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ABSTRACT

Triple-negative breast cancer (TNBC) is a highly heterogeneous disease with 
an aggressive clinical course. Prognostic models are needed to chart potential 
patient outcomes. To address this, we used alternative 3′UTR patterns to improve 
postoperative risk stratification. We collected 327 publicly available microarrays 
and generated the 3′UTR landscape based on expression ratios of alternative 3′UTR. 
After initial feature filtering, we built a 17-3′UTR-based classifier using an elastic net 
model. Time-dependent ROC comparisons and Kaplan–Meier analyses confirmed an 
outstanding discriminating power of our prognostic model for TNBC patients. In the 
training cohort, 5-year event-free survival (EFS) was 78.6% (95% CI 71.2–86.0) for 
the low-risk group, and 16.3% (95% CI 2.3–30.4) for the high-risk group (log-rank 
p<0.0001; hazard ratio [HR] 8.29, 95% CI 4.78–14.4), In the validation set, 5-year 
EFS was 75.6% (95% CI 68.0–83.2) for the low-risk group, and 33.2% (95% CI 17.1–
49.3) for the high-risk group (log-rank p<0.0001; HR 3.17, 95% CI 1.66–5.42). In 
conclusion, the 17-3′UTR-based classifier provides a superior prognostic performance 
for estimating disease recurrence and metastasis in TNBC patients and it may permit 
personalized management strategies.

INTRODUCTION

Triple-negative breast cancer (TNBC) which lacks 
estrogen receptor (ER) and progesterone receptor (PR) 
expression and without human epidermal growth factor 
receptor 2 (HER2) amplification, accounts for 15–20% 
of breast cancers [1]. It is a highly heterogeneous disease 
with an aggressive clinical course. Survival dramatically 
decreases during the first 3 to 5 years after diagnosis 
and distant relapse after this period is rare, indicating a 
potential curability of TNBC.

Treatment selection should be tailored to the patient 
based on the risk of recurrence and it should include 
considerations of tumor size, lymph node and receptor 
status and patient age at diagnosis [2]. In the era of 

personalized medicine, traditional clinicopathological 
risk factors are being challenged [3] and novel biomarkers 
and multigene expression assays [4–6] are emerging as 
better predictors of patient outcomes. However, few risk 
prediction models are widely used in clinical practice so 
the need remains to distinguish TNBC patients with poor 
prognosis from those with potentially favorable outcomes, 
and to test alternative treatment modalities with higher 
toxicity for these high-risk patients.

Alternative polyadenylation (APA) is a fundamental 
molecular mechanism influencing the kinetics of gene 
regulation under diverse physiological and pathological 
states through the dynamic usage of messenger RNA 
(mRNA) 3′ untranslated regions (3′UTRs) [7, 8]. Virtually 
70% of human genes have multiple polyA sites that 
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produce distinct transcripts with variable 3′UTR length 
and this contributes to transcriptome diversity [9, 10]. 
Recent studies [11–13] suggest a biological importance 
of APA dynamics in human cancer, but the precise 
role in carcinogenesis is pooly defined. We previously 
demonstrated the prognostic relevance of 3′UTR APA 
dynamics in prostate cancer. Consensus clustering with 
3′UTR APA data stratified patients with prostate cancer 
into four subsets with different risk of biochemical relapse 
[14], indicating that a 3′UTR signature can be used to 
stratify risk in cancer. For breast cancer, only a few studies 
describe the 3′UTR landscape in clinical specimens and 
most focus exclusively on the prognostic significance of 
3′UTR shortening, regardless of the heterogeneity between 
different molecular subtypes [15, 16]. Data are still scarce 
for APA dynamics of TNBC and its survival relevance, so 
we estimated the underlying prognostic value of a 3′UTR 
signature in TNBC including both 3′UTR shortening and 
lengthening. Then we developed a multi-3′UTR-based 
model with an elastic net model to identify a subgroup 
of operable TNBC with high metastatic potential. We 
evaluated the prognostic efficacy of this classifier in 
training and validation sets and compared it to traditional 
clinical risk factor assessment and single 3′UTRs. To 
our knowledge, this is the first study that illustrates the 
prognostic significance of a 3′UTR signature in TNBC.

RESULTS

Patient characteristics

Patients (n = 327) with TNBC were retrospectively 
recruited to this study. Patients were on average 52.5 
years-of-age (SD 12.4 years; median 53 years, IQR 
43–61, range 29–84). After a median follow-up time of 
88 months, 114 of the 327 patients had tumor relapse or 
distant metastasis.

For robust prognostic modeling, we divided TNBC 
data into training (n = 164) and validation sets (n = 163) 
using stratified random sampling based on microarray 
batches. Baseline clinicopathological characteristics 
are summarized in Table 1. There was no statistically 
significant difference in the event-free survival time 
between TNBC patient sets (log-rank p = 0.89) or age 
(mean 52.4 years-of-age; IQR 43–61 for training set; 
mean 52.6 years-of-age; IQR 43–61 for validation set 
p = 0.465). Lymph node status and tumor size distributions 
did not vary between patients in either set (p = 0.977 and 
0.974, respectively).

We generated 3′UTR ERI profiles of 1,933 genes 
from 12 microarray batches and removed batch effects in 
ERI data using the ComBat method, which incorporates 
systematic batch biases common across variables for 

Table 1: Clinical characteristics of patients by 3′UTR assessment set

Training set Validation set

Number of 
patients

Low 
risk(%)

High 
risk(%)

p-value Number of 
patients

Low 
risk(%)

High 
risk(%)

p-value

Age 0.88 0.84

 >50 years 84 69 (82.1) 15 (17.9) 86 67 (77.9) 19 (22.1)

 ≤50 years 80 65 (81.3) 15 (18.8) 77 61 (79.2) 16 (20.8)

Lymph node 
status 0.70 0.21

 negative 130 107 (82.3) 23 (17.7) 129 104 (80.6) 25 (19.4)

 positive 34 27 (79.4) 7 (20.6) 34 24 (70.6) 10 (29.4)

Tumor size 0.48 0.43

 ≤2 cm 41 35 (85.4) 6 (14.6) 41 34 (82.9) 7 (17.1)

 >2 cm 123 99 (80.5) 24 (19.5) 122 94 (77.0) 28 (23.0)
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adjustments. Supplementary Figure S1 shows thatsamples 
mixed well in the principle component analysis (PCA), 
indicating corrected batch effects.

A 17-3′UTR-based classifier redefines patients 
with different risks of relapse or metastasis

After applying initial feature filtering using 
univariate Cox analysis, we developed a prognostic model 
with an elastic net to the training TNBC samples set. A 
value λ = 0.109 with log(λ) = −2.22 was chosen by leave-
one-out cross validation via 1-SE criteria. The optimal 
penalty parameter selected 17 3′UTRs in the elastic net 
model and risk scores were calculated for all patients as 
a weighted sum of selected features based on this model. 
The ultimate model is a linear combination of 3′UTRs 
(features) selected by the elastic net. The weights are an 
estimation of the information contributed by each marker. 
Specifically:

(Equation 1)
The exponential of the coefficient gives the hazard 

ratio (HR) of event (recurrent or metastasis) associated 
with each marker. Intuitively, we computed a standardized 
risk score and parameters of linear transformation were 
determined by the training set. Specifically:

standardized risk score =
risk score 0.625

0.578
−  

(Equation 2)

Supplementary Figure S2 shows that standardized 
risk score distribution was unimodal with similar peaks 
between training and validation cohorts. To select a 
threshold to stratify TNBC into high- and low-risk groups, 
we use X-tile approach, which split training patients 
into two risk groups with maximal χ2 log-rank value 
(Supplementary Figure S3). We included patients with risk 
scores > 1.146 (standardized risk score 0.903) as high risk 
of recurrence or distant metastasis (high-risk group), and 
those with risk score < 1.146 as low risk of recurrence or 
metastasis (low-risk group).

In the training set, high-risk patient prognosis 
was much worse (log-rank p<0.0001; hazard ratio [HR] 
8.29, 95% CI 4.78–14.4). Also, 5-year EFS was 16.3% 
(95% CI 2.3–30.4) for the high-risk group, and 78.6% 
(95% CI 71.2–86.0) for the low risk group (Figure 1A). 

The prognostic accuracy of the 17-3′UTR-based model 
to distinguish recurrent and non-recurrent TNBCs was 
assessed using time-dependent ROC curves. Bootstrap-
corrected area under the curve (AUC) at 3, 5, and 7 years 
were 0.842 (95% CI 0.771–0.912), 0.800 (95% CI 0.718–
0.882) and 0.815 (95% CI 0.738–0.892), respectively 
(Figure 1A).

To assess the robustness of the 17-3′UTR-based 
model, we applied it to validation set samples using the 
same threshold and divided validation set patients into 
two risk groups. Survival analysis revealed a significant 
difference between high- and low-risk groups (log-rank p 
< 0.0001; HR 3.17, 95% CI 1.66–5.42) and the 5-year EFS 
was 33.2% (95% CI 17.1–49.3) for the high-risk group, 
and 75.6% (95% CI 68.0–83.2) for the low-risk group 
(Figure 1B). Bootstrap-corrected AUC at 3, 5, and 7 years 
were 0.773 (95% CI 0.692–0.855), 0.768 (95% CI 0.689–
0.846) and 0.761 (0.680–0.841), respectively (Figure 1B).

We then investigated the relationship between the 
17-3′UTR-based classifier and available clinical risk 
factors (age, lymph node status and tumor size). Table 1 
confirms no significant correlation between the risk group 
and clinical factors in both sets (p > 0.05 for all). Stratified 
by age, lymph node status and tumor size, the 17-3′UTR-
based classifier could still differentiate patients with high- 
and low-risk TNBC among all subgroups (Figure 2).

17-3′UTR-based classifier adds significant 
prognostic information to established 
clinicopathologic risk factors

We evaluated the additional prognostic power 
of the 17-3′UTR-based classifier compared to clinical 
variables with using a univariate and multivariate Cox 
proportional hazards model. We included three clinical 
risk factors (age at diagnosis, lymph node status and 
tumor size) that were available for all patients in our 
analysis. The 17-3′UTR-based classifier and lymph node 
status were consistently significant across the different 
data sets (p<0.05; Table 2). After multivariate adjustment 
by clinicopathological variables, the 17-3′UTR-based 
classifier retained significant prognostic power in all 
327 patients. (HR 4.72, 95% CI 3.22–6.92; p<0.0001; 
Supplementary Table 1). The multivariate Cox analysis 
identified two independent prognostic factors for EFS: 
the 17-3′UTR-based classifier was the strongest predictor, 
followed by lymph node status.

Next, we compared the prognostic accuracy of 
the classifier and clinical variables. The 17-3′UTR-
based classifier had significantly more prognostic power 
compared to clinicopathological risk factors (p<0.0001 for 
all; Figure 3A). Combining the classifier and lymph node 
status increased the AUC at 5 years from 0.684 (95% CI 
0.633–0.734) to 0.729 (95% CI 0.666–0.792; p<0.0001; 
Figure 3A), indicating that joint use both indices improved 
the TNBC patient risk prediction.

SMAD6 CXCL8
CLIC2 PRCKB RTN1

ZCCHC14 PPIC SIK3
UBE2G2 SCL2A3
SYNGR1 NPL PRSS12
ADGRL2 ZER1 WDHD1 N BP2L2

Riskscore= 0.104 0.125 0.174
0.213 0.232 0.292

0.292 0.090 0.119
0.175 0.188

0.213 0.271 0.304
0.364 0.453 0.527 4

− × − × −
× − × − × − ×

− × + × +
× + × + ×

+ × + × +
× + × + × + ×
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Using a combination of the 17-3′UTR-based classifier 
and lymph node status, all patients were classified into four 
subgroups: low-risk/LN- (n = 211), low-risk/LN+ (n = 51), 
high-risk/LN- (n = 48), high-risk/LN+ (n = 17). Figure 3B 
shows survival curves of all four groups. Differences in 
EFS were significant among the four groups (log-rank p < 
0.0001). Patients with no positive lymph node and low-risk 
had a low risk of relapse and metastasis, with a 5-year EFS 
of 79.7% (95% CI 85.2–74.2), whereas the 5-year EFS for 
patients with positive lymph node status and high-risk was 
13.7% (95% CI -3.7–31.1).

Association between 3′UTR APA dynamics and 
event-free survival in TNBC

Figure 4 depicts the distribution of 17 3′UTR ERI 
levels, patient risk score, clinicopathological factors, and 
the EFS status of the training and validation sets. Two 
distinct groups of 3′UTR APA dynamics emerged in regard 
to prognosis: 3′UTR shortening and 3′UTR lengthening. 
The association between 3′UTR APA dynamics and 

EFS in patients with TNBC was evaluated by Kaplan–
Meier and Cox proportional hazard regression analyses 
(Supplementary Figure S4, S5 and Table 2).

Patients in the training set were divided into two 
groups based on 3′UTR ERIs. The optimal threshold for 
dichotomizing ERI to plot survival curves was derived 
from the training cohort using the X-tile program and was 
applied without modification to the validation set. 3′UTRs 
with ERIs exceeding the threshold were “shortened” and 
those at the threshold or less were “lengthened”. These 
parameters were also applied to the validation set. In 10 of 
17 selected 3′UTRs (N4BP2L2, WDHD1, ZER1, ADGRL2, 
PRSS12, NPL, SYNGR1, SCL2A3, UBE2G2 and SIK3), 
3′UTR shortening was correlated with poorer prognosis 
(Supplementary Figure S4; Table 2). In the remaining 
seven 3′UTRs (PPIC, ZCCHC14, RTN1, PRCK8, CLIC2, 
CXCL8 and SMAD6), 3′UTR lengthening offered an 
unfavorable prognosis (Supplementary Figure S5; Table 2).

We also assessed the prognostic accuracy of single 
3′UTR and the 17 3′UTR signature to distinguish highly 
metastatic TNBC using a time-dependent ROC test 

Figure 1: Risk score by the 17-3′UTR-based classifier, time-dependent ROC curves and Kaplan–Meier survival curves 
in the training and validation sets. Data are bootstrap-corrected AUC or hazard ratio (95% CI). ROC=receiver operator characteristic. 
AUC=area under the curve. A. Training set. B. Validation set.
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(Supplementary Figure S6). When considered individually, the 
17 3′UTRs had moderate bootstrap-corrected AUCs at 5 years 
(from 0.528 to 0.605). The 17-3′UTR-based classifier had 
greater AUC than that of any single 3′UTR (p<0.0001 for all).

DISCUSSION

Increasing recognition of the active role of 
3′UTR APA dynamics in tumorigenesis has led to the 
identification of novel APA markers for prognosis. 
We developed and validated a novel prognostic model 

based on 17 3′UTRs to improve the prediction of 
disease recurrence or distant metastasis for patients with 
operable TNBC. Data show that the proposed classifier 
can successfully identify a patient subgroup with poorer 
5-year EFS. In addition, this tool can reliably predict 
risk in patients with TNBC significantly better than the 
classical clinicopathological risk factors (age at diagnosis, 
lymph node status, and tumor size). When patients were 
stratified by risk factors, the 17-3′UTR-based classifier 
retained prognostic efficacy and offered additional power 
that complemented clinicopathological factor analysis. To 

Figure 2: Kaplan–Meier survival analysis for all 327 patients with triple negative breast cancer according to the 
17-3′UTR-based classifier stratified by clinicopathological risk factors. A, B. Age. C, D. Lymph node status. E, F. Tumor size. 
P-values were calculated using a log-rank test.
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our knowledge, this is the first study to report using the 
3′UTR signature in TNBC for patient prognosis.

In the present study, we confirmed that shortening 
of ten 3′UTRs (N4BP2L2, WDHD1, ZER1, ADGRL2, 
PRSS12, NPL, SYNGR1, SCL2A3, UBE2G2 and SIK3) 
is associated with unfavorable prognosis in TNBC. This 
is consistent with the emerging role of 3′UTR shortening 
which enables key genes to escape microRNA repression 
and cause accelerated tumor progression [11, 12]. Most 
genes with shortened 3′UTRs in TNBC participate 
in cancer development. WDHD1 acts as a cell cycle 
regulator and a downstream molecule in the PI3K/

Akt pathway in lung and esophageal carcinogenesis 
[17]. NPL glycoprotein serves as a serum biomarker to 
distinguish healthy and precancerous esophageal lesions 
[18]. SYNGR1 has differential expression between bladder 
cancer with different risk of recurrence [19]. UBE2G2 
is a mutant gene in human leukemia [20] and SIK3 has 
been recently identified as a tumor antigen associated 
with ovarian cancer tumorigenesis. The 3′UTR markers 
for which lengthening indicates poorer prognosis include 
PPIC, ZCCHC14, RTN1, PRCK8, CLIC2, CXCL8 and 
SMAD6. Among them, SMAD6 and CLIC2 are both 
related to the TGF-β pathway, and SMAD6 is associated 

Table 2: Univariate association of 17-3′UTR-classifier, clinicopathological variables, and single 3′UTR ERI with 
event-free survival

Training set (n=164) Validation set (n=163)

HR (95% CI) p-value HR (95% CI) p-value

Age (>50 years vs ≤50 
years) 1.17 (0.69-1.96) 0.56 1.01 (0.60-1.70) 0.96

Lymph node status 
(negative vs positive) 1.95 (1.06-3.60) 0.032 1.80 (1.02-3.19) 0.044

Tumor size (≤2 cm vs 
>2 cm) 1.10 (0.60-2.01) 0.76 1.51 (0.78-2.91) 0.22

CLIC2 3′UTR 0.52 (0.28-0.96) 0.036 0.61 (0.36-1.03) 0.063

CXCL8 3′UTR 0.61 (0.45-0.84) 0.0021 0.72 (0.54-0.97) 0.032

PPIC 3′UTR 0.32 (0.15-0.68) 0.0030 0.55 (0.25-1.23) 0.15

PRCKB 3′UTR 0.47 (0.27-0.80) 0.0055 0.60 (0.34-1.06) 0.077

RTN1 3′UTR 0.38 (0.16-0.91) 0.030 0.39 (0.17-0.86) 0.019

SMAD6 3′UTR 0.48 (0.29-0.81) 0.0062 0.72 (0.47-1.09) 0.12

ZCCHC14 3′UTR 0.55 (0.33-0.91) 0.021 0.70 (0.43-1.13) 0.15

ADGRL2 3′UTR 3.04 (1.34-6.91) 0.0080 2.37 (1.09-5.14) 0.030

N4BP2L2 3′UTR 2.77 (1.52-5.05) 0.00092 1.70 (0.91-3.18) 0.099

NPL 3′UTR 1.80 (1.00-3.22) 0.048 1.70 (0.98-2.96) 0.061

PRSS12 3′UTR 1.89 (0.80-4.49) 0.15 2.27 (1.20-4.30) 0.012

SCL2A3 3′UTR 2.20 (1.31-3.67) 0.0027 1.61 (0.96-2.68) 0.068

SIK3 3′UTR 2.34 (1.18-4.67) 0.015 1.92 (0.94-3.94) 0.073

SYNGR1 3′UTR 1.72 (0.93-3.18) 0.084 2.36 (1.26-4.42) 0.0072

UBE2G2 3′UTR 1.73 (0.98-3.04) 0.057 1.63 (1.01-2.64) 0.046

WDHD1 3′UTR 7.56 (2.01-28.6) 0.0028 3.01 (0.70-12.9) 0.14

ZER1 3′UTR 3.20 (1.32-7.75) 0.0099 1.76 (0.84-3.70) 0.13

17-3′UTR-based 
classifier 8.73 (5.05-15.1) <0.0001 3.22 (2.10-4.94) <0.0001

17-3′UTR-based 
classifier (low vs high 
risk)

8.29 (4.78-14.4) <0.0001 3.17 (1.86-5.42) <0.0001



Oncotarget59840www.impactjournals.com/oncotarget

with favorable survival in lung cancer [21, 22]. CXCL8 
participates in the autocrine NF-κB/IL-8 (CXCL8) 
pathway driving cell migration [23]. Previous studies have 
mainly focused on the prognostic significance of 3′UTR 
shortening, but our findings first propose that 3′UTR 
lengthening can reduce survival. We speculate that more 
microRNA response elements (MREs) are harbored in the 
lengthened 3′UTR, leading homologous gene repression 
and competing endogenous RNA (ceRNA), which causes 
a series of aberrant pathways and cancer progression. 
Using computational network analysis, our recent study 
[14] revealed alternative 3′UTR participates in ceRNA 
network dynamics in cancer but detailed mechanisms 
remain to be characterized.

Previous studies identified multiple 3′UTRs that 
with different length preferences in TNBC compared with 
non-TNBC or normal breast tissue [13, 24]. Two studies 
independently confirmed that 3′UTR shortening predicts 
unfavorable outcomes in breast cancer based on public 
high-throughput data obtained from GEO and The Cancer 
Genome Atlas (TCGA), respectively [15, 16]. However, 
research in cell lines indicated that TNBC prefers longer 
forms of 3′UTR compared with luminal subtype tissue 
and normal breast tissue [13]. Previous studies are limited 
by small numbers of 3′UTR analyzed, small sample 
sizes and a lack of validation. Although this preliminary 
work laid the groundwork for exploring the importance 
of 3′UTR shortening as a promising marker in cancer, 
our findings are more broad and inclusive of 3′UTR 

dynamics in human malignancy. With a high-dimensional 
elastic net modeling technique, we established a 3′UTR 
signature (including 3′UTR shortening and lengthening) 
to be a powerful tool for TNBC patient risk stratification 
by correlating alternative 3′UTR patterns with survival 
outcomes.

The proposed classifier is of clinical importance 
because current gene expression prognostic models such 
as the 70-gene signature [4], the Genomic Grading Index 
[25], and the Recurrence Score [26] allocate unfavorable 
prognostic risk category to all TNBC patients despite the 
diversity of clinical outcomes. Because TNBC is a highly 
heterogeneous disease, treatment strategies should be 
personalized according to risk recurrence and our data 
allow this type of risk evaluation and better management 
of TNBC patients.

Of note, the statistical method used for analyzing 
microarray data must be carefully selected. Cox regression 
was used previously [15] when constructing a prognostic 
model for breast cancer but this is inappropriate due to 
an insufficient sample size relative to the high-dimension 
features (i.e. sample size n: feature size p less than 10:1), 
especially for high-dimensional microarray data. An 
elastic net overcomes this disadvantage (p >> n) and 
simultaneously conducts automatic variable and group 
selections of correlated features [27, 28].

The primary limitation of this study is that it is a 
retrospective study. Thus, data must be validated using a 
prospective study in a multicenter clinical trial. In addition, 

Figure 3: Time-dependent ROC curves compare the prognostic power of the 17-3′UTR-based classifier with 
clinicopathological risk factors, and Kaplan–Meier survival analysis for patients stratified by the classifier and lymph 
node status. ROC=receiver operator characteristic. AUC=area under the curve. A. Comparisons for the prognostic accuracy by the 
17-3′UTR-based classifier (high risk vs low risk), age (≤50 years vs >50 years), lymph node status (positive vs negative), tumor size (≤2 
cm vs >2 cm), or the classifier and lymph node status combined. B. Kaplan–Meier survival analysis shows significant difference among the 
four groups: low-risk/LN- (n = 211), low-risk/LN+ (n = 51), high-risk/LN- (n = 48), high-risk/LN+ (n = 17).



Oncotarget59841www.impactjournals.com/oncotarget

3′-based chips (HG-U133A and HG-U133 plus 2.0) severely 
limited the number of genes analyzed (1,933 genes in this 
study, or ~9.7% of human protein-coding genes). We chose 
this platform because these two chips are widely used in gene 
expression studies and the number of available microarray 
data with survival and clinical information was sufficient 
for prognostic modeling. We show that transcripts with 
significant 3′UTR length change are highly biologically and 
clinically relevant to cancer. However, we cannot ensure our 
results are unbiased estimations of whole genome profiles 
among TNBC, so generalizations to patterns of alternative 
3′UTR should be performed with caution. Currently we 
are conducting a study to profile 3′UTR APA dynamics of 
TNBC using transcriptome arrays, which provide a less 
biased 3′UTR landscape (paper in preparation).

In summary, we performed the largest 3′UTR APA 
prognostic analysis of pooled gene expression data and 
yielded essential clinical information about TNBC. We 
described a new 3′UTR signature for TNBC that identifies 
about one-fifth of TNBC patients as being relatively high 
risk for tumor recurrence. Finally, we studied a limited 
number of genes, our novel 3′UTR-based classifier should 

lay a solid foundation for future biological and pathologic 
analysis of alternative 3′UTR events in TNBC.

MATERIALS AND METHODS

TNBC microarray data collection

In this study, we used data from a single 
Affymetrix platform (including HG-133A and HG-
U133 plus 2.0) which is commonly used in microarray 
studies of breast cancer. Because most microarrays 
lacked immunohistochemistry information for ER, PR 
and HER2, triple-negative status was defined based on 
the bimodal filter of mRNA expression of ER, PR and 
HER2 as previously described [29, 30]. For prognostic 
efficacy comparisons and stratification analysis, we only 
included samples with available follow-up data and 
three established clinicopathological risk factors: age at 
diagnosis, lymph node status and tumor size. Then, 327 
publicly available microarrays were analyzed. Data for 
3′UTR analysis comprised 12 pooled public data sets 
obtained from the Gene Expression Omnibus (GEO), 

Figure 4: Shortening and lengthening patterns for the 3′UTR markers, patient outcomes and risk scores. Risk groups 
were defined by the risk score with the most significant (log-rank test) split of the training samples.
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accession GSE31519, GSE29690, GSE2603, GSE2034, 
GSE5327, GSE11121, GSE7390 and GSE21653.

3′UTR profiling and data normalization

Microarrays were analyzed using an R package 
‘ERI-expr’ [15], which contains custom chip description 
files (CDF) for HG-U133A, HG-U133B and HG-U133 
plus 2.0. Briefly, the processed probesets matching 
alternative transcripts with different 3′UTR lengths were 
extracted in terms of APA sites defined by the polyA_DB 
database [31]. After robust multi-array average (RMA) 
correction, intensities for the 5′ (S5′) and 3′ (S3′) probe 
sets included in the custom CDF were extracted. The 
expression ratio index (ERI) was defined as the signal ratio 
of 5′ and 3′ probesets of the APA site:

ERI
s
s

e
e

L

L

S S

L L

5'

3'

α
β

α
β

≡ = +
  (Equation 3)

In equation 3, eS(eL) represents expression of 
the short (long) form of the 3′UTR, whereas αS,L(βS,L) 
denotes the affinities of the short (S) or long (L) forms 
for the 5′ (α) and 3′ (β) probe sets. The ERI is a linear 
function of the expression ration between shortening 
and lengthening forms of 3′UTR. Thus, we used the ERI 
value to characterize the relative prevalence of the APA 
dynamics. With this algorithm, 6,045 APA sites in 3,542 
unique genes in HG-U133 plus 2.0 and 3,210 APA sites 
in 1,933 genes in HG-U133A were identified. Using the 
intersection of the recognized APA sites between the two 
chips, we reported the ERI value of the APA site closest 
to 5′ end of the gene with multiple APA sites, since 90% 
of the significant changes in APA isoform expression 
occurred at the first APA site [32].

To minimize batch effects when pooling ERI data, 
we used an empirical Bayes based ComBat method to 
adjust batch effects in microarray data [33]. To confirm 
that batch effects were successfully removed, principle 
component analysis (PCA) of combined ERI data sets 
was subsequently performed to visualize the spatial 
distribution of data sets from different batches.

Development and validation of risk prediction 
model for TNBC

3′UTR profiles were obtained from 12 publicly 
available data sets that contained 327 primary TNBCs. 
For robust analysis, we used stratified random sampling 
to assign each sample to a training or validation set 
according to chip batch. Patient characteristics of training 
and validation cohorts appear in Table 1. To reduce feature 
dimensionality, we first filtered out noisy features using 
univariate Cox analysis applied to 3′UTR ERI data. We 
established a threshold of 0.15 for the p-values, and kept 
only 3′UTRs with a Wald p-value smaller than 0.15 for 
model development.

Next, we used the elastic net [27] to identify 
3′UTRs associated with event-free survival and to train 
the final model for prognosis with the selected features 
in the training set. The elastic net has been extended and 
broadly applied to the Cox proportional hazard regression 
model for survival analysis with high-dimensional data. 
This approach conducts automatic feature selection and 
group selection of the correlated variables simultaneously 
[28]. To find a parsimonious model with a modest 
discriminating accuracy, we used ten-fold cross validations 
to select the penalty parameter λ (the tuning parameter), 
and chose λ via 1-SE (standard error) criteria. The elastic 
net mixing parameter α was set to 0.5. We used R version 
3.2.3 and its implemented ‘glmnet’ package [34] to 
perform the elastic net analysis.

To evaluate the effectiveness of the 3′UTR signature 
for survival prediction, we assigned each patient a risk 
score according to a linear combination of ERI of the 
3′UTRs selected by the elastic net. The risk score function 
for sample i using the information from the significant 
3′UTRs was calculated as follows:

W srisk score j ij∑=   (Equation 4)

In the above equation, sij is ERI for 3′UTRj on 
sample i, and Wj is the weight of the risk score of 3′UTRj. 
Weights were obtained by the corresponding coefficients 
derived from the elastic net modeling. The weights are a 
rough estimate of the information content contributed by 
each 3′UTR to event-free survival. The standard risk score 
was also reported for each sample. Then, we allocated 
the patients to high-risk and low-risk groups using X-tile 
plots based on correlations with the patients’ event-free 
survival.

X-tile plots adopt an intuitive and concise approach 
to estimate associations between variables and survival. 
For continuous variables, X-tile software can analyze 
each value and choose an optimal threshold with the 
maximal Chi square value according to the log-rank test 
(or minimum p-value) [35]. We performed X-tile analysis 
using X-tile version 3.6.1 (Yale University School of 
Medicine, New Haven, CT).

To confirm the robustness of the elastic net model, we 
calculated risk scores based on Equation 4 for the validation 
samples, and divided them into high- or low-risk groups, 
with the threshold determined in the training set as described 
above. Time-dependent receiver operating characteristic 
(ROC) curves, a Cox regression model and Kaplan–
Meier survival analysis were used to assess the prognostic 
accuracy of the model in training and validation sets.

Statistical analysis

Patient characteristics were summarized for all 
participants using standard descriptive statistics. A 
Pearson’s χ2 test was used to compare categorical variables 
whereas the Student’s t-test was used for continuous 
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variables. Disease-free survival (DFS) was preferentially 
used as a clinical end point for event-free survival (EFS). 
In data sets without DFS records, distant-metastasis-free 
survival (DMFS) was used as proxy for DFS. Patients 
with a study end date or who were lost to follow-up were 
considered censored. The median follow-up time was 
calculated using a reverse Kaplan–Meier method and the 
Kaplan–Meier method was used to construct EFS curves. 
Log-rank tests were used to assess survival differences. 
Unadjusted and adjusted hazard ratios (HR) with 95% 
confidence intervals (CI) were calculated using Cox 
proportional hazards models.

Time-dependent ROC curves were used to assess the 
risk prediction model and clinical factors to discriminate 
among patients with respect to the risk of EFS events 
[36]. Prediction accuracy was calculated based on the 
area under the time-dependent ROC curve (AUC). We 
performed 1,000 bootstrap re-samplings to compute CI for 
the AUC. In this procedure, rows of data were sampled 
with replacements, and risk scores and corresponding 
AUC values were estimated for each iteration.

All reported p-values were two sided and p<0.05 
was considered to be statistically significant. All statistical 
analyses were completed using SPSS Statistics 20 (SPSS 
Inc., Chicago, IL) and R 3.2.3 (R Development Core 
Team, Vienna).
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