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ABSTRACT. We review the methods and applications of automatic differentiation, a research and devel-

opment activity, which has evolved in various computational fields since the mid 1950’s. Starting from

very simple basic principles that are familiar from school, one arrives at various theoretical and practical

challenges. The resulting activity encompasses mathematical research and software development; it is now

often referred to as algorithmic differentiation. From a geometrical and algebraic point of view, differenti-

ation amounts to linearization, a concept that naturally extends to infinite dimensional spaces. In contract

to other surveys, we will emphasize this interpretation as it has become more important recently and also

facilitates the treatment of nonsmooth problems by piecewise linearization.

Keywords: Jacobians, Taylor expansions, piecewise linearization.

1 INTRODUCTION AND MOTIVATION

1.1 Functions in their prime

Mathematicians are fond of writing statements like F ∈ C1,1(�). This short hand means that
the mapping or function F : � ⊆ X �→ Y has a locally Lipschitz-continuous derivative on the
domain � ⊆ X , with X and the range Y being linear spaces. Moreover, the derivative F ′(x)

at some fixed point x is then interpreted as a linear mapping between X and Y . This abstract

notion seems to be very far removed from the differentiation taught in school, where one learns
for example that

f (x) = x p =⇒ f ′(x) = p x p−1.

Here we have a very constructive way of computing the derivative function f ′(x), which can then
be easily evaluated at any given point x . In contrast, attaching a prime as superscript to F in order

to obtain F ′(x) is little more than the declaration that such a so-called Fréchet derivative exists.
Only in rather rare circumstances it can be written down in terms of a procedure for evaluating
it. Before discussing a more constructive approach let us first reconcile the two notions in terms
of linearization.

Mathematics, Humboldt-University, Unter den Linden 6, 10099 Berlin, Germany. E-mail: griewank@math.hu-berlin.de



�

�

“main” — 2014/10/24 — 14:22 — page 622 — #2
�

�

�

�

�

�

622 ON AUTOMATIC DIFFERENTIATION AND ALGORITHMIC LINEARIZATION

Throughout the paper we will denote by y = f (x) real valued functions so that Y = R, whereas

y = F(x) denotes vector valued functions usually with range Y = Rm , the m− dimensional
Euclidean space. The domain will always be X = R

n , i.e., the independent variables form a
vector x = (x j ) j=1...n with x j ∈ R.

1.2 Drawing the line

Suppose for the given x̊ we wish to estimate the value of F(x̊+�x) for small increments �x ∈ X
that belong to the same linear space as x̊ . Then local Lipschitz-continuous differentiability of F

at x is equivalent to the first order Taylor-expansion

F(x̊ +�x) = F(x̊)+ F ′(x̊)�x + O(‖�x‖2). (1.1)

Here ‖�x‖ is a norm that measures the size of elements �x ∈ X , and O(ρ p) a function of
0 ≤ ρ ∈ R that is bounded by cρ p for some constant c ≥ 0. With ‖ · ‖ simultaneously denoting
a norm on the range space Y we can write more precisely∥∥F(x̊ +�x) − [F(x̊)+ F ′(x̊)�x]∥∥ ≤ c ‖�x‖2. (1.2)

In other words, the original function F(x̊ + �x) is approximated by its linearization F(x) +
F ′(x̊)�x up to the quadratic error term c‖�x‖2. For the case when X = R = Y so that x, �x
and their values are real numbers we may have the situation depicted in Figure 1.

x̊ x̂ = x̊− αf ′(̊x)

f

f̊ (̊x) + f ′(̊x)Δx

Figure 1 – Approximation of f (x) by tangent line and downhill step.

Here f (x̊)+ f ′(x̊)·�x represents a straight line with the slope f ′(x̊) ∈ R and the fixed reference
value f (x̊). Obviously the tangent line provides useful information about the behavior of the

function f (x) for x near x̊ . For example, it is well understood that x̊ can only be a minimum of
f (x) if f ′(x̊) = 0. Here the derivative serves the role of verifying whether a certain optimality
criterion is satisfied. If it is not, one can go downhill by stepping from a current point x̊ to a next

point x̂ given by

x̂ = x̊ − α · f ′(x̊) for 0 < α ≈ 0. (1.3)

Pesquisa Operacional, Vol. 34(3), 2014
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Here the step multiplier α needs to be chosen positive and sufficiently small to ensure progress

towards a minimum. This so-called descent approach is the core method of optimization and also
works when n > 1 with f ′(x̊) the gradient vector as discussed below.

1.3 Newton’s method and Jacobians

When n = 1 = m, the slope f ′(x̊) can also be used in Newton’s method where, given a current
point x̊ , a new point x̂ is computed as

x̂ = x̊ − f (x̊)/ f ′(x̊) provided f ′(x̊) �= 0. (1.4)

For vector functions F with n = m one uses instead the formulation

F ′(x̊)(x̊ − x̂) = F(x̊) provided det(F ′(x̊)) �= 0, (1.5)

which is equivalent to (1.4) in the scalar case m = 1 = n.

For general m = n > 1 the computation of the new iterate x̂ requires the solution of a linear
system of equations, which can be done for example by Gaussian elimination with pivoting.
The key assumption for that is that the first derivative of y = F(x) is available as the so-called

Jacobian matrix

F ′(x̊) = (
∂Fi

/
∂x j

)i=1...m
j=1...n ∈ Rm×n, (1.6)

where the partial derivatives ∂Fi
/
∂x j = ∂yi

/
∂x j are evaluated at the current point x̊ . In the

scalar case, m = 1 = n and for rather simple vector functions F one may sometimes be able to

derive F ′ = f ′ by hand. However, in general that is a very tedious and error prone task best left
to a computer.

Evaluating Jacobians of general dimensions m × n with minimal or at least reasonable com-
putational effort is the core task of automatic differentiation. Trying to absolutely minimize the

number of arithmetic operations is impractical because it leads to a combinatorial problem that
is very difficult, more specifically, NP hard.

Before we go on let us offer a few apologetic remarks on true mathematicians, who wish to
have things defined precisely. Throughout the paper we will restrict our consideration to finite

dimensional spaces X = R
n , Y = R

m , and correspondingly identify the Fréchet derivative
F ′(x) with its matrix representation in terms of the Cartesian basis of X and Y . Moreover, we
will interpret differentiability always in the sense of local Lipschitz-continuous differentiability,

so that there are no order o(ρ) terms at all. Thus, we can get by without any explicit limit process,
but propagate first and higher order Taylor expansions forward and backward.

In any case, there is a sometimes confusing range of ways to denote derivatives, starting with
the controversy between the Newton followers and the Leibniz camp in the early 18th century.

Apart from Newton’s prime superscript we will also use the Leibniz expression ∂v
∂x to denote the

derivative of some scalar or vector quantity v with respect to the variable vector x ∈ Rn and v̇ to
denote its directional derivative with respect to some given direction ẋ ∈ Rn .

Pesquisa Operacional, Vol. 34(3), 2014
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624 ON AUTOMATIC DIFFERENTIATION AND ALGORITHMIC LINEARIZATION

1.4 Differentiation rules

Automatic differentiation is based on the classical rules expressing the derivatives of the compo-
sition of two functions F and G in terms of their individual derivatives, namely:

(i)
∂

∂x
F(αx) = αF ′(x) for α ∈ R;

(ii)
∂

∂x

( F (x)
G(x)

) = ( F ′(x)

G′(x)

)
where

(
G
F

) : X → R
m̃×m;

(iii)
∂

∂x
(G ◦ F)(x) = G′(F(x)) F ′(x) where G : Rm �→ R

m̃;

(iv)
∂

∂x
(F(x) ± G(x)) = F ′(x) ± G′(x);

(v)
∂

∂x
(F(x)�G(x)) = G(x)�F ′(x) + F(x)�G′(x).

Here it is assumed that F and G are once locally Lipschitz-continuously differentiable on their
respective domains, which coincide except for the concatenation (ii) and the chain rule (iii).

Then their composites will have the same differentiability properties. In the final section we will
consider generalizations of these rules to the piecewise smooth scenario.

1.5 Composite function model

Every realistic computational model from the sciences, engineering, and economics is built up

from simple building blocks. The specification typically involves several layers of abstractions,
but we may think of it as a single computer program in an imperative language like Fortran and C,
or systems like Mathematica and Maple. By applying the above simple rules recursively we must

arrive at the derivatives of elementary operations and functions that are part of the programming
environment. In other words, we will assume that the function in question is evaluated by a
sequence of �� 1 instructions

vi = v j ◦ vk or vi = ϕi (v j ) for i = 1 . . . �. (1.7)

Here max( j, k) < i, each ◦ is an addition+ or a multiplication ∗, and

ϕi ∈ 	 ≡ {c, rec, sqrt, sin, cos, exp, log, . . .} (1.8)

is an elemental function from a given library. 	 must include in particular a constant setting v =
c, the reciprocal v = rec(u) = 1/u and typically the square root v = sqrt(u) = √u. Note that
subtractions u−w = u+(−1)∗w and divisions u/w = u∗rec(w) can be performed as an addition

or multiplication after multiplication of the second argument by −1 or computing its reciprocal,
respectively. Identifying the first vk ≡ xk+n for k = 1 − n . . . 0 with the independent variables
and the last vk ≡ yk−l+m with the dependents, we are left with the vector z = (vk)k=1...l−m of

intermediate quantities. The total set of variables is therefore given by

(x, z, y) = (v0, . . . , vn−1, vn, . . . , v�−m, v�−m+1, . . . , vl) ∈ Rn+�.

Pesquisa Operacional, Vol. 34(3), 2014
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As an example, we may specify a vector function y = F(x) : R3 �→ R
2 first by the formula

F(x) = [
log(x1) · (x2 + x3)/sin(x1),

√
x3 − exp(x2 + x3)

]
.

Then we may decompose the formula into the following sequence of elemental operations:

Table 1 – Small example procedure.

v−2 = x1, v−1 = x2, v0 = x3

v1 = log(v−2) ϕ1 = log

v2 = sin(v−2) ϕ2 = sin

v3 = v−1 + v0 ϕ3 = +
v4 = v1 · v3 ϕ4 = ·
v5 = √v0 ϕ5 = √
v6 = 1/v2 ϕ6 = rec

v7 = exp(v3) ϕ7 = exp

v8 = v4 · v6 ϕ8 = ·
v9 = v5 − v7 ϕ9 = −
y1 = v8, y2 = v9

More generally, we will consider three-part function evaluation procures of the form given in

Table 2. Here the precedence relation j ≺ i indicates that the variable vi depends directly on
the variable v j . It must be acyclic so that each intermediate is unambiguously defined by known
quantities and we may order the vi such that j ≺ i =⇒ j < i. In actual computer programs

some of the intermediate quantities vi will share the same memory location because they are not
needed at the same time. For example, in the simple example above v4 and v5 may overwrite v1

or v3.

Table 2 – General evaluation procedure.

vi−n = xi i = 1 . . . n

vi = ϕi (v j ) j≺i i = 1 . . . �

ym−i = v�−i i = m − 1 . . . 0

That makes no difference for the forward mode of differentiation, but poses a challenge to the
reverse mode as we will see. For the time being we will stay with our single assignment assump-
tion that each variable vi has its own memory location and occurs exactly once on the left-hand
side of an instruction. For details see the standard reference [15].

1.6 Cost of elemental derivatives

Our key assumption is that all elemental functions ϕi () are at least once Lipschitz continuously
differentiable on some neighborhoodDi of their current argument

ui ≡ (v j ) j≺i ∈ Di ⊆ Rni .

Pesquisa Operacional, Vol. 34(3), 2014
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626 ON AUTOMATIC DIFFERENTIATION AND ALGORITHMIC LINEARIZATION

Here ni , the number of arguments, is equal to 1 for unary nonlinear functions and to 2 for binary

arithmetic operations. Other elementary functions like atan2(·) or, for example, basic linear
algebra subroutines can be included. The gradient of the ϕi will be denoted by

ϕ′i (ui ) = (ci j (ui )) j≺i ≡
(

∂

∂v j
ϕi (ui )

)
j≺i

.

Within the forward and reverse mode to be discussed below we will need to compute not so
much the gradient ϕ′i itself, but its inner product with a given vector u̇i ∈ Rni or the incremental
addition of v̄i ∈ R times ϕ′i to a given vector ūi ∈ Rni . In other words, we need to compute

ϕ′i (ui ) · u̇i =
∑
j≺i

ci j (ui ) · v̇ j and ūi + v̄i · ϕ′i (ui ) = (v̄ j + v̄i · ci j ) j≺i .

Given any finite library of elementary functions 	 and any reasonable measure of computational
effort OPS we will assume the existence of a constant ω such that

OPS(ϕ′i (ui ) · u̇i ) ≤ ω OPS(ϕi (ui )) ≥ OPS(+= v̄i · ϕ′i (ui )) . (1.9)

More specifically, we assume that the cost of providing the gradient ϕ′i (ui ) at the current ui and

multiplying it by the vector u̇i ∈ Rni from the right or the scalar v̄i ∈ R from the left is at most
ω times as expensive as evaluating ϕi (ui ) by itself. For example, in case of a multiplication

vi = ϕi (v j , vk) = v j · vk

we have ϕ′i = (vk , v j ), u̇i = (v̇ j , v̇k) and the corresponding operations are

v̇i = vk · v̇ j + v j · v̇k and ūi += (v̄i · vk, v̄i · v j ).

Thus we have in both cases two extra multiplications and either one or two extra additions.
Hence, a reasonable value for ω would be 4, since multiplications and additions take about the
same time on modern processors. The complexity growth factor 4 also covers the extra number
of data movements, namely 4 fetches and one store compared to 2 fetches and 1 store for the

original operation vi = ϕi (v j , vk). It just so happens that the multiplication operation is in some
sense the worst case in that ω = 4 is in fact a rather conservative estimates for the derivative
complexities of the other elemental functions from the typical library 	.

2 THEORY OF FORWARD AND REVERSE

After the preparation we can now develop the basic modes of algorithmic differentiation.

2.1 The forward mode

Let us look at a straight line x(t) = x + ẋ · t in the domain Rn . Then each corresponding
intermediate value vi has a linearization

vi (t) = vi (x(t)) = vi + v̇i · t + O(t2) with v̇i = d

dt
vi (x(t))

∣∣∣∣
t=0

.

Pesquisa Operacional, Vol. 34(3), 2014
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The local Lipschitz continuous differentiability follows from the chain rule, and the dot quantities

of the vi can be obtained from the ẋ j = v̇ j−n by the following procedure.

Table 3 – Tangent recursion for general evaluation procedure.

vi−n ≡ xi v̇i−n ≡ ẋi i = 1 . . . n

vi ≡ ϕi (ui ) v̇i ≡ ϕ′i (ui ) · u̇i i = 1 . . . �

ym−i ≡ v�−i ẏm−i ≡ v̇�−i i = m − 1 . . . 0

In the little example above we obtain the extended procedure depicted in Table 4.

Table 4 – Forward differentiation on example.

v−2 = x1, v−1 = x2, v0 = x3 v̇−2 = ẋ1, v̇−1 = ẋ2, v̇0 = ẋ3

v1 = log(v−2) v̇1 = v̇−2/v−2

v2 = sin(v−2) v̇2 = cos(v−2) · v̇−2

v3 = v−1 + v0 v̇3 = v̇−1 + v̇0

v4 = v1 · v3 v̇3 = v1 · v̇3 + v3 · v̇1

v5 = √v0 v̇5 = 0.5 · v̇0/v5

v6 = 1/v2 v̇6 = −v6 · v6 · v̇2

v7 = exp(v3) v̇7 = v7 · v̇3

v8 = v4 · v6 v̇8 = v4 · v̇6 + v6 · v̇4

v9 = v5 − v7 v̇9 = v̇5 − v̇7

y1 = v8, y9 = v8 ẏ1 = v̇8, ẏ2 = v̇9

Notice that in differentiating the square root v5 = √v0, the reciprocal v6 = 1/v2, and the expo-

nential v7 = exp(v3) we have reused the function values themselves to simplify the derivative
calculation, avoiding a second division, a second root, and a second exponential, respectively. It
is quite clear that the computational effort for propagating the directional derivatives v̇i on top

of the vi is just a small multiple of propagating the vi by themselves. More precisely, in terms
of the complexity measure OPS we obtain by (1.9) for the cost of evaluating y = F(x) and
ẏ = F ′(x) ẋ the bound

OPS(y, ẏ) =
�∑

i=1

OPS(vi , v̇i) ≤
�∑

i=1

(1 + ω) · OPS(vi ) = (1+ ω) · OPS(y).

In this estimate we have assumed that computational cost is essentially additive, which ignores

for example delays due to the scheduling between the various subtasks and gains that might
be made on a multicore machine by parallel executions of several threads. The upper bound of
1+ ω ≈ 5 is certainly rather pessimistic.

Moreover, it is also significantly worse than the penalty factor 2, which one obtains if one ap-

proximates ẏ by divided differences, i.e., utilizes the linearization

ẏ = [F(x + εẋ)− F(x)]/ε + O(ε) .

Pesquisa Operacional, Vol. 34(3), 2014
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Here one only needs two values of F at neighboring points in order to estimate ẏ = F ′(x) ẋ ,

but it is well understood that even for the optimal step multiplier ε half the number of significant
digits is lost so that the accuracy is degraded and hard to predict.

If one wishes to compute the whole Jacobian, one may employ the procedure above with ẋ
ranging over the n Cartesian basis vectors in Rn . The resulting complexity estimate is

OPS(F ′(x)) ≤ n (1+ ω) · OPS(F(x)).

This bound can be reduced in theory and practice if one executes Table 3 in vector mode, i.e.,
with the scalars v̇i replaced by a vector of directional derivatives with respect to several directions

ẋ , possibly also the whole gradient ∂vi /∂x ∈ Rn . Then common intermediate quantities can
be reused and the vector operations are likely to run quite fast for a moderate number n of
independent variables. Moreover, if F ′(x) never has more than n̂ ≤ n nonzeros in any one of

its rows, one can define a seed matrix S ∈ Rn×n̂ such that the Jacobian F ′(x)S ∈ Rm×n̂ of the
reduced function F(x + Sz) with respect to z ∈ Rn̂ contains enough information to reconstruct
F ′(x) from B. This technique of row compression is described in some detail in [15] and reduces

the complexity growth to a multiple of n̂ rather than n.

2.2 The reverse mode

Recently, there has been a steadily growing interest in a process called adjoining scientific and
industrial codes. The concept of adjoints applies originally to algebraic and differential equations
on function spaces. Its discrete analog is what is called the reverse mode of differentiation. In-
stead of propagating the dot quantities v̇i that represent sensitivities of intermediates with respect

to independent variables forwards, the reverse mode propagates backwards the bar quantities

v̄i ≡ ∂

∂vi

(
ȳ�y

)
.

In other words, with ȳ ∈ Rm a given weight vector we consider the sensitivities of the inner
product ȳ�y with respect to variations in the intermediate vi , which may be due to round-off. For
v j−n = x j the adjoint quantities v̄ j−n = x̄ j for j = 1 . . . n form the gradient

x̄� ≡ (ȳ�F(x))′ ≡ ȳ�F ′(x) ∈ Rn.

When F = f is scalar valued so that m = 1, we may set ȳ = 1 ∈ R and obtain directly the
gradient x̄� = f ′(x). What at first may just seem some notational manipulation turns out to be

an exciting and fundamental result. Namely, one discovers that the transposed Jacobian vector
product x̄ = F ′(x)� ȳ can be computed just like ẏ = F ′(x) ẋ at a cost that is a small multiple of
that for evaluating F itself, which is certainly impossible by differencing. More specifically, the

adjoint quantities v̄ j and their combinations ūi = (v̄ j ) j≺i ∈ Rni can be propagated backwards
by the reverse procedure listed in Table 5.

Here we use the implicit assumption that all vi for −n < i ≤ �− m have the values they were
assigned in Table 2 and that the v̄i for−n < i ≤ �− m are initialized to zero.

Pesquisa Operacional, Vol. 34(3), 2014
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Table 5 – Adjoint recursion for general evaluation procedure.

v̄�−i ≡ ȳm−i i = 0 . . . m − 1

ūi += v̄i · ϕ′i (ui ) i = � . . . 1

x̄ j ≡ v̄ j−n j = n . . . 1

As one can see, adjoint statements += v̄i · ϕ′i (ui ) are executed in the opposite order in which
the underlying statements vi = ϕi (ui ) occurred in the original program. The same is true for

the initialization of the ȳl−i , which are input variables, and the deinitialization of the x̄ j , which
are output variables. Apparently the first author to write down this reverse procedure was Seppo
Linnainmaa, who listed it in Fortran at the end of his Master Thesis [23], which is otherwise
written in Finnish. He interpreted and used the quantities v̄i to estimate the propagation of errors

in complicated programs. For more information on the history of the reverse mode see [16].

The validity of Table 5 can be derived from the classical rules of differentiation using either
directed acyclic graphs or matrix products [15]. It should be noted that Table 5 is, in contrast to

Table 3, not a single assignment code. Starting from their initial value v̄i = 0 for i ≤ l − m the
adjoint quantities may be incremented repeatedly until they reach their final value and then occur
once on the right-hand side as pre-factor of ϕ′i . This can be seen in the adjoint procedure Table 6,
which needs to follow our little example program Table 1. Here we see that v̄i for i = 3, 0− 2

are each incremented twice before they reach their final value and can then occur on the right
hand side.

Table 6 – Reverse mode on small example.

v̄9 = ȳ2, v̄8 = ȳ8,

v̄5 += v̄9 v̄7 −= v̄9

v̄4 += v̄8 · v6 v̄6 += v̄8 · v4

v̄3 += v̄7 · v7

v̄2 −= v̄6 · v6 · v6

v̄0 = v̄5 · 0.5/v5

v̄1 += v̄4 · v3 v̄3 += v̄4 · v1

v̄−1 += v̄3, v̄0 += v̄3

v̄−2 += v̄2 · cos(v−2)

v̄−2 += v̄1/v−2

x̄3 = v̄0 x̄2 = v̄−1 x̄1 = v̄−2

With respect to the computational cost we find by (1.9) in analogy to the forward mode for
x̄ = F ′(x)�ȳ that

OPS(y, x̄) =
l∑

i=1

OPS(vi ,+= v̄i · ϕ′i (ui )) ≤
l∑

i=1

(1+ ω) · OPS(vi ) = (1 + ω) · OPS(y).

Pesquisa Operacional, Vol. 34(3), 2014
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Here we account for executing the forward sweep Table 2 and the reverse sweep Table 5 after

one another. With ȳ ranging over all m Cartesian basis vectors of the range Rm we obtain the
complete Jacobian at the cost

OPS(F ′(x)) ≤ m (1 + ω)OPS(F(x)).

Obviously this operations count is advantageous compared to the forward mode if m < n and we

may also employ a corresponding vector mode with v̄i a vector of adjoints for several weightings
ȳ. In the scalar case m = 1 with f (x) = F(x), we have the striking result that

OPS{ f ′(x)} ≤ (1+ ω) OPS{ f (x)}.
In other words, as Wolfe [36] observed in 1982, gradients can ‘always’ be computed at a small
multiple of the cost of computing the underlying function, irrespective of n, the number of in-
dependent variables, which may be huge. Since m = 1, we may also interpret the scalars v̄i as
Lagrange multipliers of the defining relations vi − ϕi (ui ) = 0 with respect to the single depen-

dent y = v� viewed as objective function. This interpretation was used amongst others by the
oceanographer Thacker in [32]. It might be used to identify critical and calm parts of an evalua-
tion process, possibly suggesting certain simplifications, e.g. the local coarsening of meshes.

2.3 The Sedgewick-Speelpenning example

To highlight the properties of the reverse mode, let us consider a very simple example of variable
dimension that was originally suggested by the late Arthur Sedgewick, the PhD supervisor of
Bert Speelpenning at the University of Urbana Champaign. They considered a simple product

and its gradient

f (x) =
n∏

i=1

xi ⇒ g j(x) ≡
n∏

i �= j

xi ≡ ∂ f (x)

∂x j
= f (x)

x j
.

Computing each gradient component independently would require n2 − O(n) multiplications
and there are cheaper alternatives. Firstly, once f has been evaluated at the cost of n − 1 mul-

tiplications, the whole gradient g(x) = f ′(x) can be obtained using n divisions. However, this
approach is not entirely convincing since divisions are much more expensive than multiplica-
tions and may lead to a NaN if some component x j is zero. Now let us apply the reverse mode.

Starting from the natural, forward evaluation loop

v0 = 1; vi = vi−1 · xi for i = 1 . . . n ; y = vn

we obtain the combination of forward and reverse sweep listed in Table 7.

Here we have eliminated the assignments from the x j to the v j−n and vice versa from v̄ j−n to x̄ j

for the sake of readability.

We could also have replaced the incremental assignments by direct assignments since no inter-
mediate occurs more than once as an argument. That would save n zero initializations and the
same number of additions.
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Table 7 – Reverse mode on Speelpenning’s example.

v0 = 1

vi = vi−1 · xi i = 1 . . . n

y = vn

v̄n = 1

x̄i += v̄i · vi−1
i = n . . . 1

v̄i−1 += v̄i · xi

Of course, the key observation is that this gradient procedure requires at most 4 times as many
arithmetic operations as the evaluation of the function itself and involves no tests and branching.
This effect was observed by Arthur S. who suggested to Bert S. rather daringly that something
like that should be possible for much more general functions. That suggestion led Bert S. indeed

to the reverse mode, which can be implemented in a completely automatic line by line fashion
and yields gradients with optimal complexity, at least up to a small constant. The AD community
only learnt in 2012 at a conference in Fort Collins about Arthur S. and usually simply refers to

Speelpenning’s example.

2.4 Storing the trajectory

When m and n are similar, the forward mode is still preferable because of the following memory

issue. The forward mode as specified in Table 3 can be performed more or less in-place with the
storage essentially doubled as the scalars v̇i ∈ R must be stored in addition to the vi . The dot
quantities v̇i and v̇ j can and should share the same memory location exactly when that is true for
vi and v j . The results will still be consistent in that v̇i is the directional derivative of vi , even if

there were some unintended overwriting, for example through the aliasing of calling parameters.

The situation is radically different in the reverse mode. Here the quantity v j may be used last in
calculating some vi with j ≺ i and then overwritten by some vk with k > i, all that still during
the forward sweep Table 2. Then the old value of v j will no longer be available when we have

to perform the calculation += v̄i · ϕ′i (ui ) with v j one of the components of ui ∈ Rni . If ϕi is
nonlinear, the partials ci j (ui ) cannot be evaluated. Hence, the old value of v j must be written on
a stack just before it is overwritten and then recuperated on the reverse sweep.

Alternatively, some AD implementations prefer to store the partials ci j . For either strategy and
even if linear operations are identified, we must expect that on average about one floating point
number needs to be stored per elemental function. Consequently, the maximal memory require-
ment for the combined forward and reverse sweep will be much larger than that for the original

evaluation of F in that
MEM(x̄) ∼ OPS(y) � MEM(y).

Here MEM(x̄) represents the memory requirement for the combined forward and reverse sweep,

which can mostly be stored onto a stack.
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In case of the Sedgewick-Speelpenning example the function itself can be evaluated using just

O(1) memory locations apart from the independents x j for j = 1 . . . n. More specifically, all
partial products vi can be stored in the same memory cell as y. However, for the sake of the
reverse sweep, the vi must be kept around either an array or some stack on a remote storage

device.

Note that the memory estimate above applies to the vector and scalar cases m > 1 and m = 1
alike. Hence, from a memory point of view it is advantageous to propagate several adjoints
simultaneously backward, for example in an optimization calculation with a handful of active

constraints. Originally, the memory usage was a big concern because memory size was severely
limited. Today the issue is more the delay caused by large data movements from and to external
storage devices, whose size seems almost unlimited. As already suggested by Benett [1] and

Ostrowski [29] et al., the memory can be reduced by orders of magnitude through an appropriate
compromise between storage and recomputation of intermediates, described as checkpointing
in [15].

3 OTHER ASPECTS OF THE BASIC MODES

3.1 Gradients and adjoint dynamics

The cheapness of gradients is of great importance for nonlinear optimization, but still not widely

understood, except in the time dependent context. There we may have, on the unit time interval
0 ≤ t ≤ 1, the primal dual pair of evolutions

v̇(t) ≡ ∂v(t)/∂t = F(v(t)) with v(0) = x,

˙̄v(t) ≡ ∂v̄(t)/∂t = F ′(v(t))� v̄(t) with v̄(1) = f ′(v(1)).

Here the state v belongs to some Euclidean or Banach space and v̄ to its topological dual. Cor-

respondingly, the right-hand side F(v) and its dual F ′(v)� v̄ may be strictly algebraic or involve
differential operators.

Then it has been well understood since Pontryagin that the gradient of a scalar function y =
f (v(1)) with respect to the initial point x is given by v̄(0). It can be computed at maximally ω =
2 times the computational effort of the forward calculation of v(t) by additionally integrating
the second, linear evolution equation backward. In the simplest mode without checkpointing this
requires the storage of the full trajectory v(t) unless the right-hand side F is largely linear. Also

for each t the adjoint states v̄(t) represent the sensitivity of the final value y = f with respect to
perturbations of the primal state v(t).

Of course, the same observations apply to appropriate discretizations, which implies again the
proportionality between the operations count of the forward sweep and memory need of the

reverse sweep for the gradient calculation. To avoid the full trajectory storage one may keep only
selected checkpoints during the forward sweep and then recuperate the primal trajectory in pieces
on the way back, when the primal states are actually needed.
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In some sense the reverse mode is just a discrete analog of the maximum principle going back

to Pontryagin. Naturally, the discretizations of dynamical systems have more structure than our
general evaluation loop, but the key characteristics of the reverse mode are the same.

3.2 Numerical stability

We have demonstrated that and how the forward and reverse mode can be used to compute first
order derivatives of functions given by evaluation procedures. Moroever, the computational com-
plexity was found to be quite reasonable. Now the natural question is how numerically accurate

the results are, especially in view of the fact that numerical analysts strongly believe differen-
tiation to be an ill-conditioned process. However, this conviction is based on the notion that all
we know about the function f : Rn �→ R is an oracle that evaluates it with a certain absolute

accuracy.

Under our assumptions we know a lot more about f (x) in that we have its decomposition into
a sequence of elementary function evaluations vi = ϕi (ui ). The key question is how exact we
can evaluate the ϕi and their derivatives on a given computing platform. The celebrated IEE 754

standard prescribes in detail the computation of arithmetic operations, but only makes recom-
mendations regarding the accuracy of special function evaluations.

As discussed in [33] we can reasonably assume that the values ṽi and ˜̇vi obtained from ũi =
(ṽ j ) j≺i and ˜̇ui = ( ˜̇v j ) j≺i by the forward differentiation procedure listed in Table 3 satisfy the

relations

ṽi = (1+ ε̌i ) · ϕi ((1 + εi) · ũi)

˜̇vi = (1+ ε̂i ) · ϕ′i ((1 + εi) · ũi) · ˜̇u,

where the three perturbations ε̌i , ε̂i and εi are all of the order of the machine precision eps.

While a forward error analysis would be, as usual, quite complicated, we can apply a backward
error analysis that shows that algorithmic differentiation yields the exact derivative values for a
slightly perturbed problem.

To obtain the pair (ṽi , ˜̇vi ) as the exact result of (ũi , ˜̇ui) we define for each univariate elemental

function ϕi (ui ) a modification given by

ϕ̃i (ui ) ≡ (1 + ε̌i ) · ϕi

(
1+ ε̂i

1+ ε̌i
· ui +

(
1+ εi − 1+ ε̂i

1+ ε̌i

)
· ũi

)
(3.1)

= (1 +O(eps)) · ϕi (ui · (1+ O(eps)) +O(eps · ũi)) .

We contend that this artificially constructed ϕ̃i may be considered a small perturbation of ϕi

given the machine precision eps. It is easy to check that it satisfies indeed exactly the relations

ṽi = ϕ̃i (ũi ) and ˜̇vi = ϕ̃′i (ũi ) · ˜̇ui .

A very similar small perturbation can be applied to the binary operations and other elementary
functions with several variables.
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Hence, we have shown that the forward mode of algorithmic differentiation is indeed back-
ward stable in the sense of Wilkinson [35]. In the same way we can also establish the backward
stability of the reverse mode, but then there may be some O(m̃ eps) terms where m̃ is the max-
imal number of times that any intermediate v j belongs to some ui , i.e., occurs as argument of
some ϕi as j ≺ i. Nevertheless, this is a very satisfactory backward stability result and in our by
now twenty five years of experience with AD we have never heard a user complain about poor
accuracy derivative values, once the logical bugs had been overcome.

3.3 Software and application

So far we have not really explained why AD became known as automatic differentiation. We have
seen how the original evaluation procedure needs to be augmented with additional instructions to
calculate the correct derivative values. In principle, this program transformation can be done by
hand, but that is very time-consuming and error prone. It is also hard to manage; if the underlying
program is subject to continual change, then keeping track of these changes in order to maintain
the integrity of the transformed version is also time consuming. Therefore, it is usually desirable
to automate at least partially the process of transformation. For a computer science oriented
introduction to AD consult the excellent book [27]. Here we will just try to convey the basic
ideas.

Conceptually, we may think of the AD process as a transformation of the form

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
eval(x,y,z) =⇒ deval(x,dx,y,dy,z) or beval(bx,x,by,y,z) .

↓ ↓ ↓ ↓ ↓
(3.2)

Here we assume that the original subprogram eval(x,y,z) evaluates the output vector y as a
function of the input vectors x and z. The inputs and outputs are marked by small arrows on
top and bottom, respectively. Whereas z is considered a constant parameter, x is nominated as a
vector of independent variables with respect to which y is to be differentiated. Consequently, a
dot derivative object dx is associated with x as an additional input, and a corresponding output
dy associated with the dependent variables y is also included as a parameter in the tangent proce-
dure listed deval corresponding to Table 3. In the simplest case dx is the directional derivative
ẋ and dy is the directional derivative ẏ described in the section on the forward mode. Then the
format of the arrays x and y would be exactly the same as that of the underlying independent
and dependent variables x and y, respectively. In vector mode dx and dy could contain several
directional derivatives. The reverse mode functionbeval corresponding to Table 5 has the addi-
tional input parameter by and the new output parameter bx, which means that there is a reversal
of the information flow. Again by and bx may correspond to the adjoint vectors ȳ and x̄ or be
larger derivative objects of compatible format.

The program extension can be performed essentially line-by-line, although the reverse mode
requires the trajectory transfer between the forward and reverse sweep. Also, at least on a sub-
routine level it might be worthwhile to perform some code analysis in order to improve the
derivative code or even the original procedure. Traditionally, AD was developed for codes writ-
ten in the classical procedural languages Fortran and C++. This was done using two computer
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science concepts employed in one guise or another, namely source transformation and operator
overloading.

Source transformation requires an elaborate transformation tool that takes a certain computer
code, analyzes it like a compiler and then generates a new extended source code. While the
development and maintenance of such a tool is a significant effort for the developer the user
needs to do very little other than making his input code truly conform to the language standard.
He or she also has to nominate the independent and dependent variables and select the mode
of differentiation as well as the order of the desired derivatives. The only drawback for the user
may be a certain lack of flexibility in terms of what order and modes of differentiation the tool
provides.

There may also be restrictions regarding recently added language features like for example in the
continuous evolution of Fortran. Generally, there is the reasonable expectation that source trans-
formation yields faster derivative codes, if only because of the application of standard compiler
optimization. However, this advantage applies mainly to clearly structured numerical codes that
also parallelize well. Recursions, pointers and indirect addressing can render static analysis at
compile time rather ineffective.

Operator overloading tools consist mainly of a header file and a runtime library, which are both

completely problem independent. The user has to retype all variables that are involved in the
differentiation process to a new tool-specific type, called for example adouble in ADOL-C.
The standard language compiler will then look up in the header file what needs to be done for

all elemental operations and functions. So the extra derivative related instructions will only be
included in the object file, but not in the source files. The user must also declare and initialize
the independent and dependent variables in some tool-dependent way. When the code compiles

without diagnostics and there are no runtime errors, one can be pretty sure that the derivative re-
sults are correct. For tools that provide the forward and reverse mode one can check the Lagrange
identity

ȳ�[F ′(x) ẋ ] ≡ [F ′(x)�ȳ] ẋ
for random vectors ẋ and ȳ to see if the results are consistent up to numerical round-off. If they
are not, something has gone wrong in the transformation process.

Table 8 lists some of the tools in the order of their first appearance. Some of them are still avail-

able, some have metamorphosed into successor systems, and others have fallen by the wayside
altogether. Of those still existent all except TAF/TAC are available under the GNU public li-
cense. The oldest one still under development with its original name and basic design is the

overloading tool ADOL-C.

There is some indication that more recent projects like Adept and the NAG-compiler integrated
AD utilities can achieve a significant speed-up using expression templates and other modern
language constructs. Unfortunately, no large commercial software vendor has ever invested sig-

nificant resources to develop a professional computing environment with AD capabilities. The
modeling languages AMPL, GAMS and also the optimization test environment CUTEr have
provided AD capabilities under the hood for a long time.
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Table 8 – Source transformation (C) and operator overloading (O) AD tools.
The modes are forward:→, reverse:←, both:↔, and⇔ with checkpointing.

Name Year Source Type Order Mode Developer

PROSE 75 F66 C 1 → J.M. Thames

Augment 80 F66 O 1 → G. Kedem

JAKEF 80 F77 C 1 ← B. Speelpenning

GRESS 82 F77 C 1 → J. Horwedel

ADGEN 86 F77 C 1 ← J. Horwedel

DAFOR 87 F77 C ∞ → M. Berz

ADOL-C 90 C++ O ∞ ⇔ A. Walther

ADIFOR 92 F77 C 1 → A. Carle

Odyssee 92 F77 C 1 ↔ Ch. Faure

ADIC 94 C C 1 → P. Hovland

PADRE2 95 F77++ C 2 ↔ K. Kubota

FADBAD 96 C++ O ∞ ↔ C. Bendtsen

TAF/TAC 98 F77/C++ C 1 ⇔ R. Giering

Tapenade 01 F77 C 1 ⇔ L. Hascoet

CppAD 02 C++ O ∞ ⇔ B. Bell

Rapsodia 07 F77/C++ C ∞ → J. Utke

Sacado 08 C++ O 2 ↔ D. Gay

ADEPT 13 C++ O 1 ← R. Hogan

There has also been a string of Matlab implementations, in particular ADiMat [4]. For these
developments and the current state of AD tools in general one should consult the community
website www.autodif.org.

Of course, there is also a close connection to the fully symbolic differentiation capabilities of

computer algebra packages. A very exciting recent development has been the integration of AD
capabilities into the problem solving environment FEnICS [24] for PDEs based on finite ele-
ments. See also the discussion by Korelc in [21].

Application studies with the major tools can be found in the proceedings of the workshops in

Breckenridge 91 [12], Santa Fe 96 [2], Nice 00 [9], Chicago 04 [5], Bonn 08 [3], Fort Collins 12
[10]. The sheer size of a computer model is no longer an objection to the successful application of
AD. However, problems arise with multi-layer codes in different languages and possibly involv-

ing precompiled proprietary software. Unfortunately, there are, as yet, no agreed upon interfaces
for the transfer of sensitivities from one part of a computer model to another. In particular the
function signatures of derived subprograms like deval(x,dx,y,dy,z) suggested above will

vary from tool to tool. Fortunately, terminology and notation in AD have been unified to a large
extent, at least compared to the early days.
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4 FURTHER DEVELOPMENTS

Many well established results, techniques and aspects of AD could not be elaborated in this
survey paper. We have covered here only first derivative calculations in the forward and reverse
mode. This is of central importance, but certainly not the whole game.

4.1 Higher derivatives

By combining the forward and reverse mode one obtains a method for evaluating second order
adjoints of the form

ȳ�F ′′(x) ẋ = d

dt
ȳ�F ′(x + t ẋ)

∣∣∣
t=0
∈ Rn.

Their cost is about ω2 ≈ 16 times as much as that of evaluating F by itself. When ẋ ranges over
the Cartesian basis vectors in Rn , one obtains the complete Hessian (ȳ�F(x))′′ ∈ Rn×n at a cost
of about n ω2 ≈ 16 n times that of F . Such second order information is particularly useful in
optimization.

One of the earliest application of AD was the solution of ODEs by Taylor series methods [34].
Up to 30-50 terms are really no problem and may yield very accurate solution trajectories (see
[6] and [30]). There have also been some preliminary studies concerning Differential Algebraic
Equations (DAEs), where AD has in my view still a large untapped potential.

Using the fact that exp(), sin(), cos() and all the other intrinsic elemental functions are solutions
of linear ODEs one can cheaply compute univariate Taylor expansions

y(t) =
d−1∑
k=0

ykt k + O(t d) for given x(t) =
d−1∑
k=0

xkt k ∈ Rn.

Cheap means here that the effort only grows like O(d2) with respect to the degree d , and it could
even be lowered to O(d log(d)) using FFT based polynomial arithmetic.

Apparently that possibility has not been seriously utilized since the cross-over happens too late.
Based on the coefficients of a carefully selected family of univariate Taylor expansions one may
then also interpolate the entries of derivative tensors of arbitrary order [13]. All this happens
in the forward mode and one may then also compute cheaply the gradients of these high order
mixed partials with respect to a different set of parameters, e.g. in design optimization.

4.2 Combinatorial aspects

There is a natural tendency to consider differentiation as a mechanical process, and so far the
only truly surprising thing that we have encountered is the reverse mode. In fact, there are many
combinatorial aspects of AD that arise if one really wishes to minimize the computational effort.

Firstly, the forward and reverse mode are only the extreme variants of a general elimination ap-
proach on linearized computational graphs. Here one considers the variables vi and equivalently
their indices i for i = 1 . . . � as the vertices of a directed acyclic graph (DAG) with ( j, i) an
edge iff j ≺ i. Then the minimal and maximal vertices with respect to that partial ordering are
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exactly the independents j − n for j = 1 . . . n and the dependents v�−i for i = 0 . . . m − 1. The
edges can be labeled with the elementary partials ci j (ui ) evaluated at the fixed current point x .
When the graph is bipartite, i.e., � = m, the edge values ci j represent exactly the nonzero entries
of the Jacobian F ′(x). Otherwise the �−m intermediate vertices can be successively eliminated
according to the chain rule in the style of sparse Gaussian elimination.

More specifically, as explained in [14], the DAG can be successively simplified by vertex, edge,
or face eliminations until it becomes the bipartite representation of the Jacobian. The result of
this accumulation or elimination process is up to round-off independent of the order in which
the individual vertices, edges, or faces are eliminated, but the operations count and memory
requirement can vary drastically. Not surprising, efforts to minimize either the temporal or spatial
complexity lead to NP-hard combinatorial meta-problems [26]. We call them meta-problems
because the underlying task of accumulating Jacobians from the elementary partials ci j can be
achieved in strongly polynomial time with respect to the problem size � ≥ max(n, m).

A restricted version of the accumulation problem is that of finding, for a given sparsity pattern
of F ′(x), a seed matrix S ∈ Rn×p with a minimal number of columns p ≤ n such that the
compressed Jacobian F ′(x)S allows the identification of all nonzero entries of F ′(x). It has been
known for a long time that the minimal p is the chromatic number of an associated column-
coincidence graph [7]. Using the reverse mode one may look for so-called adjoint seeds W ∈
R

q×m with minimal q ≤ m such that the column compressed Jacobian W F ′(x) reveals all
nonzero entries of F ′(x). Moreover, the two compressions can be combined to further lower the
number of directional derivatives or adjoint vectors needed for computing F ′(x) by a so-called
Coleman-Verma partition [8]. Finally, there are special considerations and heuristic algorithms
for the symmetric case when F ′(x) is in fact a Hessian. Suitable colorings are provided by the
fairly comprehensive package ColPack [11]. An alternative approach called Newsam-Ramsdell
seeding in [15], which absolutely minimizes p and or q , is described in [19].

The full storage of the forward value trajectory can be avoided by checkpointing and similar
store-recompute trade-offs at a finer grain. All these tasks are combinatorial in nature and of
course AD would also benefit from a host of other optimizations like expression simplification,
instruction scheduling, and register allocation. It is well understood that these compiler tasks are
NP-hard and can thus only be attacked by suitable heuristics. A particularly nice example is the
pebble game, where one wishes to propagate adjoint values backward through the computational
graph using only a fixed number �̃ < � of vertices in memory and minimizing the recomputations.

4.3 Generalized differentiation

In the first section we have noted that the evaluation of gradients and Jacobians is essential for
the efficient numerical solution of unconstrained optimization and nonlinear equation problems.
There are many other algorithms in nonlinear scientific computing that rely on successive lin-
earizations via first order Taylor expansions. On the other hand, many realistic computer models
are nondifferentiable in that the functional relation between input and output variables is not ev-
erywhere smooth. Also, from a theoretical point of view it has been realized that the solution
operators of many computational problems are often nonsmooth, and may even have jumps like
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bang-bang controls. By now there is a very significant body of nonsmooth analysis, based on
concepts of generalized differentiation (see e.g. [25] and [22]). This development was largely
ignored by the AD community, mostly because the generalized differentiation rules did not seem
amenable to an automatic implementation.

The key concepts of nonsmooth analysis on finite dimensional spaces are the following: If F :
R

n → R
m is locally Lipschitz continuous, it follows from Rademacher’s theorem that it has a

Fréchet derivative F ′(x) at all x ∈ Rn \ S with S a set of measure zero such that

lim‖s‖→0
‖F(x + s)− F(x)− F ′(x) s‖/‖s‖ = 0 .

Moreover, the induced norm ‖F ′(x)‖ is bounded above by any local Lipschitz constant L with
respect to suitable vector norms. Then we may define, for all x ∈ Rn , the set

∂L F(x) ≡
{

lim
k→∞ F ′(xk) : xk → x and xk /∈ S

}
,

which we call the limiting Jacobian. It is never empty due to the density of the Fréchet differen-
tiable points and the uniform boundedness of the nearby Jacobians.

As an example we obtain for the mapping F(x) = |x|

F ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if x > 0

∅ if x = 0

−1 if x < 0

and ∂L F(x) =

⎧⎪⎪⎨
⎪⎪⎩
{1} if x > 0

{−1, 1} if x = 0

{−1} if x < 0

.

The convex hull
∂F(x) ≡ conv(∂L F(x))

is called the Clarke generalized derivative. For the example above ∂L F(x) and ∂F(x) differ only
at x = 0, with the latter expanding to ∂F(0) = [−1, 1].
For the limiting Jacobian we obtain the following generalized differentiation rules, which imme-
diately imply corresponding set inclusions for the Clarke Jacobian.

(i) ∂L(αF) = α ∂L(F) for α ∈ R
(ii) ∂L

(
F
G

) ⊆ ∂L F × ∂L G ≡ {(
A
B

) : A ∈ ∂L(F), B ∈ ∂L (G)
}

(iii) ∂L(G ◦ F) = ∂L G(F) · ∂L F if F ∈ C1(Rn) or G ∈ C1(Rm )

(iv) ∂L(F ± G) ⊆ ∂L F ± ∂L G = {A ± B : A ∈ ∂L F, B ∈ ∂L G}
(v) ∂L( f · g) ⊆ g · ∂L f + f · ∂L g

(vi) ∂L | f |

⎧⎪⎪⎨
⎪⎪⎩
= ∂L f when f > 0

⊆ −∂L ∪ {0} ∪ ∂L f when f = 0

= −∂L f when f < 0

.
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In contrast to the list of corresponding smooth differentiation rules listed in Section 1.4, we have
added the last rule applying to the absolute value function abs(x) = |x|. Of course, in general
all of the set inclusions above are proper, i.e., not satisfied as equalities even if we restrict our
attention to functions defined by evaluation procedures with elementals ϕi ∈ 	∪ {abs}. In other
words, the only nonsmooth elemental function that we allow is the absolute value function, which
yields immediately max and min as

max(u, w) = 1
2 (u +w + |u − w|) and min(u, w) = 1

2 (u +w − |u − w|) .

The resulting functions are called composite piecewise smooth in [20] and will be studied in the
remainder of this survey paper. The more general concept of piecewise smoothness has been
examined for example in [31].

4.4 Between the lines

Clearly, composite piecewise smooth functions are locally Lipschitz continuous and thus differ-
entiable at almost all points x̊ ∈ R. However, the resulting linearizations (1.1) will only be valid
on a small ball about x̊ whose radius does not exceed the distance to the next point where the
Fréchet derivative F ′(x) is undefined. Instead, we believe that generalized algorithmic differen-
tiation should provide an approximating function �F(x̊ , �x) at all x̊ such that

F(x̊ +�x) = F(x̊)+�F(x̊ ;�x)+ O(‖�x‖2) (4.1)

or, again more precisely, for a constant c

‖F(x̊ +�x) − [F(x̊)+�F(x̊ ;�x)]‖ ≤ c ‖�x‖2. (4.2)

In other words, we are looking for a generalized Taylor expansion with uniform quadratic error
term. To get an idea how this is constructively possible, let us consider a univariate function of
the form F(x) = max(F1(x), F2(x)) as depicted in Figure 2.

Figure 2 – Piecewise linear approximation F(x̊)+�F(x̊;�x) of piecewise smooth F(x)
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Since F1 and F2 are assumed to be smooth, the function F is everywhere differentiable ex-
cept at the kink point x∗, where the two values tie. There the generalized gradient ∇C F(x∗) =
[F ′1(x∗), F ′2(x∗)] in the sense of Clarke is the interval spanned by the negative slope F ′1(x∗) of
the red branch and the positive slope F ′2(x∗) of the blue branch. This reflects the fact that the
set-valued Clarke derivative is just the convex and outer semicontinuous hull of the classical
derivative F ′(x), which is undefined at x = x∗ itself.

At any x �= x∗ Clarke’s and all the other derivative concepts reduce simply to the slope, which
gives no indication of the nearby kink whatsoever. If the F is repeatedly evaluated as part of a
larger interactive computation in floating point arithmetic, the kink will almost certainly never be
hit exactly, and modeling F by the tangent line of either F1 or F2 may of course yield rather poor
results. All we are suggesting is to model F by the dashed green function F(x̊) +�F(x̊ ;�x).
As we will see later, this piecewise linear function is obtained by approximating F1(x) as well
as F2(x) by their tangent line at the base point x̊ and then taking the maximum afterwards.

It is intuitively clear that this approximating function varies continuously with x̊ and yields a
rather good approximation to the original function F on both sides of its kink. In general, the
second order approximation of a composite piecewise smooth function by a piecewise linear
function can be achieved according to the following extremely simple recipe.

Replace all smooth elemental functions by their tangent line or plane,

and the piecewise linear elementals abs, max and min by themselves.

That means we set for smooth elementals

�ϕi (ũi ;�ui ) ≡ ϕ′i (ũi ) ·�ui with �ui ≡ (�v j ) j≺i

and for the absolute value function

�abs(v̊ j ;�v j ) ≡ abs(v̊ j +�v j )− v̊i with v̊ j = abs(v̊ j ).

Then we can evaluate the composite incremental function �y = �F(x̊ ;�x) by the modification
of Table 3 listed in Table 9.

Table 9 – Piecewise linearization procedure.

vi−n ≡ xi �vi−n ≡ �xi i = 1 . . . n

vi ≡ ϕi (ui ) �vi ≡ �ϕi (ui ;�ui ) i = 1 . . . �

ym−i ≡ v�−i �ym−i ≡ �v�−i i = m − 1 . . . 0

Obviously, very little has changed and the computational complexity for evaluating �y given
�x is again at most ω ≈ 4 times that of evaluating the composite piecewise smooth function F
itself. When there are no nonsmooth elementals at all, Table 9 is equivalent to Table 3. So far
we know of no straightforward generalization of the reverse mode listed for the smooth case in
Table 5.
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It should be noted that �F(x̊ ; ·) is not just a matrix, but a continuous piecewise linear map from
R

n to Rm . That situation might take a little getting used to, since one tends to expect that the
end product of any differentiation process is some collection of derivative vectors or matrices.
In fact, one can describe �F(x̊ ; ·) in terms of matrices and vectors by the so-called abs-normal
form described in [18]. It can be generated directly by a minor extension of standard AD tools,
which has for example been provided for ADOL-C.

In sharp contrast to the standard concepts of generalized differentiation, which are very volatile
as functions of the development point x̊ , the piecewise linearization �F(x̊ ; ·) varies locally Lip-
schitz continuously with respect to x̊ . It also satisfies exact propagation rules, namely, we have
for F and G with compatible domains and dimensions

�[αF + βG](x;�x) = α�F(x;�x) + β�G(x;�x)

�[F�G](x;�x) = G(x)��F(x;�x) + F(x)��G(x;�x)

�[G ◦ F](x;�x) = �G(F(x);�F(x;�x)).

Now, what can we do using the piecewise linear models of composite piecewise smooth functions
described above? Well, mostly all the things that one does with linearizations of smooth func-
tions, such as solving equations, (un)constrained minimization and the solution of discretized
ordinary and partial differential equations. The uniform second order approximation property
ensures rapid convergence of such successive piecewise linearization procedures from within
sizable domains of attraction.

One instant benefit of piecewise linearization is the capability to compute one or more elements
of the limiting Jacobian set

∅ �= ∂L
�x�F(x̊ ;�x)

∣∣∣
�x=0

⊆ ∂L
x F(x)

∣∣∣
x=x̂

.

More precisely, we can compute limiting Jacobians of �F(x̊ ; ·) by lexicographic differentiation
[28] and is has been shown in [20] and [17] that these are then also limiting Jacobians of the
underlying CPS function F . Furthermore, they have a desirable feature called conic activity at x̊ ,
which is a little stronger than the concept of essential activity used by Scholtes [31].

5 SUMMARY

In this survey we have considered the problem of locally approximating a function F : Rn �→ R
m

defined as composite of elementary functions ϕi as described in Section 1. If all these elementals
are smooth, i.e., Lipschitz continuously differentiable, we obtain a classical Taylor expansion in
terms of the Jacobian F ′(x̊) : Rn �→ R

m evaluated at the current point x̊ .

In Section 2 it is described how, rather than evaluating all entries of F ′(x̊) simultaneously, one
prefers to compute matrix-vector products F ′(x̊) ẋ or F ′(x̊)�ȳ in the forward and reverse mode
of algorithmic differentiation, respectively.

The procedures for doing that are listed in the Tables 3 and 5 with the I/O characteristics indicated
in (3.2). The temporal complexity of both modes is essentially the same, namely just about
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3-4 times as many operations are needed as for evaluating the underlying function F . However,
there is a large gap in the spatial complexity since the reverse mode requires the recuperation
of the forward value trajectory on the way back, in one way or another. At the beginning of
Section 3 we consider this memory aspect and answer the question of numerical accuracy quite
satisfactorily in the sense of Wilkinson backward stability.

The two basic modes have been implemented in almost a hundred different software tools adapted
to the most important languages and computing environments. To give a flavor of this evolution
we have listed some of them in Table 8 without any ambition of being representative. The con-
tinual tool development can be tracked on the website www.autodif.org. There is a lot
more to AD than the basic modes, as we have indicated in Section 4. That applies in particular
to the evaluation of second or higher derivatives and also certain combinatorial tasks that arise
in the handling of problems that are sparse or otherwise structured. Much remains to be done in
this respect, also in view of parallel and other modern computer architectures.

In the final Subsection 4.4 we have sketched how piecewise smoothness arising from the Lip-
schitz elementals abs, min, and max can be handled very naturally by piecewise linearization.
In effect one obtains a generalized Taylor approximation by a piecewise linear model with a
uniform error of order 2 in terms of the distance to the reference point x̊ . This model varies Lip-
schitz continuously w.r.t x̊ and can be used for successive piecewise linearization techniques, to
solve piecewise smooth equations and other fundamental tasks of scientific computing. So far the
model is computed exclusively in the forward mode and it is not at all clear how the concept of
adjoints should be generalized and implemented for nonsmooth F . That scenario is of particular
interest in design optimization and optimal control, where good piecewise linear approximations
may need to be discontinuous.
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Wiss. Z. Tech. Hochschule für Chemie, 13: 382–384.

[30] PHIPPS E, CASEY R & GUCKENHEIMER J. 2005. Periodic Orbits of Hybrid Systems and Parameter

Estimation via AD. In: [5], 211–223.

[31] SCHOLTES ST. 2012. Introduction to piecewise differentiable equations. Springer Briefs in Optimiza-

tion, Springer Heidelberg.

[32] THACKER WC. 1991. Automatic differentiation from an oceanographer’s perspective, in [12],
pp. 191–201.

[33] WALTHER A, KULSHRESHTHA K & GRIEWANK A. 2012. On the Numerical Stability of Algorith-

mic Differentiation. Computing, 94: 125–149.
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