriptions of metal reactions with various re-
active soil components with a number of surface complexation 
models (SCM) and implementation of component additivity ap-
proach for multiple soil components. Although models in those 
software tools differ in site distributions of soil components and 
model parameters, they have been relatively successful when ap-
plied to describe metal partitioning between soil and solution 
when SOM is the dominant adsorbent (Gustafsson et al., 2003; 
Tipping et al., 2003; Weng et al., 2001). Metal binding to SOM 
can be described with Model VII (Tipping et al., 2011), NICA-
Donnan (Non Ideal Competitive Adsorption Donnan) model 
(Benedetti et al., 1995), and SHM (Stockholm Humic Model) 
(Gustafsson, 2001), and a number of surface complexation mod-
els have also been used to describe metal reactions with mineral 
phases, such as the CCM (constant capacitance model) (Lofts 
and Tipping, 1998), the DLM (diffuse layer model) (Dzombak 
and Morel, 1990), and the CD-MUSIC (Charge Distribution 
and Multisite Surface Complexation) model (Hiemstra and van 
Riemsdijk, 1996).

While chemical speciation models have shown promis-
ing success for predicting metal partitioning in soils, there are a 
few key factors affecting the accuracy of the model predictions, 
including the reactive organic matter (ROM), reactive metals 
in field contaminated soils, and cation competition, which has 
not been assessed systematically based on large datasets. Soil or-
ganic matter is one of the most important soil components con-
trolling cation binding in soil, and numerous modeling studies 
have shown SOM played a dominant role in metal partitioning 
in soil (Duffner et al., 2014; Gustafsson et al., 2003; Ponizovsky 
et al., 2006a; Shi et al., 2007, 2013a; Tipping et al., 2003; Weng 
et al., 2001). Since the chemical speciation models were mainly 
developed based on the data derived from the model humic sub-
stances, SOM contains a variety of sub-components other than 
humic substances and the amount of ROM has to be quanti-
fied when applied to soil. Different methods have been used to 
quantify ROM, including base extractions (Dijkstra et al., 2004; 
Lumsdon, 2004), soil cation exchange capacity analysis (Weng et 
al., 2001) and model fitting (Gustafsson et al., 2003; Shi et al., 
2007, 2013b). So far, no universal method has been established 
and the variations of ROM have been reported according to dif-
ferent studies, which is likely affected by the soils studied and the 
modeling methods used. Another important parameter, when 

predicting metal partitioning in field contaminated soils, is the 
reactive portion of the total heavy metals in soil since not all 
metals are labile in field samples. Different chemical extraction 
methods have been used to quantify the reactive metals in soil 
to get optimal model performance. In the most recent study by 
Groenenberg et al. (2017), isotopic dilution was considered to 
be conceptually the most sound approach, while the single dilute 
(0.43 M) nitric acid extraction was a good alternative method to 
determine geochemically reactive metals in soil except for high 
pH. In addition, cation competition is another important factor 
that may affect the accuracy of model predictions and different 
methods have been used to quantify important cations in soil 
that are capable of competing metal binding, including Ca2+, 
Mg2+, Al3+, and Fe3+ (Shi et al., 2013a; Tipping et al., 2003). All 
those factors should be carefully accounted for when applying the 
chemical speciation models to predict metal partitioning in soil.

Although metal partition equilibrium have been studied in 
multiple studies using chemical speciation models, one impor-
tant issue, which is largely overlooked in previous studies, is the 
distribution of metals among different soil binding sites of major 
soil components, especially for SOM that has a wide distribution 
of metal binding sites. From the metal partition equilibrium as-
pect, different assumptions on metal distribution among differ-
ent SOM binding sites may make little practical significance if 
the model can properly predict the metal distribution between 
soil and solution under certain conditions. However, as suggested 
by the recent studies (Shi et al., 2013b, 2016; Tian et al., 2017), 
metal binding to different sites may have significantly different re-
action rates and the metal dissociation/desorption rate constants 
may vary a few orders of magnitude for different SOM binding 
sites. Therefore, it is essential to understand metal binding to vari-
ous SOM binding sites for the prediction of the dynamic behav-
ior of metals in soils, since the equilibrium assumption is usually 
rarely achieved in soil environments (Sparks, 1989). As a result, 
in addition to prediction of the macroscopic parameters (e.g., dis-
solved metal concentrations, equilibrium partition coefficient), it 
is essential to understand metal binding to various SOM binding 
sites for a better environmental risk assessment.

For typical soil minerals, metal binding to surface binding 
sites of minerals and formation of various surface complexes have 
been well elucidated at the molecular level, with the aid of the 
spectroscopic techniques. For SOM, only few studies looked 
at metal binding to specific SOM sites at the molecular level 
(Gustafsson et al., 2007, 2014; Karlsson et al., 2006; Xiong et 
al., 2013). Metal binding to SOM binding sites has been largely 
based on theoretical consideration on the chemical properties of 
SOM and the formation of various metal complexes is mainly 
hypothetical, due to the difficulty of experimentally quantifying 
SOM binding sites. Both carboxylic and phenolic sites are consid-
ered to be two most important SOM binding sites, and, through 
various combinations of those two types of sites, SOM can form 
multiple metal binding sites with distinct proton and metal bind-
ing constants (Kinniburgh et al., 1999; Tipping and Hurley, 
1992). For metal reactions with SOM, two types of chemical 
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models have been developed based on two different assumptions 
of the binding site distribution of humic substances, a discrete site 
distribution or a continuous site distribution. Both WHAM and 
the SHM (Gustafsson, 2001) assume multiple discrete binding 
sites for both carboxylic and phenolic functional groups while 
the NICA-Donnan model uses a statistical function to describe 
the continuous site distribution for both carboxylic and phenolic 
groups (Benedetti et al., 1995). It is therefore interesting to quan-
titatively understand metal distribution among different SOM 
sites under different reaction chemistry conditions.

The objective of this study was to elucidate the roles of soil 
components and SOM binding sites on controlling metal parti-
tion equilibrium and the major factors affecting the performance 
of the predictive equilibrium model, based on the large data sets 
collected from multiple publications that studied metal parti-
tion equilibrium. The data involved five typical heavy metals 
(Cd, Cu, Ni, Pb, and Zn), and either field contaminated soils or 
laboratory metal spiked soils with a wide range of compositions. 
The data sets included a total of over 1700 metal partition equi-
librium data at various chemistry conditions. A customized ver-
sion of WHAM 7, which is able to output metal binding to vari-
ous SOM binding sites, was used to conduct model calculations. 
We evaluated the performance of WHAM 7 for predicting metal 
partitioning in soils. We analyzed how different soil components 
and SOM binding sites control metal partitioning under various 
chemistry conditions, based on the large data of metal partition 
under various conditions. We hope that our modeling results 
will help to understand the roles of specific soil components and 
binding sites for metal binding, and therefore provide basis for 
more accurately predicting the dynamic behavior of heavy metals 
in soil environments.

Materials and methods
Soil Properties and Data Description

Data published from a total of ten studies (Almas et al., 
2007; Dijkstra et al., 2004; Duffner et al., 2014; Gustafsson et 
al., 2003; Lumsdon, 2004; Ponizovsky et al., 2006b, 2008; Shi et 
al., 2007, 2013a; Weng et al., 2001), which contained all needed 
information for WHAM calculations, were collected and ana-
lyzed in this study. It includes 98 soil samples from five conti-
nents (America, Australia, Africa, Asia and Europe) with various 
soil types and properties. The major soil properties are summa-
rized in Table 1. The soil organic carbon (SOC) content ranged 
from 0.18% to 47.9%. Different extraction methods were used to 
quantify Fe and Al minerals (summarized in Table 2). Either am-
monium oxalate or ascorbate extraction was used to extract the 
amorphous Fe and Al in the soils, and dithionite bicarbonate ci-
trate or dithionite extraction was used to extract the amorphous 
and crystalline Fe.

Generally, metal speciation in field contaminated soils may 
differ significantly from the laboratory metal-spiked soils. Not 
all metals in field contaminated soils are as reactive as that in the 
laboratory metal-spiked soils. Four of the ten studies used field-
contaminated samples and soil samples were extracted at labora-

tory with different concentrations of HNO3 (i.e., 0.22, 0.43, and 
2 M HNO3) to quantify the reactive portion of heavy metals. 
This portion of metals was considered to be the most reactive 
and its distribution between soil and solution may be properly 
predicted by chemical speciation models (Duffner et al., 2014; 
Weng et al., 2001). Metal partition equilibrium was then studied 
with either batch extraction or Donnan membrane technique as 
specified in each study. The rest of studies used uncontaminated 
soils and metal adsorption experiments were conducted to ob-
tain adsorption isotherms or adsorption edges at various reaction 
conditions. Those studies involved five heavy metals, Cd, Cu, 
Ni, Pb and Zn, either as a mixture or single element as specified 
in Table 1.

Data at pH lower than 3.0 and higher than 7.0 were not ana-
lyzed in this work. When pH is too low, the Fe3+ and Al3+ activi-
ties cannot be reliably estimated which may significantly affect 
the accuracy of the model predictions (Shi et al., 2013a). While 
at pH > 7.0, the precipitation of metals may occur which is not 
considered in WHAM 7 calculations and some of the studies did 
not have the dissolved organic matter (DOM) data, which may 
significantly affect the model performance.

Brief Description of WHAM 7
Humic Ion-Binding Model VII for SOM and DOM

WHAM is a chemical speciation model with a few sub-
models to calculate cation binding to humic substances and 
mineral phases (Tipping, 1994). WHAM 7 includes Model VII 
(Tipping et al., 2011), a discrete-site distribution model, for cat-
ion binding to humic acid (HA) and fulvic acid (FA). In WHAM 
7, according to the binding mechanisms and metal binding con-
stants with the carboxylic sites (A sites) and phenolic sites (B 
sites), metal complexation to HA or FA can be divided into two 
monodentate (denoted as A and B), six bidentate (denoted as 
AB strong, AB medium, AB weak, AA strong, AA medium, and 
AA weak), three tridentate complexes (denoted as AAB strong, 
AAB medium, and AAB weak), and one out-sphere complex 
(denoted as D) (Shi et al., 2016). The calculations of metal bind-
ing constants of specific metal complexes are as follows,

MB MA B Alog log p /pK K K K= × 	  [1]

MAA MA 2log 2 logK K x LK= + ∆ 		   [2] 
(x = 0, 1, 2)	

MAB MA MB 2log log logK K K x LK= + + ∆ 	  [3] 
(x = 0, 1, 2) 	  

MAAB MA MB 2log 2 log logK K K y LK= + + ∆  [4]  
(y = 0, 1.5, 3) 	  

In the above equations, KMA and KMB represent metal 
binding constants of monodentate complexes with A and B sites, 
respectively, KMAA and KMAB represent metal binding constants 
of bidentate complexes with two A sites and with one A and an-
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other B sites, respectively, and KMAAB represents metal binding 
constants of tridentate complexes with two A and one B sites. 
pKA and pKB are the average values of the negative logarithms 
of the proton dissociation constants of the A and B sites, respec-
tively. Values x = 0, 1, 2 and y = 0, 1.5, 3 correspond to the weak, 
medium and strong binding strength of the bidentate and tri-
dentate complexes, respectively. DLK2 is a spread factor for the 
formation of the bidentate and tridentate complexes. The weak, 
medium, and strong binding sites consist of 90.1, 9, and 0.9% of 
the total binding sites, respectively (Tipping et al., 2011).

Cation Exchange Model for Clay Minerals
The non-specific cation exchange model is used to calculate 

metal sorption to clay minerals (Lofts and Tipping, 1998), while 
specific adsorption on clay is neglected in WHAM 7. The de-
fault site density (1 × 10-4 eq per gram) for the clay minerals in 
WHAM 7 was used. Detailed information about the cation ex-
change model can be found in the previous published literature 
(Lofts and Tipping, 1998).

Surface Complexation Models for (Hydr)oxides
In this study, metal binding to Fe and Al (hydr)oxides was 

modeled by the same SCM, which only considers amorphous 
metal oxides and the OH groups of the metal oxide surface re-
acted with both protons and metal ions (Lofts and Tipping, 
1998). The surface complexation reactions was modified by an 
electrostatic reaction that depends on the net surface charge. The 
metal ions formed monodentate complexes. To account for the 
site heterogeneity of the oxide surface, the model further divided 
the surface sites into three groups according to their binding af-
finity, which had 90.1, 9, and 0.9% of the total binding sites. The 
specific surface areas are 600 and 400 m2 g-1 for Fe and Al (hydr)
oxides, respectively.

Model Input Parameters
The major WHAM model input parameters include total 

heavy metal concentrations, ROM in particulate and colloidal 
organic matter, mineral components including Fe and Al (hydr)
oxides and clay minerals, and solution chemistry conditions (e.g., 
pH, cations, and anions).

For laboratory spiked soil samples, the total metal concen-
trations were input as used in the experiments (plus the metal 
concentrations in original soils when available). The metal con-
centrations in original soils are usually much lower than that 
spiked in the laboratory. For the field contaminated soils, how-
ever, only the portion of metals extracted by the specific extrac-
tion methods was input in WHAM 7. Most of those extraction 
methods differed from the acid concentrations as specified in 
Table 2. To quantify the ROM in SOM, we adapted the relation-
ship between SOC and ROC (reactive soil organic carbon) de-
rived in our previous study (Shi et al., 2013a, 2013b). The ROC 
values for all soils were calculated by linear interpolation of the 
ROC values of soils determined in the previous study. Generally 
organic carbon contents in SOM may vary among soils. In this 

study, we continued to use the approach used in previous stud-
ies to convert organic carbon to organic matter (Ponizovsky 
et al., 2006b; Shi et al., 2007, 2013a), in which the ROC was 
converted to ROM by multiplying a factor of 1.8. For ROM, 
it was input as 84% HA and 16% FA in WHAM. For DOM, 
it was assumed that 65% of DOM was present as FA (Tipping 
et al., 2003). Since DOM compositions may vary (Vink et al., 
2017), we also tested model performance by assuming 30% of 
DOM was FA. For Fe minerals, both crystalline and amorphous 
Fe (hydr)oxides are responsible for metal binding. In the previ-
ous study (Dijkstra et al., 2004), the specific surface area of the 
crystalline Fe (hydr)oxides was assumed to be 100 m2 g-1

, 1/6 of 
the amorphous Fe (hydr)oxides’ specific surface area, while site 
density of both crystalline and amorphous Fe (hydr)oxides were 
the same. Therefore, in WHAM 7 calculations, the sum of amor-
phous Fe (hydr)oxides and 1/6 crystalline Fe (hydr)oxides was 
input as the total reactive amorphous Fe (hydr)oxides. For com-
parison, model performance without considering crystallized 
iron (hydr)oxides was also tested. For Al (hydr)oxides, only the 
amorphous Al oxides were input in WHAM 7. The clay content 
was input as determined.

Cation competition from typical cations including Ca2+, 
Mg2+, Al3+ and Fe3+ was considered. For both Ca2+ and Mg2+, 
the solution concentrations, when available, were input in 
WHAM 7 calculations. In other cases, the BaCl2 extractable Ca 
and Mg were input as total Ca and Mg in WHAM 7 calculations. 
For Al3+ competition, the Al3+ ion activity was assumed to be 
controlled by the solubility of Al hydroxide with log Kso = 8.3 
at pH ≥ 5.5,

{ }3
solog Al log  3pHK+ = −  [5]

and, when pH < 5.5, we used the linear regression equation be-
tween Al3+ ion activity and pH to calculate the Al3+ ion activity 
(Shi et al., 2013a),

{ }3log Al  1.28pH 1.27+ =− −  [6]

For Fe3+ competition, the Fe3+ ion activity was assumed to 
be controlled by the solubility of Fe hydroxide with log Kso = 2.7,

{ }3
solog Fe log  3pHK+ = − 	  [7]

Data Analysis
To assess the model performance, model calculated total 

dissolved metals were compared with experimentally determined 
values. The RMSEs were computed for each heavy metal. The 
error analysis was used to evaluate the most important model pa-
rameters affecting the model performance. We further assessed 
the roles of each soil components in controlling metal partition-
ing at various reaction pH. We specifically analyzed how each of 
SOM binding sites controlled metal partitioning as a function 
of both reaction pH and adsorbed metal concentrations on each 
SOM binding site.
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Results and Discussion
Prediction of Heavy Metal Partition Equilibrium

The predictive capability of WHAM 7 for heavy metal 
partitioning between soil and solution was assessed based on the 
dissolved metal concentrations (Cw). The comparison between 

model predicted and experimentally determined 
Cw is shown in Fig. 1, for all five heavy metals. For 
all 1737 data points, the RMSE value of logCw 
is 0.57, which indicates that WHAM 7 can rea-
sonably predict the partition of heavy metals 
between soil and solution over a wide range of 
conditions, with the default model parameters of 
WHAM 7. Cd has the most data points among 
five heavy metals, with a total of 846 data points, 
and the RMSE value of logCw is 0.32, showing 
the best model performance among five heavy 
metals. Pb has the second largest data sets (562 
data points) but with the largest RMSE value 
of logCw (0.83). For Cu, Ni and Zn, they have 
much smaller amount of data points and their 
model performance is between that of Cd and 
Pb, based on the RMSE values of logCw (0.68 for 
Cu, 0.51 for Ni, and 0.45 for Zn).

The effects of iron (hydr)oxides and DOM compositions 
on model performance were also assessed based on logCw values. 
When no crystallized iron (hydr)oxides were considered in mod-
el calculations, there was little impact on the model performance 
for all five metals, with the changes of RMSE values of logCw 
less than 0.05. Decreasing the percent of FA from 65 to 30% may 
affect the model performance, with improved model predictions 
for some studies but worse predictions for others (e.g., changes 
of RMSE values of logCw about 0.1 to 0.2). The overall model 
performance including all studies, however, did not change sig-
nificantly, indicating no systematic impact of DOM composi-
tions on model performance. Nevertheless, an accurate determi-
nation of dissolved organic carbon (DOC) concentrations and 
the compositions of DOM will help to accurately predict metal 
partitioning in soils.

We further conducted error analysis based on logCw to 
examine the major impact factors accounting for the observed 
errors between WHAM 7 predictions and experimental results. 
Analyzed factors include major soil properties, such as concen-
trations of SOM and iron (hydr)oxides, and solution chemistry 
conditions, such as pH, dissolved Ca and Mg concentrations, 
Fe3+ and Al3+ activities, etc. Generally, we did not find any 
correlation between the major soil properties and the residuals 
of logCw between experimental results and model predictions 
(DlogCw) for any of the five heavy metals. Among the major 
solution parameters, total dissolved Ca concentrations and pH 
appeared to be two main parameters correlated to observed 
DlogCw. For Cd, Cu, Pb, and Zn, it was found that there was a 
negative correlation betweenΔlogCw and the logarithm of total 
dissolved Ca concentrations (Fig. 2), highlighting the importance 
of Ca competition for heavy metal binding to soil. Note that por-
tion of the studies measured total dissolved Ca, while others only 
measured total extracted Ca concentrations and the dissolved Ca 
concentrations were calculated by WHAM 7. Detailed analysis 
on model performance by separating those two groups of data 
(measured and calculated dissolved Ca) generally still showed 

Fig. 1. Comparison of dissolved metal concentration Cw between WHAM 7 predictions 
and experimental results at pH = 3.0- 7.0 for Cd, Pb, Cu, Ni and Zn. Solid lines are the 1:1 
line and lines indicating ± 1 orders of magnitude deviations. The dotted lines indicate ± 0.5 
orders of magnitude deviations (about a factor of 3).

Fig. 2. Residual plot of log Cw between experimental results and model 
predictions. Left panels: residuals as a function of total dissolved 
Ca concentrations; right panels: residuals as a function of reaction 
pH. Solid lines colored by dark and red indicate the linear fittings of 
residuals with dissolved Ca concentrations and pH, respectively.
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that DlogCw was negatively correlated with the logarithm of to-
tal dissolved Ca concentrations for each group of data (results 
not shown). With the increase of total dissolve Ca concentra-
tions, WHAM 7 predictions switched from underprediction to 
overprediction of total dissolved metal concentrations compared 
with the experimental data. Therefore, an accurate measurement 
of total reactive Ca concentrations in soil and Ca binding to soil 
are important for accurate model predictions. For Pb, there was 
a positive correlation betweenΔlogCw and solution pH. For Ni, 
we did not find any correlations betweenΔlogCw and the major 
soil and solution parameters that we analyzed.

The application of chemical speciation models including 
WHAM to predict metal partitioning between soil and solution 
has been extensively studied, as reviewed by Groenenberg and 
Lofts (2014). Among typical heavy metals, Pb usually showed 
the poorest model performance as shown in multiple studies (e.g., 
Gustafsson et al., 2003; Weng et al., 2001; Xiong et al., 2013), 
which was attributed to multiple factors such as underestimation 
of the strong Pb binding sites in SOM (Gustafsson et al., 2003), 
difference between SOM and generic humic acids used in devel-
oping chemical speciation models (Xiong et al., 2013), underes-
timation of Pb binding to mineral phases (e.g., Al and Fe (hydr)
oxides and Mn oxides) (Groenenberg and Lofts, 2014), and the 
presence of Pb colloids (Sjöstedt et al., 2018). In addition to spe-
cific soil and solution parameters causing errors 
of model predictions, which has been discussed 
in details in each individual study, there are also 
other important processes that may affect the ac-
curacy of model predictions. Current assemblage 
models including WHAM use a component ad-
ditivity approach and the interactions between 
organic matter and mineral phases are ignored, 
which may affect model performance (Christl 
and Kretzschmar, 2001; Vermeer et al., 1999). 
Furthermore, the molecular level investigation of 
DOM has shown that the fractionation of DOM 
due to interactions with mineral phases may sig-
nificantly affect its compositions and reactiv-
ity (Lv et al., 2016). Therefore, further research 
should consider incorporating those important 
environmental processes in modeling metal be-
havior in soil.

Metal Distribution among Different 
Soil Components

The model-predicted heavy metal distri-
bution among different soil components is pre-
sented in Fig. 3. The metals Cd, Cu, Ni, and Zn 
showed a similar pattern, in which SOM and clay 
minerals dominated metal sorption at low pH 
and then SOM became dominant at intermedi-
ate and high pH values, especially at pH > 5.5. 
Note that, at low pH, the overall metal adsorp-
tion was small and the majority of metals were in 

the solution. With the increase in pH, the portion of Cd, Cu, 
Ni, and Zn adsorbed on Fe (hydr) oxides increased and the ad-
sorption on clay minerals decreased. The portion of heavy metals 
adsorption on Al (hydr)oxides was always much lower than that 
on Fe (hydr)oxides.

For Cu, SOM was the most dominant adsorbent across the 
pH range we studied, mainly due to the strong binding ability 
of Cu to SOM, which was consistent with the previous studies 
on Cu partitioning in soil (Gustafsson et al., 2003; Weng et al., 
2001). The strength of Cu binding to Fe (hydr)oxides is usu-
ally considered to be moderate, stronger than Cd, Ni and Zn 
but weaker than Pb (Tiberg and Gustafsson, 2016; Tiberg et al., 
2013), which generally cannot effectively compete with SOM 
for Cu binding at acidic pH in most soils. For Pb, the distribu-
tion of Pb among SOM, metal (hydr)oxides, and clay minerals 
is highly dependent on the reaction pH. At low pH values, both 
SOM and clay minerals were significant on Pb binding. With 
the increase in pH, the role of Fe (hydr)oxides became more im-
portant. When pH > 5.0, Fe (hydr)oxides can effectively com-
pete with SOM for Pb binding, and, when pH > 6.0, more Pb 
may bind to Fe (hydr)oxides than to SOM. This binding behav-
ior is consistent with the strong binding ability of Pb to Fe (hydr)
oxides, which was also reported in previous studies (Gustafsson 
et al., 2011; Shi et al., 2013a).

Fig. 3. Relative contributions of soil organic matter (SOM), clay minerals, Fe and Al (hydr)
oxides to Cd, Pb, Cu, Ni, and Zn adsorption at various pH. All the symbols were calculated 
by WHAM 7.
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The overall model predictions of WHAM 7, compared 
with multiple previous studies as listed in Table 1, generally show 
similar performance to some studies (e.g., Shi et al., 2007, 2013a; 
Weng et al., 2001) when the chemical speciation models were 
used without any further adjustment, but show larger deviations 
than those studies in which model parameter optimization was 
used (e.g., Almas et al., 2007; Gustafsson et al., 2003). Metal dis-
tribution among different soil components, which was reviewed 
by Groenenberg and Lofts (2014), is highly dependent on pH. 
At acidic to neutral pH, SOM was considered to be the most 
dominant adsorbent in soil (Duffner et al., 2014; Gustafsson et 
al., 2003; Weng et al., 2001, 2004), clay minerals may also signifi-
cantly contribute to metal binding at low pH (Gustafsson et al., 
2011; Shi et al., 2013a), and iron and aluminum oxides became 
more important when pH is greater than 7 (Dijkstra et al., 2009; 

Fest et al., 2005; Gustafsson et al., 2011; Izquierdo et al., 2013; 
Marzouk et al., 2013; Shi et al., 2013a). Our model predictions 
are consistent with those previous observations. Furthermore, 
the dominance of SOM on metal binding in soils has been re-
ported in spectroscopic studies (Fan et al., 2016; Karlsson et al., 
2006; Shi et al., 2012; Strawn and Sparks, 2000), while the im-
portance of mineral phases was found to be dependent on the 
soil compositions and reaction conditions (Peng et al., 2018; Shi 
et al., 2012). However, metal speciation in field contaminated 
soils with high metal concentrations may be significantly dif-
ferent from that in laboratory metal-spiked soils, which may 
contain different metal minerals formed during contamination 
processes (Degryse et al., 2011; Khaokaew et al., 2011, 2012; 
Roberts et al., 2002). Cautions should be taken when applying 
chemical speciation models to those soils.

Metal Distribution among SOM 
Binding Sites

As shown in our previous studies, metal 
binding to different sites of natural organic mat-
ter may have different adsorption and desorp-
tion rates (Peng et al., 2018; Shi et al., 2016). 
Therefore, it is essential to understand metal 
binding to different SOM sites under various 
reaction conditions. Figure 4 shows metal dis-
tribution on different binding sites of SOM as a 
function of pH and adsorbed metal concentra-
tions on SOM for Cd and Pb. For Cd, bidentate 
complexes dominated at intermediate and high 
pH while the formation of the outer-sphere com-
plexes was significant at low pH (e.g., pH < 5) 
(Fig. 4A). The monodentate complexes may be 
significant only at high Cd concentrations while 
the tridentate complexes were usually minor un-
der the experimental conditions analyzed in this 
study. Tridentate sites have small quantity and 
require two A sites and another B site to form 
metal complexes in WHAM 7. Therefore, at 
much lower metal concentrations and high pH, it 
is expected that tridentate sites may be significant 
in controlling metal binding to SOM. Among all 
individual bidentate and monodentate binding 
sites, three binding sites, AB weak, AA weak, and 
A sites, accounted for the majority of Cd binding 
to SOM sites.

Different from Cd, both Pb bidentate and 
monodentate complexes dominated Pb binding 
to SOM while the formation of both tridentate 
complexes and outer-sphere complexes was gen-
erally small (Fig. 4B), due to the much larger met-
al binding constants of Pb compared with Cd. In 
WHAM 7, Pb has a logKMA (logarithm of the 
average of the metal binding constant for A sites) 
value of 2.37 for HA and 2.15 for FA, while Cd 

Fig. 4. Distribution of (A) Cd and (B) Pb on SOM binding sites predicted by WHAM 7 
based on the literature data. The total of tridentate complexes, bidentate complexes, 
monodentate complexes, and electronical outer-sphere complexes (denoted as D) equals 
to 100%. Refer to the text for the definition of each metal complex. CSOM/SOC, the total 
Cd or Pb concentration per unit mass of soil organic carbon (SOC).
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has a logKMA value of 1.67 for HA and 1.51 for FA. Low Pb con-
centrations favored the formation of bidentate complexes and 
the monodentate complexes were the most significant at high 
Pb concentrations and low pH values. Among those individual 
bidentate and monodentate sites, AB weak, AA weak, A and B 
sites, were four most important sites accounting for Pb binding.

Not shown here, the distribution of Cu, Ni and Zn among 
various SOM binding sites was, to different extent, similar to 
what we observed for both Cd and Pb, with bidentate binding 
dominating and the contribution of monodentate binding and 
outer-sphere complexes slightly varying among metals. Although 
numerous studies have been done on predicting metal partition 
equilibrium using chemical speciation models, very few focused 
on the roles of each specific binding sites on controlling metal 
binding (Gustafsson and van Schaik, 2003; Shi et al., 2016; 
Tipping and Hurley, 1992; Xiong et al., 2013). In WHAM 7, 
Model VII predicted that the formation of bidentate complexes 
dominated metal binding to SOM in most conditions, which is 
consistent with previous studies with WHAM (Shi et al., 2016; 
Tipping and Hurley, 1992). Our results also suggest that, while 
different SOM binding sites may be formed via different com-
binations of carboxylic and/or phenolic sites, only a few bind-
ing sites dominated metal binding even across a wide range of 
experimental conditions analyzed in this study. The relative sig-
nificance of those individual sites may differ according to specific 
reaction conditions.

While recent spectroscopic studies have supported the for-
mation of metal bidentate complexes in SOM (Karlsson et al., 
2006; Xiong et al., 2013), the formation of different bidentate 
binding sites of SOM in WHAM 7 is hypothetical. In WHAM, 
bidentate sites are formed by combining two monodentate sites, 
which uses an additive approach to calculate binding constants for 
bidentate complexes based on the binding constants of the two 
monodentate sites forming the bidentate complexes (Tipping 
and Hurley, 1992). It is usually difficult, if possible, to experimen-
tally determine the values of metal binding constants for each in-
dividual SOM binding sites, complicating the assessment of the 
model performance at the molecular level. The magnitude and 
distribution of metal binding constants used in WHAM were 
evaluated based on the LFERs (linear free energy relationship) 
for metal–ligand complexation (Atalay et al., 2013; Carbonaro et 
al., 2011; Carbonaro and Di Toro, 2007). Consistency has been 
found between binding constants calculated from the bidentate 
LFERs and those used in WHAM, but there are also some sig-
nificant difference for metal binding to those minor amount of 
strong binding sites and sites containing neutral nitrogen func-
tional groups (Atalay et al., 2013; Carbonaro et al., 2011). Further 
research is thus desired to more accurately describe metal binding 
to individual SOM binding sites.

As briefly reviewed in the Introduction section, chemical 
speciation models with different assumptions on site distribu-
tions and binding properties of soil binding sites have shown 
success in predicting metal partition equilibrium with reason-
able accuracy, but metal binding to different binding sites may 

result in significantly different sorption/desorption rates (Shi et 
al., 2016; Tian et al., 2017). Since those individual SOM bind-
ing sites may control the kinetic behavior of metals at different 
time scales, it is essential to accurately predict the distribution of 
metal ions on different soil binding sites. In soil environments, 
reaction equilibrium may not reach due to the frequent changes 
of environmental conditions and the dynamic cycling of SOM 
and Fe minerals. As discussed in the Introduction section, differ-
ent SOM binding sites may have significantly different reaction 
rates with heavy metals. To more accurately predict the dynamic 
behavior of heavy metals in soil environments, it is essential to re-
late the reaction equilibrium to the kinetics of heavy metal reac-
tions with each individual soil binding site. The results presented 
in this study have shown that WHAM 7 may provide a basis for 
further research for this aspect.

Conclusions
WHAM 7 has been successfully applied to predict heavy 

metal partitioning between soil and solution over a wide range 
of reaction chemistry conditions, with reasonable accuracy based 
on the analysis of over 1700 literature data. While multiple fac-
tors may account for the deviations between model predictions 
and experimental results, solution pH and Ca concentrations 
are the most important factors explaining the observed errors. 
SOM, Fe (hydr)oxides and clay minerals are three most im-
portant reactive soil components for metal binding, and their 
relative contributions are highly dependent on reaction pH and 
specific metals. Based on WHAM 7 calculations, among mul-
tiple SOM binding sites, bidentate sites dominate metal binding 
and those abundant bidentate sites formed either through two 
carboxylic sites or through one carboxylic and another pheno-
lic sites are most significant ones. Monodentate binding may be 
significant when total metal concentrations are high while tri-
dentate binding is only significant at low metal concentrations 
and high pH. It is desired, at the molecular level, to verify metal 
binding to various SOM sites in the future. Our modeling results 
have highlighted the importance of specifically considering each 
individual soil binding site when predicting the fate and trans-
port of heavy metals in soil environments.
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