Optimal Information Gathering on the Internet

with Time and Cost Constraints®

Oren Etzioni Steve Hanks Tao Jiang! Omid Madani

Dept. of Comp. Sci. and Eng.
University of Washington
Seattle, WA 98195-2350

Email: {etzioni,hanks,jiang,madani}@cs.washington.edu

Abstract

The World Wide Web provides access to vast amounts of information, but content providers are
considering charging for the information and services they supply. Thus the consumer may face the
problem of balancing the benefit of asking for information against the cost (both in terms of money
and time) of acquiring it. We study information-gathering strategies that maximize the expected
value to the consumer. In our model there is a single information request, which has a known
benefit to the consumer. To satisfy the request, queries can be sent simultaneously or in sequence
to any of a finite set of independent information sources. For each source we know the monetary
cost of making the query, the amount of time it will take, and the probability that the source will
be able to provide the requested information. A policy specifies which sources to contact at which
times, and the expected value of the policy can be defined as some function of the likelihood that the
policy will yield an answer, the expected benefit, and the monetary cost and time delay associated
with executing the policy. The problem is to find an expected-value-maximizing policy.

We explore four variants of the objective function V : (i) V consists only of the benefit term
subject to threshold constraints on both total cost and total elapsed time. (ii) V is linear in the
expected total cost of the policy subject to the constraint that the total elapsed time never exceeds
some deadline, (iii) V is linear in the expected total elapsed time subject to the constraint that the
total cost never exceeds some threshold, and (iv) V is linear in the expected total monetary cost
and the expected time delay of the policy. The problems of devising an optimal querying policy
for all four variants, and approximating an optimal querying policy for variants (iii) and (iv) are
shown to be NP-hard. For (i), and with a mild simplifying assumption for (iii), we give a fully
polynomial time approximation scheme. For (ii), we consider batched querying policies, and design
an O(n?) time approximation algorithm with ratio % and a polynomial time approximation scheme
for optimal single-batch policies, and an O(kn?) time approximation algorithm with ratio % for
optimal k-batch policies.

Key Words. Approximation algorithm, batched policy, computational complexity, information gath-
ering, information retrieval, Internet, scheduling, World Wide Web.

*Research supported in part by Office of Naval Research grant 92-J-1946, ARPA / Rome Labs grant F30602-95-1-
0024, a gift from Rockwell International Palo Alto Research, National Science Foundation grant IRI-9357772, Natural
Science and Engineering Research Council of Canada Research grant OGP0046613, and Canadian Genome Analysis and
Technology Grant GO-12278.

"Present address: Dept. of Comp. Sci., McMaster University, Hamilton, Ont L8S 4K1, Canada. Email:
jlang@maccs.mcmaster.ca

1 Introduction

The Internet is rapidly becoming the foundation of an information economy. Valuable information
sources include on-line travel agents, nationwide Yellow Pages, job listing services, on-line malls,
and many more. Currently, most of this information is available free of charge, and as a result
parallel search tools such as MetaCrawler[18] and BargainFinder [10] respond to requests by querying
numerous information sources simultaneously to maximize the information provided and minimize
delay. However, information providers may start charging for their services [8, 12, 14]. Billing protocols
to support an “information marketplace” have been announced by large players such as Visa and
Microsoft [17] and by researchers [20].

Once billing mechanisms are in place, consumers of information may face the problem of balancing
the benefit of obtaining information against the cost (both monetary and temporal) of obtaining it.
Information providers will differ in the quality of the information they provide as well as the amount
they charge and the speed at which they deliver information. The consumer thus faces the problem
of developing a schedule of queries to the providers that maximizes expected value, which can be
expressed in terms of (1) the benefit associated with a successful query, (2) the likelihood that a
particular query will yield successful results, (3) the cost of making a query, and (4) the amount of
time it takes.

This paper analyzes the “query scheduling” problem for a number of variants of the objective
function. We begin by stating the problem precisely, then summarize our main results.

1.1 The Model

The basic problem is to find a policy for obtaining the answer to a (single) query. The policy will
dictate which information source will be queried and when. To define a policy we begin with a (finite)
set of information sources, si,...,s,. For each source s; we introduce a cost parameter ¢; and a
duration parameter d;. The former is the monetary cost assessed when the source is activated and
the latter is the amount of time it takes the source to process the query. The cost and duration are
known with certainty and are charged whether or not the source returns an answer to the query. !
Finally we have p;, the probability that s; will return an answer to the query. Success probabilities are
independent for distinct sources, and whether or not s; will answer a query is uncertain but consistent:
if s; successfully answers a query it will always do so subsequently, and if it fails to answer a query
it will always fail to do so subsequently.? We assume that accurate estimates of these parameters are
obtainable from the history of the interactions with the information sources.

A policy can be represented as a sequence of pairs P = (s;,,%1), (Siy,t2),...,(8i,,tm), where
t] <t9 <--- <ty This specifies that source s;, will be initiated at #;, s;, will be initiated at £3, and
so on. An execution of the policy is terminated either when some source returns a correct answer or
when the policy has been exhausted. Since each source in a policy succeeds probabilistically, a policy
generates a probability distribution over outcomes, where each outcome is one possible way that the
policy might be played out. We use S(O), C(O) and T(O) to denote the outcome’s success (1 or 0),

L All our results can be extended to the case when the cost is charged only if the query is successful. Cost ezpectations
in place of costs should be used in a few of the models.
2As a result it is never profitable to query a source more than once.

Objective fn H time threshold ‘ linear in time ‘

cost threshold || TT: max E[R - S(O)] TL: max E[R - S(O) — T(0)]
st. YO C(O)<cand T(O) <71 | st. YO C(O) <«

linear in cost | LT: max E[R-S(O) — C(0)] LL: max E[R-S(O) — C(0) — T(0)]
st. YO T(O) <7

Table 1: The four objective functions. Here, O denotes a possible outcome of the policy P to be found.

total cost and duration, respectively. The value of an outcome O is a function of S(O), C(O) and
T(0O). The first component of the value function of an outcome O is always a constant reward R if the
query was answered and 0 otherwise. The function additionally contains two additive components,
one a function of C'(Q) and one a function of T'(O). The expected value of a policy P, denoted V(P),
is simply the expectation of the values of all its outcomes.

Our objective is to find a policy to maximize the expected value. We will consider four versions of
the objective function: linear and threshold versions of the cost and time components. With suitable
scaling of the monetary and time costs, the four objective functions assume the forms given in Table 1.
We will hereafter refer to the four problems by their acronyms: TT for threshold in cost and time, LT
for linear in cost and threshold in time, TL for threshold in cost and linear in time, and LL for linear
in cost and time. Note that in the threshold cases we try to find a policy with the maximum expected
value subject to the constraint that the policy never violates the threshold. In the remainder of the
paper, assume without loss of generality that R = 1, unless otherwise stated.

1.2 “Batched” Policies

The results in this paper concerning the model LT will reflect one more simplifying assumption: that
the duration parameters d; are the same for each source. This assumption is powerful because it
allows us to consider scheduling sources in simultaneous “batches:” all sources will be scheduled at
t=20,d,2d,..., where d is the common duration.

Although not fully general, this is a reasonable model of the current and probable future state of
information access on the Internet. The current common mode of providing information is to supply
small amounts of information quickly and cheaply (rather than process large-scale lengthy requests)
[18]. As a result the duration for processing a single query relative to the user’s time threshold is
typically small. Furthermore, the number of providers continues to grow dramatically. In the case in
which there are many information providers but each takes a short amount of time, the assumption
of equal process duration may be an excellent approximation: the error introduced by assuming equal
times will tend to be small relative to the amount of time the user is willing to wait for his information
(and thus will not affect the quality of the schedule significantly), yet the sheer number of potential
providers will still require an algorithm to choose carefully among its sources since a simple policy of
completely serial or parallel queries is liable to be a very bad one.

1.3 Summary of Our Results

We show that finding an optimal policy is NP-hard for models TT and LT. Reductions from the
problems in LT and TT show that even approximating an optimal policy for models LL and TL is
NP-hard. A fully polynomial time approximation scheme (FPTAS) is obtained for the model TT,

using an extension of the well-known rounding technique for Knapsack [7]. The FPTAS also works
for the model TL under a weak assumption: every source is “profitable” individually according to
the TL objective function, i.e. for every source s;, Rp; — d; > 0. The approximation algorithms
for the case LT, where the objective function is linear in total cost subject to a time threshold, are
perhaps the most interesting technically. We assume that all sources have the same time duration,
and consider batched policies with a bounded number of batches. We will first present an O(n?)

1

time approximation algorithm for optimal single-batch policies with ratio and then extend it to

2
a polynomial time approximation scheme (PTAS). For any constant » > 1, the PTAS runs in time
O(n"*1) to achieve an approximation ratio % The algorithms are simple and are similar to the

ones in [16] for Knapsack, but the analyses are more sophisticated. We then design an approximation
algorithm with ratio % for optimal k-batch policies, running in time O(kn?). The algorithm is based
on the ratio % algorithm for single-batch policies, but it also involves some new ideas.

1.4 Related Work

Scheduling problems have been studied in many contexts including job-shop scheduling, processor
allocation, etc. However, our Internet-inspired query scheduling problem has a unique flavor due to
the need to balance the competing time and cost constraints on policies with unbounded parallelism.
We here consider a number of alternative models that have appeared in the literature, underscoring
the difference from our own. If we constrain the policies to be serialized, then an optimal solution can
be found in polynomial time (see Section 4 for the LT case). Similar problems have been addressed in
[5, 9, 13, 19] and elsewhere. The difference in this paper is the ability to query any number of sources
in parallel. [4, 6] study scheduling tasks with unlimited parallelism, but their models are different
because all tasks have to be executed successfully, whereas in our model a successful answer from
any single source suffices. Furthermore, the positive results in [4, 6] are restricted to an exponential
time dynamic programming algorithm and some heuristics. Another model of optimal information
gathering has recently been studied in [3]. There, the objective is to find a query policy that minimizes
the expected value of a linear combination of the total dollar cost and total time cost. A constant ratio
approximation algorithm is obtained. Note that their model omits the positive reward associated with
the successful completion of a query, which changes the nature of the problem as far as the design of
approximation algorithms is concerned.

This paper provides complete proofs and adds new results to the work appearing in [2]. The paper
is organized as follows. The hardness results for all four models are given in the next section. Sections 3
and 4 present the approximation algorithms with their analyses for optimal single-batch policies and
optimal k-batch policies in the LT model. The FPTAS’s for the two models involving a cost threshold
are given in Section 5. The proofs of some technical claims are provided in the appendix.

2 The Complexity of Computing Optimal Querying Policies

We first prove that computing an optimal policy in models TT and LT is NP-hard. The proofs are
reductions from the Partition Problem: Given a finite multiset S of positive integers w; € S, is there a
subset I C S such that }°,, ;w; = % > w;es Wi- The only subtlety is that we have to use exponential
numbers in the constructions.

Theorem 2.1 Finding an optimal policy in model T'T is NP-hard.

Proof. It is clear that any optimal policy in this model is in fact a single-batch policy. Hence we
only need to consider single-batch policies. We show that Partition reduces to this problem. Assume
that the duration parameters of all the sources are less than the deadline. Then, the expected value
of any policy P in this model is
vP)=1- [(1=p).
s;€P

Thus, maximizing V(P) subject to a cost threshold is equivalent to minimizing Hsiep(l — p;) under
the same constraint, which in turn means maximizing » , cp — In(1 — p;) under the same constraint.

Consider an instance of Partition consisting of a set S = {wi,...,w,} of integers, and let C' =
Yoimjw;. For each source s;, let its cost ¢; = w;, success probability p; = 1 — (1 + 1/C)~", and
time duration d; = 0. Take the cost threshold to be C'/2, and the time threshold to be some positive
number. The expression (1+1/C)~"i can be evaluated using the standard repeated squaring technique
or a binomial series expansion approximation. It will become clear that we only have to keep at most
3log C + logn precision bits during the process.

Clearly, V(P) <1—(1+ 1/C)*% for any feasible policy P. Now, let x = 3, -pw; and treat x
as a continuous variable. Consider function h(z) =1 — (1 + 1/C)~", which is clearly increasing in z.
Since

c _c
2

(1+1/C) 5+~ (1+1/0) % = (1+1/0) 5(1/C) > 1/(/eC),

where e is the natural constant, there is a separation of at least 1/(1/eC) in the value of the function
h(z) between point % and any point less than or equal to % — 1. If we keep 3log C + log n bits during
calculation of each 1 — (14 1/C)~", then each p; would have 2log C + logn precision bits. Thus, the
precision of our evaluation of V(P) =1 — [[,.cp(1 — p;) is at least 2log C' bits, which is sufficient to
allow us to distinguish between the case }_, cpc; = % and the case >, cpc; < %, due to the above
1/(y/eC) separation. W

For the problem instance LT we prove a stronger result by showing that a special case of the
problem is NP-hard.
Theorem 2.2 Finding an optimal single-batch policy for the LT objective function is NP-hard.

Proof. Note that the objective in the single-batch case is to find a set P of sources to query in
parallel such that the function

V(P)=RO- [[(1=p)) = D« (1)
s;EP $;EP
is maximized. This is equivalent to minimizing the quantity R[], cp(1—p;)+>, cp ¢; over all possible
sets of sources.

Consider an instance of Partition consisting of a set S = {wy,...,w,} of integers, and let C' =
>itq wj. Define the parameters for the optimal single-batch policy problem as follows:

c = w;

1 (1+1/0)™"

Di

C

R = [In(1+1/0) ' (1+1/C)>

Again, it will become clear that only 4 log C' + log n bits must be kept in the calculation of p;’s and
R. For any subset S; C S we have:

S Ga+R [=p) = 3 wi+In(1+1/0)] "1 +1/C)5 [(1+1/C) ™
w; €S w; €S w; €S1 w; €S1
= S wit (1 +1/C)] 11+ 1/C) T L, ™

w; €S1

Again, let x = 3°,, g, w; and treat x as a continuous variable. We want to locate the minimum
of the following function
c
h(z) =z +[In(14+1/C)] (1 +1/C)2 ",

Setting the derivative to zero,

W(z) = 1+[In(1+1/C) '[=In(1+1/C)](1+1/C)T % =0

= 1 = [n(1+1/C)] 'In(1+1/C)1+1/C)s*
= 1 = (1+1/0)%

C
= r = 5

We also note that the second derivative of h(z) is always positive, which shows the convexity of
the function:

W'(z) = [n(1+1/C)] 'n(1+1/C)*(1+1/C)%* > 0.

The following shows that there is a separation of (1/C?) in the value of the function h(z) between
the points % and % 4+ 1. Assume that C > 2.

h(=—1)—h(=) = C'Im1+1/0)" -1

- 6C°

> O Gor 5040
3C — 2

6C2? —3C +2

> 1/(6C?).

MG +D=HG) = 1= () +1/0) "
1 207

C+ 1)(20 — 1)

> 1/(6C%).

¢ ¢
2 2

)1

> 1—(

Therefore, we only have to keep 4 log C +log n precision bits in the calculation of R and p;’s. Hence
the reduction can be done in polynomial time. W

Hence, the problem of deciding whether the expected value of some policy for the single-batch case
exceeds a certain threshold is NP-hard. This problem readily reduces to a problem in the LL model
where the duration parameters of the sources are all set to the threshold in question. In this case, it
is not hard to see that there is a policy with a positive value for the LL model problem if and only if
there is a policy for the single-batch model problem with expected value greater than the threshold.
Below, by a positive approzimation we mean constructing a policy which has positive expected value
if and only if the value of an optimal policy is positive. Positive approximation is a very relaxed
approximation criterion and we just argued that even positively approximating the optimal in model
LL is hard. A similar reduction from model TT shows that positively approximating problems in
model TL is NP-hard as well:

Theorem 2.3 Positively approzimating an optimal policy for the objective functions in the models
TL or LL s NP-hard.

3 Approximating Optimal Single-Batch Policies

In this and the following sections our focus in on the LT model. In this section we consider policies
that send out all their queries in a single batch, i.e. all queries are sent in parallel at time ¢t = 0. We
present an algorithm that approximates the optimal single-batch policy with ratio 1/2, then develop
a PTAS. Although the PTAS is a straightforward extension of the ratio 1/2 algorithm, its analysis is
very different.

Recall again that a single-batch policy is just a set of sources, and our goal is to maximize the
objective function in equality 1.

The following simple facts and definitions will be useful in this and the next sections. The first
lemma shows the subadditivity of the objective function for batched policies.

Lemma 3.1 Let OPTy be an optimal k-batch policy. For any partition of OPTq into two subpolicies
OPT, and OPTy, where the sources in OPTy and OPTy are scheduled in the same batches as they
are in OPTy, V(OPTy) < V(OPT;) + V(OPTy).

Proof. We prove it for £ = 2; the extension to the general £ is straightforward. For each ¢+ = 0,1, 2
and j = 1,2, let P;; and C; ; be the collective success probability and cost of the sources in batch j
of OPT;, respectively. Then

V(OPTy) = Poi—Co1+(1—=Fo1)(Po2—Cop) =Pii—Cii+Py1—Pii—Co1+(1=Fy1)(Pyp—Copo).
Since PO,l = Pl,l + Pg’l - P1’1P271, PO,l - P171 = Pg’l(l - Pl,l) S Pg’l. Hence,
Pii—-Cian+PFPog—Pi1—Co1 <Py —Cig+ P —Cop.

Similarly we have
Pyo —Coa < Pig—Cip+ Py — Copn.

Because OPTU is optimal, PLQ — 0172 Z 0 and PQ’Z — 02,2 Z 0. Therefore,

V(OPTy) < (Pi1—Cii+P1—Co1)+(1—Py1)(Pro2—Cia+Pagy—Coo)
= (Pia—Cii+(1=PFPo1)(Pip—Cip)+Poi —Coi+ (1= Py1)(FPop—Cop)
< (P1—-Cia+Q—-—Pa)(Pia—Ci2)+ Py —Cop+ (1= Poy)(Pay— Cop)

V(OPT;) + V(OPT,). N

Lemma 3.2 Suppose that P is any k-batch policy, i is an index between 1 and k, and s; is a source
not appearing in P. Let P1, Py, Py denote the subpolicies consisting of the the first + — 1 batches, the
i-th batch, and the last k — i batches of P, respectively. Also denote the expected cost and collective
success probability of the sources in policy Py as C; and Py, | =1,2,3. Then adding sj to the i-th batch

of policy P increases its expected value by

V(PU{s;}) —V(P) = (1-P)p;(1-P)1-P+Cs)—cj)
= (1=P)pi((1 =)1 — P+ C3) — ¢j/pj) (2)

In particular, if k =14 =1, the net increase is
V(PU{s;}) = V(P) =pj(1 = P») —¢; = p;j(1 = Py — ¢;/p;) (3)
Proof. The expected values of the policies P and P U {s;} can be written as
V(P)= (P~ Ci)+ (1 - P)((P— Co) + (1 - P)(P5 — C3))

V(PU{sj}) = (P = C) + (1 = P)((P2 +pj — Papj — Ca — ¢j) + (1 = P2)(1 = pj) (P — C3))
Taking the difference gives us the lemma. W

Thus, in the case of £ = 1, adding s; to the policy P results in an increased expected value iff
the collective failure probability 1 — P, of the sources in P is strictly greater than the cost-to-success-
probability ratio ¢;/p; of source s;. Observe that the increased value p;(1— P> —¢;j/p;) is proportional
to the success probability p; as long as the ratio ¢;/p; is kept constant. Also observe that, for general
k,1-P3+C3=1—(P3—C3) =1—V(P;). It follows from Lemma 3.2 that a source s; with ¢; > p;
is not useful if V(P3) > 0. Hence we can assume from now on that p; > ¢; for all 3.

We say that a source s is profitable in a policy P if s is queried in P and dropping it from P would
not increase the expected value of P. The above lemma states that source s; in batch 7 of the k-batch
policy P is profitable in P if and only if ¢;/p; < (1 — Py ;)(1 — V(P3)), where P ; is the collective
success probability of sources in batch 4 exzcluding source s;. A policy P is irreducible if every source
in P is profitable in P. Clearly, every optimal k-batch policy is irreducible.

3.1 A Ratio % Approximation Algorithm

Our algorithm, as shown in Figure 1, is somewhat similar to the greedy approximation algorithm for
Knapsack given in [16], though the analysis of its performance is more complex.

The algorithm Pick-a-Star sorts the sources in ascending order of the ratio ¢;/p;. It then goes over
each source s;, picks it and then picks the rest from the sorted list (with s; removed) until either the

1 Sort the sources so that ¢1/p1 < -+ < ¢, /Dn.

2. APPR={. (* APPR is the best policy found so far. *)
3 Fori:=1ton

4 S:={s;}. (* S is the current policy constructed. *)
5. Q:=1-—p;. (*Q is the collective failure probability of S. *)
6 For j := 1 to n, where j # i

7 If () > ¢j/p; then (* profitability check *)

8 S:=5U {Sj}.

9 Q= Q1 —p;).

10. else exit to step 11.

11. If V(APPR) < V(S) then APPR := S.

12. Output policy APPR.

Figure 1: The algorithm Pick-a-Star.

list is exhausted or it reaches a source s; which cannot be profitable, meaning that the profitability
criterion:
II Q—p)>c¢/p;
k=i or k<j
is not satisfied. Equality 3 in Lemma 3.2 and the comments following the lemma explain the choice of
the criterion. Pick-a-Star keeps track of the policy with the highest expected value over the iterations.
Clearly the running time is O(n?).

Now we analyze the performance of Pick-a-Star and show that it results in an expected value
that is at least half of the optimum. Let APPR be the policy obtained by Pick-a-Star and OPT an
optimal single-batch policy. Since Pick-a-Star picks the first source optimally (i.e. through exhaustive
search), V(APPR) > V({s;}) = pi — ¢; for all i < n. Thus, without loss of generality, we may assume
|APPR| > 1. Moreover, we will assume henceforth that the first source picked by Pick-a-Star is the
“most profitable” source in OPT, i.e. some source s; with the maximum V' ({s;}) over all sources
in OPT. Let sj, be the last source picked by Pick-a-Star. We can assume that the collective
failure probability of APPR is at least the ratio ¢jqs/piast, because otherwise we could modify APPR
by decreasing p;qs; while keeping ¢jqs:/prast constant until the collective failure probability of APPR
becomes equal to ¢q5¢/Prase- This is possible since the collective failure probability of APPR — {45}
is greater than ¢js/prast- By Lemma 3.2 such modification could only worsen the expected value of
APPR. Note that if s;,5; appears also in OPT, then it is treated as a different copy and kept intact.
Hence we do not change the expected value of OPT in this case (or in any other case). Note also that
this potential modification does not affect the first source picked by Pick-a-Star since |APPR| > 1.

Define So = APPR N OPT, S; = APPR — Sy, and Sy = OPT — Sy. For each 1 = 0,1, 2, let C;
and F; be the collective cost and success probability of the sources in S;. Note that if the success
probability of source s;,5 is modified in APPR as mentioned above and sy, also appears in OPT,
then the two copies of s;,; in APPR and OPT are viewed as distinct sources and thus s, will not
be included in Sy. On the other hand, if s;,4 is not modified in APPR and sj,s appears in OPT,
then the two copies of sj,; in APPR and OPT are viewed as the same source and thus s;,s will be

included in Sy. Observe that

Vs; € S1Vsj € Sa,ci/pi < ¢j/p;)

Let us first consider the (easier) case in which Sy = (). Observe that S; C {s1,..., S5t} Since the
collective failure probability of APPR — {s;45:} is greater than ¢jqs/prast > -+ > ¢1/p1, every element
of Sy is profitable in the set APPR — {s/45:}. By Lemma 3.2, V(APPR — {s;45¢:}) > V(OPT — {145t })-
We also know that V(APPR) > V(APPR — {s;4s:}) by Lemma 3.2. Since V(APPR) > V({s)45}) and
V(OPT) < V(OPT — {stas}) + V({s1a5:}) by Lemma 3.1,

2V(APPR) > V(OPT — {s05:}) + V({S1a5}) > V(OPT).

Now suppose that Sy # (). Since OPT is irreducible and Pick-a-Star picks sources until no remaining
source can be profitable, Sy # (). Let m = |Sy| and [= |S]|. Let

o~ max c; Clast
1 == =
$; €51 pi(l —P[]) plast(l _PU)
. Cj
a2 = min

si€5: pi(1 — Py)

By relation 4, clearly «; < 9. The next lemma relating ai, as to P;, Py is a key to our analysis.

Lemma 3.3 (i) a1 <1—- P < ay and (i) 1 — P, > aé”wil.
Proof. Recall that we have assumed that (1 — Py)(1 — P1) > ¢jast/Plast- Thus, 1 — Py > «y. Since
Pick-a-Star stopped before picking anything from Sy, (1 — Py)(1 — P1) < ¢;/p; for any s; € So. These
prove (i). To prove (ii), let pyin = ming cg, p;. Since OPT is irreducible, (1 — Py)(1 —P)/(1 — pmin) >
Cmin/Pmin > (1 — Py)as. So,

(1= P50 > (1= P)/(1 = pruin) > 0.

_m
m—

Le.1-P,>ay'. 1
Now we want to find a lower bound for the ratio
V(APPR) _ PR -Co+ (1-Py)P —Cy (5)
V(OPT) Py—Co+(1—PFy)P, — Cy
Since V(Sp) > V(S2)/m by the choice of the first source picked by Pick-a-Star and the fact that Sy is
irreducible,

V(OPT) < V(Sp) + V(S2) < (m + 1)V (Sp).
This implies
(1= Py)P, — Cy < _m
Py—Cy+(1=P)P,—Cy — m+1

Define

(1-P)P —Cy

NGy Yy ©

To obtain a lower bound of 1/2 for the ratio in equality 5, we need
1 m 1 m — 1

> =, de r>— 7

mrl Tmrio2 "0 o ()

which we show below. The following lemma gives a clean lower bound for ratio r.

10

Lemma 3.4

P —1(1—-(1-=P)" ey

r2 a1<1rgi1%<a2 (1- am/(mfl))(l —)
< < y 5
Proof. Observe that
(I =P)P = (X8, Pigt)
" 1 PP O
s PP (Byes pi) (1 Po)on
- (1 — Po)Pz — Cz
> P — (Zsiesl pi)al
- PQ*OQ/(].*P[])
> Py — (Zsiesl pi)al
- Py — Pyay
5 _Hi- (Xs,es, Pi)a

(1—ay/™ (1 = ay)

The last step follows from (ii) of Lemma 3.3. Since
S (=p) 2 I @ =pa)]/ =100 =)",
5i€51 5i€51
dosies, Pi S T—1(1— Py)Y/!. Hence the lemma follows from (i) of Lemma 3.3. W
Now we try to simplify the lower bound function?.
Claim 3.5 The ratio
P —1(1-(1—P)"Hey
(103")1~)

s increasing in P when 1 — Py > a;.

By Lemma 3.3, the smallest P, can be is 1 — ay. The above ratio is clearly decreasing in oy < .
For convenience, let © = ay. We set P, =1 — z and a; = z, and we get,

r

1 1—z—1(1-2Yz
-1 _xm/(mfl)[]

Claim 3.6 The right hand side of inequality 8 is nonincreasing in [.

11—z

Taking the limit

1/ (—z'/M(nxz)(—1/1%)
lim (1 — 2/Y) = 1i = i -1
Jim 11 = @) = lim —— = lim =y
we get
1 l-xz+zlnx

Tz 1 — xm/(mfl)

[] (9)

11—z

3The proofs of the claims appear in the appendix.

11

Claim 3.7 The right hand side of inequality 9 is decreasing in x € (0,1).

Since the right-hand-side expression is undefined at z = 1, we take the limit

1 l—-z+zlnx

S
vz Il ey ()]
. l—z+zlnx
= llm m 2m—1
o=l — g — T gt
. ~l+lnz+z/x
- hn{ L 2m—1
— m P m—
B i KA e A
1/x
- lini 1 Z’m/Tz 1 !
r— m p—— m— m ——
P s KA M p e E
B 1 B 1
- 27m—1) —14+2m—1
T mn 1)2"‘77(1,(717711)2) mrﬁl(mfn})
_ m—1
- 2m

This verifies inequality 7 and completes the proof that V(APPR)/V(OPT) > 1/2.

Theorem 3.8 Pick-a-Star produces a single-batch policy with an expected value that is at least half of
the optimum.

3.2 Extending Pick-a-Star to a PTAS

The extension of the algorithm is straightforward. Let » > 1 be any fixed constant. The new algorithm
iterates over all possible choices of at most r sources and schedules the rest of the sources based on the
cost-to-success probability ratio, using the same stopping criterion. It then outputs the best policy
found in all iterations. Call the new algorithm Pick-r-Stars. Clearly, it runs in O(n"*!) time. We
show that Pick-r-Stars achieves an approximation ratio of % The analysis is different from the
previous subsection in that we will make use of the r sources in the optimal policy with the highest
success probability instead of the the most profitable ones. We would like to remark here that this
new strategy does not work for Pick-a-Star, nor does our analysis of Pick-a-Star work for general r
m—1

because the best lower bound that the analysis yields for the ratio defined in equality 6 is 7.

Let APPR be the policy found by Pick-r-Stars and OPT an optimal policy. As in the previous
subsection, we assume without loss of generality that (i) [APPR| > r and |OPT| > r, (ii) APPR
contains the r sources in OPT with the highest success probability, and (iii) the collective failure
probability of APPR is at least the ratio ¢jqs1/Piast, where s;44 is the last source picked by Pick-r-Stars.
Since OPT is irreducible, we can also assume that APPR ¢ OPT, because otherwise APPR = OPT.

Again, let Sy = APPR N OPT, S§; = APPR — Sy, and S3 = OPT — Sy and the corresponding
collective costs and success probabilities C; and P;, for each i = 0,1,2. We also have ¢;/p; < ¢;/p; for
all s; € S1,sj € So. Define | = |S;|, m = |53/, and

$;€S1 P; plast(l - PO)
. . G
a9y = min{l, min —
2 {) 5;€59 pi}
Then, we again have
(03] S (1 — P[])(l - Pl) S a9 (10)

To obtain a clean lower bound for the approximation ratio V(APPR)/V(OPT), we go through
a sequence of simplifying steps. In the process we will guarantee that the ratio V(APPR)/V (OPT)
never improves and inequality 10 always holds.

First, we will assume that |Sy| = r, i.e. APPR and OPT share exactly r common sources, by the

following argument. Let s; € Sy be any source. Then,

V(APPR) 1—(1-PR)—Co+(1-P)P —C
V(OPT) 1 0 &) Cor(I_R)b G
1 _1-Py Cy + (1*P0)P1 .
. 1-p; 1-p; 1-pi 1—pi 1-pi
o 1 1-Py Cy 4 (1*P0)P2 Oy
1—p; 1-p; 1-p; 1—pi 1-p;
l—¢; 1-Py Co—c; 4 (1*P0)P1 G
I e 1-pi 1—p; 1-pi 1—p;
I _1-Py Co—¢; + (1I-Py)Py (o
1—p; 1-p; 1—pi 1-p; 1—pi
1 _ 17P0 _ C[]fci + (1*P0)P1 _ C1
> 1-p; 1-p; 1—pi 1-pi
1 _ 17P0 _ C[]fci + (1*P0)P2 _ CQ
1-p; 1-p; 1—pi 1-p;

The last step holds because p; —c¢; = V({s;}) > 0 and thus 1 —¢; > 1 —p;. Hence, we can define a new
pair of APPR and OPT by removing the source s; and dividing the cost of every remaining source in
Sp by 1 — p;. Clearly inequality 10 still holds for the new pair.

Second, we can assume that oy = ag = (1 — Py)(1 — P;). This can be achieved by increasing the
cost of each source in S; and decreasing the cost of each source in So. So now, ¢; = aip; for each
s; € S1US,.

Third, we assume without loss of generality that the r sources in Sy have the same success proba-
bility p = 1 — (1 — Py)"/". Since these sources are assumed to have the largest success probability in
OPT, p; < p for each s; € Sy. Moreover, we can assume that p; = p for each s; € Sy by the following
argument. If p; < p, we increase p; to p and ¢; to a;p. By Lemma 3.2, this improves V(OPT) because
the set OPT is irreducible. If this results in a set that is not irreducible, we can make it irreducible
by dropping some sources in Sy, again improving the expected value of OPT.

Forth, we can assume that ¢;/p; = g for all s; € Sy. The condition can be achieved by increasing
the costs of the sources in Sy. This would decrease the expected value of both APPR and OPT by
the same amount, and thus decrease the ratio V(APPR)/V (OPT).

Finally, we can worsen APPR by assuming that

pi=1-(1-P)' =1 (/1 - P)V' =1~ (ar/(1—p)")"/!

13

for each p; € S1, as mentioned in the previous subsection.

Now we have clean formulas for the expected values:

V(APPR) = 1—(1—p)

— — agrp — lan[1 — (L)l/l]

(1—1p) (1—p)

V(OPT) = 1—(1—p)"" —agrp — aymp

We further simplify the formulas by getting rid of [and m.
Lemma 3.9

VAPPR) > 1 - a1 — aorp + a1 In(el)
-Dp

Proof. Since a;/(1 —p)" < 1 by inequality 10, the function —la;[1 — ((lf—;)r)l/l] is nonincreasing

in | by Claim 3.6 in the last subsection. Taking the limit, we get

V(APPR) > lim 11— ay — agrp — lag (1 — (—at)1/
S (1-p)"
a1
> 1l—a; —agrp+ailn []
((1 *p)r)
Lemma 3.10

a1p aip —ap
VOPT) <14+ 22 - 1 .
(OFD) < U+ =)~ " T = p) Ty (i =)

Proof. We can treat m as a continuous variable and maximize 1 — (1 — p)" " — agrp — aymp over
all real values of m. Taking the derivative with respect to m and setting it to 0, we get

1 ! (—a1p)
m = n .
In(1—p) “(1-p)"In(l - p)
Hence,
1-(1— r+m - = 1 &7 _ ap 1 —aip |
max1 — (1 —p) corp —enmp =1+ gy = e - gy M)

Now we are ready to show that V(APPR)/V(OPT) > (r —1)/(r + 1). It suffices to prove that
V(OPT) — V(APP 2
(OPT) - V(APPR) _ "
V(APPR) r—1
We first give an overestimate of the difference V(OPT)—V (APPR). The following simple mathematical
facts for 0 < p < 1 will be useful.

p < —In(l—p) = PSS < T

P 1
0<1+—2 — 9=
< +ln(1—p) 1+p/2+p2/3+---
1

14 ptpi

= D
= *ln(].*(].'i‘ln(lp%p)))
p

1 s
g +1n(1—p)

14

Lemma 3.11

V(OPT) — V(APPR) < fi(a1) = oup? — arpIn(i flp)r).

Proof. From Lemmas 3.9 and 3.10, we know

__r
In(1 - p)

V(OPT) — V(APPR) < oy (1 +) — (1 + —L2—)In(

Therefore,

V(OPT) — V(APPR) < ay(l+

= a1(1+)2 — aypln(
In

(1 —p)
2—0[1 n .
op pl ((17p),n

IN

Next we find an underestimate of V(APPR). Observe that the following conditions follow from
inequality 10, the simplifying assumptions on the sources in S; (e.g. Vs; € Sy, ¢;/p; = o), and the
arguments for the second claim of Lemma 3.3:

(1-p)" >a

(1=p)" ' =((1=p)")F > a

Lemma 3.12
r(r —1 _ o ,
V(APPR) > fy(on) = ——)(1 —p) o m((1 jp)r) +(1—p) —a.
Proof.
V(APPR) > 1 a; — agrp+ ar In(—2—)
(1—p)
= 1 (1-p) —agrp+ o () + (1) —
(1-p)
(6]
> 1=(1=p) = (=p) It a0 +(1-p) —a

= pP?A+20—p)+-+ (- 1)1 —p)" %) + o In(—)T)+(1fp)ua1

(i-
rir—1) Y+ (1—p) —ar. W

2

(1) (s

Hence we have the following clean lower bound for the ratio (V(OPT) — V(APPR))/V (APPR).
Lemma 3.13

V(OPT) - V(APPR) . = fi(o)
V(APPR) ar<(1-p)" fo(en)

15

Lemma 3.14 For all on < (1 —p)", fi(e1)/fa(aq) > 1/(r — 1).

Proof. First consider the case a; > (1 —p)? !, Let oy = (1 —p)*. Hence, 7 < x < 2r — 1. Observe
that because the function ylny + 1 — y is positive for all y > 0,

aq aq

alln(m)-i_(l 7p)7“ -1 = (1 7p)?“((1 7p)r ln((l 7p)f,«) 1- (1 7p)f,«) >0
This means fo(ay) > 7n(T;l)(l —p)"?p*. So,
file) - (L=p)"p* = (2 —r)(1 = p)"pIn(l - p)
foa) @(1 —p)r?p?
(1-p)*p’ + (= 7)1 —p)* 'p’
< r(r—1) r—2,2
—5—(1—-p)p
< l+z—r
r(r—1)/2
< 2
- r(r—1)
_ 2
=1

When «a; < (1 —p)?" !, we claim that the function fo(ay) — %fl(al) is decreasing in a;.

Claim 3.15 The function

falon) — 7"51,101(041)
r(r—1) r—2,2 a1

= T)22 e () + (1 p) — an — T (e — anpIn(2hy)

is decreasing in oy, for a; < (1 —p)?" L

Hence, for any oy < (1 —p)?" 1,

r—1
2

r—1
2

falar) — filan) > fo(1=p)> 1) = A =p) >0, N

This concludes the analysis for Pick-r-Stars.

Theorem 3.16 Pick-r-Stars produces a single-batch policy with an expected wvalue that is at least
(r —1)/(r + 1) of the optimum.

4 Approximating Optimal k-Batch Policies

Here, we present an algorithm for the linear cost and time threshold (LT) model that approximates
optimal k-batch policies with a constant ratio 1/5. Recall that our simplifying assumption here is that
time durations are equal, consequently optimal batched policies exist. The k-batch approximation
algorithm, called Reverse-Greedy, is illustrated in Figure 2. The algorithm works by constructing
an irreducible policy. It greedily constructs the policy batch by batch, starting from the last batch

16

1. Sort the sources so that ¢1/p1 < -+ < ¢, /pn.

2. APPR=10. (* APPR denotes the k-batch policy. *)

3. For i := k downto 1

4. S =10. (* S is the best i-th batch found so far. *)

5. Q =1. (* @ is the collective failure probability of S. *)

6. For j :=1 to n, where s; ¢ APPR

7. Sl = {Sj}.

8. @1:=1—p;. (* @ is the collective failure probability of S;. *)
9. For [:=1 to n, where | # j and s; ¢ APPR

10. If Q1(1 - V(APPR)) > ¢;/p; then (* profitability check *)
11. Sl = Sl U {Sl}.

12. Q1= Q1(1 —pr).

13. else exit to step 14.

14. If V(S) < V(S;) then §:=51;0Q = Q1.

15. Foreach s; in § (* Make S irreducible. *)

16. If ¢;/p; > 72-(1 - V(APPR))

17. S=8—{s;} @=Q/(1—pj);

18. Add S to APPR as the i-th batch.

19. Output policy APPR.

Figure 2: The algorithm Reverse-Greedy.

(rightmost) and going in reverse time. For each batch, it invokes the single-batch algorithm Pick-a-
Star, but with a modified profitability criterion that follows from equality 2 of Lemma 3.2 (see the
comments following the Lemma). Even though each source is profitable at the time it is added to
a partially constructed batch, the completed batch may not be irreducible, i.e. some of the sources
picked before the last source may become nonprofitable after the addition of the last source. Thus
after each call to Pick-a-Star, the algorithm scans back over the newly created batch and drops any
source that is nonprofitable. In this way, the final policy is surely irreducible. Clearly Reverse-Greedy
can be implemented to run in time O(kn?).

The analysis of Reverse-Greedy makes use of Theorem 3.8. The difficulty here is that because
the sources can be scheduled in different batches, some batches of an optimal k-batch policy could
be arbitrarily better individually than their counterparts in APPR. To get around this, we relate
an irreducible k-batch policy to its optimally serialized version. For any policy P, let P denote the
optimal serial policy for the sources in P. It is not hard to see that V(P) > V(P). Note that a serial
policy P may violate the time threshold, however we use V(P) in the analysis as a means of bounding
the value of an optimal scheduling of the sources in P. First, let us characterize an optimal serial
policy.

Lemma 4.1 For any set of sources, an optimal serial policy (including all sources in the set) sorts
the sources in the nondecreasing order of their cost to success probability ratios.

Proof. Consider any serial policy P = s;,,..., i, . Then

m—1
V(P) =Pi — Ciy + (1 _pi1)(pi2 - ci2) t+--t H (1 _pij)(pim - cim)-
j=1

17

Hence swapping source s;; and source s;, , would result in a net value of

Jj—1 Jj—1

(1 _piz)(pij+1 — Cijq T (1 _pij+1)(pij - cij)) - H(l _piz)(pij —Ci; + (1- pij)(pij+1 - cij+1))
=1 =1
j—1

= (1= pi))(Pisr i — PijCijn)s

Il
_

which is positive if ¢;,, /pi;,, <eci;/pi;. B

The following property of optimal serial policies is a side product of the above lemma and will be
useful in the analysis.

Corollary 4.2 Let Sy and Sy be two sets of sources and Sy C Sy. An optimal serial policy for So
gives an expected value at least that of an optimal serial policy for Si.

Proof. Recall our basic assumption from section 3 that p; > ¢; for all sources s;. As a consequence
an optimal serial policy for the sources in Sy exists that includes all the sources in S3. Starting from
such an optimal serial policy for S2, we can gradually swap the sources that are not in S; towards
the end of the sequence, and eventually remove them. By Lemma 4.1, no such swap or removal can
increase the expected value. W

The following lemma, which is somewhat surprising, is a key to our analysis. It states that
serializing an irreducible batched policy can at most triple the expected value.

Lemma 4.3 Let P denote the success probability of an irreducible batched policy P. Then V(P) <
(2+ P)V(P).

Proof. The proofis by induction on the number of sources of the policy. Assume that the statement
holds for any irreducible policy consisting of n — 1 > 1 sources, and consider an irreducible policy P
consisting of n sources. Let S denote the set of sources in the first (leftmost) batch and s, denote a
source in S. In order to maximize the difference between V(P) and V(P) we assume that the cost-
to-success-probability ratios of all the sources in S are at the maximum possible (without violating
the irreducibility condition). We perturb the initial policy P and transform it into another irreducible
policy P’, by moving s, to the left in the time-line so that it finishes before all the other sources. We
increase the cost of source s, and other sources in S by amounts to be described below. Note that
policy P’ will not be different from policy P if S — {s,,} = (). Due to the potential increase in costs in

the transformation, we will see that V(P') < V(P) and V(P’) < V(P). We first show that
2(V(P)-V(P")) 2 V(P)-V(P). (12)

We complete the proof by showing, using the inductive hypothesis, that the statement of the lemma
holds for policy P’.

Let @ denote the collective failure probability of the sources in S and V, denote the expected
value of policy P without batch S. Let S’ = S — {s,,}. Since the cost-to-success-probability ratios of
sources in S are as high as possible, we have ¢;/p; = Q/(1 — p;)(1 — V,) for s; € S according to the
definition of irreducibility. Let ¢/, and ¢, be the costs of sources s, and s; € S’ in policy P'. Again,
we set these costs to be as high as they can be: ¢} = p;(Q/(1 — pi)(1 — pp))(1 — Vo) = /(1 — pn)

18

and ¢;, = pa(Q/(1 — pn) + Xy,ce ¢ — Q/(1 — pn)Va). Therefore we have that Vs; € S’ ¢} — ¢; =
¢ — (1 = pn)c; = cipn and ¢, — ¢, = 3, co Pnc;. Thus the change in the cost of s, is equal to the
total change in the costs of the sources in S’.

We have V(P') =1-Q — ¢, — (1 —pn) Xy,ce i+ QVay and V(P) =1 -Q — 3, g ¢i + QV4. Thus
V(P) —V(P') = ¢, — ¢n = Pn) g,cq ¢ In other words, in going from policy P’ to policy P, only
the reduction in the cost of source s, is felt in the increase of the expected value. Observe that this
reduction is exactly half of the total change in all costs. Now it is easy to see that 2 (V(P) — V(P')) >
V(P) — V(P'): In the transition from the optimal serial policy P’ to the optimal serial policy P, the
reduction in the costs of both source s, and the sources in S’, which is twice the reduction in the cost of
source sy, is reflected in the increase of the expected value. However, V/(P) — V(P") < 2p, Y, cqi ¢},
since in a serial policy the effect of a cost reduction on each source is reduced due to the success
probability of the sources queried earlier.

Next we show

V(P) <2+ P)V(P). (13)
Note that source s, is the only scheduled source in the leftmost batch of policy P’, and since its
cost-to-success-probability ratio ¢, /p, is maximized, ¢,/p, = 1 — V, where V' denotes the expected
value of the policy P’ excluding s,. Again, since ¢, /p, is maximized, V = V(P'), i.e. the presence of
$p in P’ does not increase V(P') (see Lemma 3.2). Hence ¢, /p, =1 — V(P’). Consider the subpolicy
A consisting of the sources in P’ with cost-to-success-probability ratio less than 1 — V(P') and let
P4 denote its success probability. Let B denote the subpolicy consisting of the rest of the sources in
P! with success probability Pg. The sources in B have higher cost-to-success-probability ratios than
the sources in A, hence they are queried later than the sources in A in policy P’. Therefore we have
V(P") = V(A) + (1 — P4)V(B). Since P’ is irreducible, V(A) < V(P'), and because subpolicy A is
irreducible and does not include s, we have V(A) < (2 + P4)V(A) < (2+ P4)V(P') by induction. Tt
is not hard to see that V(B) < PgV(P'): Let the sources in B be s1,...,s,,, and let o; denote the
cost-to-success-probability ratio of s;, where oy < --- < «,. Then

-1

V(B) = pi(l—a1)+ (1 —p)pa(l —) +--- + ("i_[(1 =pi)pm (1 — ap)
i=1

< (pl + (1 =p)p2+---+ ("i_[(1 —pi))Pm> (1— o)

=1
< PgV(P)

Therefore

IN

2V(P') + PaV(P') + (1 — Pa)PgV(P")
= 2V(P') + (Pa+ (1~ Pa)Pp)V(P)
— (24 P)V(P)

We complete the proof using inequalities 12 and 13:
V(P) < 2(V(P)-V(P))+V(P))

19

IN

2V(P) - 2V(P') + (2 + P)V(P")
< 2V(P) 4+ PV(P) = (2 + P)V(P) |

A similar proof shows that lemma 4.3 also holds for the general case of an irreducible schedule
with sources that can have unequal durations. However the irreducibility criterion is slightly more
complicated than what is derived from 3.2 for batched schedules, and unfortunately, unlike for the case
for batched schedules, we don’t know how to use that fact to derive an approximation algorithm for
the general case. The interested reader is referred to [11] for a proof for the general case. Interestingly,
serializing a single irreducible batch of sources can at most double the value (this result was used in
2)).

Now we analyze the performance of algorithm Reverse-Greedy. Just as in the case for single-batch
policies, we will also use set operations on k-batch policies when there is no ambiguity. Denote the
optimal policy as OPT, and partition OPT as

OPT; = APPRNOPT,
OPT, = OPT - OPTy,

where the sources in OPT; and OPT; are scheduled in the same batches as they are in OPT. By
Lemma 3.1,
V(OPT) < V(OPT;) + V(OPTy).

We compare the performances of OPT; and OPTy with that of APPR separately.
Lemma 4.4 V(OPT;) < 3V(APPR).
Proof. This follows immediately from Corollary 4.2 and Lemma 4.3. W

Lemma 4.5 V(OPT,) < 2V (APPR).

Proof. For each i = 1,...,k, let OPTy(i) and APPR(7) denote the subpolicies of OPTy and
APPR consisting of the last £k — ¢ + 1 batches. We prove inductively, starting from the last batch,
that V(OPT9(i)) < 2V(APPR(7)). Without loss of generality, we may assume that V(APPR(7)) <
V(OPTy(3)) for all ¢ because otherwise we could always replace the last &k — i + 1 batches of OPT,
with those of APPR and continue with the induction. This could only improve V(OPTy).

The base of the induction is clearly true by Theorem 3.8. Note that making each batch irreducible
can only increase the expected value of the batch. Suppose that the claim holds for 1 +1 < k, and
consider batch i. Let P,, C, be the collective success probability and cost of the sources in the i-th
batch of OPTy and P,, C, the corresponding quantities for APPR. By Lemma 3.2,

V(APPR(i)) — V(APPR(i + 1)) = P,(1 — V(APPR(i + 1))) — C,

V(OPTy(i)) = V(OPTy(i + 1)) = Po(1 = V(OPTy(i + 1)) — Co

(

Taking the ratio and noting that V(APPR(i + 1)) < V(OPTy(i + 1)),
P,(1-V(APPR(:+1)))-C, (1-V(APPR(i+1))\ P, — C,/(1 - V(APPR(i +1)))
P,(1 -V (OPTy(i+1))) - C, <1 V(OPTy(i + 1))) P, — C,/(1 — V(OPTy(i + 1)))

20

o Pa—Ca/(1 - V(APPR(i +1)))
P —Co/(1 - V(OPTy (i + 1))
o Pu—Cu/(1 - V(APPR(i +1)))
= P, C,/(1 - V(APPR(i +1)))

Let set S consist of all sources that do not appear in APPR(i + 1). Clearly, S includes all
sources in OPTy and thus all sources in the ¢-th batch of OPT,. Divide the cost of each source by
—V(APPR(i+1)). Then on input S, Pick-a-Star would return exactly the same set as the i-th batch
of APPR with expected value being P, — C,/(1 — V(APPR(i + 1))). By Theorem 3.8, the value is at
least half of the optimal expected value for set S which is in turn at least P,—C,/(1—V (APPR(i+1))).
This means

9(V(APPR(i)) — V(APPR(i + 1)) > V(OPTs(i)) — V(OPT(i + 1)),
and hence 2V (APPR(4)) > V(OPTy(:)). W

Lemmas 4.5 and 4.4 together give the following theorem.

Theorem 4.6 Algorithm Reverse-Greedy returns a k-batch policy with an expected value at least 1/5
of the optimum.

5 Approximation Algorithms for the Cost Threshold Models

We first present an FPTAS for model TL under a weak assumption: p; —d; > 0 for every source s; (d;
is the time duration of s;), i.e. every source considered is profitable by itself. The extension to model
TT (with no restriction) is straightforward. Note that in model TT our goal is simply to maximize
the overall probability of getting the information under the time and cost constraints.

The main idea is the rounding technique introduced in [7] for Knapsack. As mentioned before,
in the cost threshold model TL, an optimal policy should be in fact a single-batch policy. Let P =

{Siys- .-, 8, } be a single-batch policy, where d;; <--- <d; . Then,
m m j—1 m
V(P) =]' o H pl] Z H pll pl] Z] - H(]- - pl])dlm
j=1 j=1i=1 j=1

We cannot apply the rounding technique to the above objective function directly because it involves
subtractions. Let’s rewrite the expression as

pzm - dlm) (14)

V(P) = il:[- piy)pi; (1 ﬁ — pi;)d
7=11=1 7=1
H

= Enlipllpl

Since p; — d; > 0 by our assumption, every term is nonnegative in equation 14, and we can apply
rounding as follows.

21

Let € > 0 be any desired relative error. Sort the sources in the ascending order of their time
durations. We will exhaustively consider every possible choice of s;, . For each ¢ < n, consider only
policies that includes the source s; and possibly some others from {si,...,s;_1}, subject to the same
cost threshold. Let OPT(7) denote an optimal such policy. For simplicity, assume that |OPT(i)| > 1.
We find a trivial lower bound for V(OPT(i)):

V(OPT(¢)) > L; = max{p; — d;, max p;(1 —d;)}.
j<i
cj+¢;i<¢

Similar to [7], we formulate a new instance by rounding p; — d; and each p;(1—d;) down to the nearest
multiple of eL;/(2i). But here we also need round each 1 p; to the nearest power of (1—¢/(2i))"/0=1).
In other words, we round each log(1 — p;) to the nearest multiple of (log(1 —€/(24)))/(i — 1). We solve
the new instance optimally. Let OPT; denote an optimal policy for the new instance. It is sufficient to
bound the difference between V(OPT(7)) and V(OPT;) and we do this by obtaining an upper bound
between each term of OPT(i) and the corresponding rounded value. Each term difference is upper
bounded when the p; — d; or p;(1 — d;) part of a term is at its maximum L; and the probability factors
in the unrounded term are all 1 (otherwise they are factored out and reduce the difference). Thus we

1 .
obtain a maximum difference of L; — Li(1 — £)[(1 —)7 1]~ for every term and there can be at most

1 many:
V(OPT(i)) — V(OPT;) < i (Li — Li(1 - %)[(1 - 2%.)2'11]“>
= iLi(1—-(1- E)Z)
< iLi(1-(1-2)
== ELZ'

< eV(OPT(i))

Hence, the new instance approximates the original problem with the desired ratio.

We can compute OPT; for the new instance by dynamic programming in the space S; of all possible
values of V(OPT;). Denote Q; = [];;(1 — p;). By the above rounding, the cardinality of S; is upper

bounded by

2i . (1 —1)log Q;

)((2

) <i)(22'2 logQi) _ —4i* log Q;

) g =@y < ——= EE

€
which is polynomial in the input size and 1/e. In the above inequality, the factor % represents the
number of different values that p;—d; and p;(1—d;) can have after being rounded to the nearest multiple
of €L;/(2i), and the factor légi% represents the number of different exponents that a product of

the form H{;ll(l — pj,) can have after being rounded to the nearest power of (1 — ¢/(2i))"/(=1).

Rewrite the expression in equality 14 as a nested form:

piy (1 = diy) + (1 = piy)[pi, (1 = diy) + (1 = pi,) [+ (1 = pipy 1) (Pi, — di)]]-

The form easily suggests a backward inductive algorithm. The algorithm will cycle through the list
Si_1,--.,81. For each 5 = 4,...,1 and each possible value z € §;, it computes and records a policy

22

of expected value 2 for the subset of sources {sj,...,s;} that contains the source s; and costs the
least. The above nested form allows the algorithm to find the cheapest policy of a specific expected
value for subset {s;,...,s;} by expanding the cheapest policies of the same or lower expected values
recorded before for subset {s;;1,...,s;} to potentially include the source s;. The running time is at
most O(i%|S;|), which is polynomial in the input size and 1/e.

Theorem 5.1 Assume that p; — d; > 0 for every source s;. There is an FPTAS for the problem of
computing optimal policies in model TL.

Corollary 5.2 There is an FPTAS for the problem of computing optimal policies in model TT.

Proof. Recall that the objective function in this case is

m

V(P)=1- 11 - p),

Jj=1

which involves only the success probabilities of the sources queried. Hence, the above FPTAS works
if we simply throw out all sources whose time duration exceeds the deadline. W

6 Concluding Remarks

As charging for information on the Internet becomes more common, information-acquisition algorithms
will have to trade off the benefits of acquiring information with the cost of doing so. Characteristics
of these problems are (1) the fact that the information provided by a source cannot be fully predicted
in all cases, so the benefit of asking for information can be uncertain, (2) the fact that there can
be monetary and time costs associated with information requests, and (3) the fact that information
providers can be accessed both serially and in parallel.

We have developed a model that takes into account these aspects of information scheduling, and
have established worst-case complexity and approximation results for a variety of objective functions:
those in which the value is linear in the cost or time attributes and the consumer supplies a cost
and/or time threshold for acquiring information. All of these models have plausible applications for
information access on the World Wide Web.

Acknowledgments

Many thanks to Richard Anderson and Richard Karp, for the discussions and their very valuable
suggestions, and to the two anonymous referees for their careful reading and constructive criticism of

the paper.

References

[1] D. Dreilinger. Integrating Heterogeneous WWW Search Engines. Masters Thesis, Colorado State
University. May, 1995.

23

O. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O. Madani, and O. Waarts. Efficient Information
Gathering on the Internet. Proceedings of the 37th IEEE Symposium on Foundations of Computer
Science, 1996.

O. Etzioni, R. M. Karp, and O. Waarts. Efficient Access to Information Sources on the Internet.
Manuscript 1996.

P. Feigin and G. Harel. Minimizing costs of personnel testing programs. Naval Research Logistics
Quarterly 29, 87-95, 1982.

M. Garey. Optimal task scheduling with precedence constraints. Discrete Mathematics, 4, 37-56
(1973).

M. Henig and D. Simchi-Levy. Scheduling tasks with failure probabilities to minimize expected
cost. Nawval Research Logistics 37,99-109, 1990.

O. Ibarra and C. Kim. Fast approximation algorithms for the knapsack and sum of subsets
problems. Journal of the ACM 22, 463-368, 1975.

The LEXIS-NEXIS corporation. 1997. At http://www.lexis-nexis.com/lncc/
J. Kadane. Quiz show problems. Mathematical Analysis and Applications 27, 609-623, 1969.

B. Krulwich. The BargainFinder agent: Comparison price shopping on the Internet. Bots and
Other Internet Beasties. 1996.

O. Madani. Serializing an Irreducible Schedule at most Triples the Value. Manuscript 1996.

The Knowledge Finder corporation, providing access to MEDLINE. 1997. At
http://www.kfinder.com/

L. Mitten. An analytic solution to the least cost testing sequence problem. J. Indust. Eng. 11,
1960.

New York Times, June 7, 1992
M. Porat. The Information Economy, US. Office of Telecommunications, 1977.

S. Sahni. Approximation algorithms for the 0/1-knapsack problem. Journal of the ACM 22, 115-
124, 1975.

Secure Transaction Technology. In http://www.visa.com/cgi-bin/vee/sf/set/intro.html.

E. Selberg and O. Etzioni. Multi-Service Search and Comparison Using the MetaCrawler. Proc.
4th World Wide Web Conf., 195-208, Boston, MA, 1995.

H. Simon and J. Kadane. Optimal problem-solving search: all-or-none solutions. Artificial Intel-
ligence 6, 235-247, 1975.

M. Sirbu, and J.D. Tygar. NetBill: An Internet Commerce System Optimized for Network De-
livered Services. Manuscript 1995. To appear in IEEE CompCon Conference.

24

APPENDIX. Verifying the Claims.

We prove the claims made on the behavior of the various functions that came up in the main proofs.

Proof of Claim 3.5. We show that the function P, — (1 — (1 — P;)'/")ay is decreasing in Pj, where
1-— P1 Z 7.
We take the derivative with respect to P; and get

1-oq(l-P)Tt=1-—"

-1

The ratio is increasing in P; as long as (1 — P1)7T >ap. B

Proof of Claim 3.6. We show that the function h(l,p1) = I(1 — (1 — py)'/!) is nondecreasing in I.

Taking the derivative we have

ah(lapl)

e, In(=p))(1 - p))"!
ol

l

=1-(1-p1)

We observe that ahéll,[]) =1—-1+0=0and

8h(lu pl)
aplal

— 1/l(1 —p)1/l71 _ (1 _pl)l/l - (1 _pl)l/lil 111(1 _pl)
' I(1—p1) 2

o (] —
_ _(1 P1) lzln(l pl)ZO

Therefore % is nonnegative for all p; € [0,1.0]. Whence h(l,p;) is nondecreasing in . W

Proof of Claim 3.7. We need show that the ratio (lﬂm}(m,l)) (17“”“31”) is decreasing in z € (0,1).

1—x
We take the derivative

1
g1 <1m+r1;ln.’1:>+< 1)((lrl:)lnrl:—l-lm—i-rl:lnx)
(1 gmT1)? 1z 1 gm/(m-1) 1-)

1
1 —egm—1 1-z+Inz
_ [(ml _)(1m+xlnx)+<w>-|

_(1—:157”/(7”*1))(1—:10)[1 gt 1-x J

is poitive in the interval, hence it suffices to show that the term in the

3

The factor L
(1—gm/(m=1))(1—x)
brackets is negative. Noting that 1 — z + zInz in the left summand is nonnegative (the derivative
Inz is negative, and the function is zero at 1), and that in the right summand 1 —z + Inz < 0, we
conclude that the left summand is nonnegative, while the right one is nonpositive. We will verify that

_1
xm—1

1 ,,; . (15)

— T

E

1

>
1—2 —

=3

1

This eliminates the extra factors and makes it sufficient to show that hy(z) = (1 —z +zlnz) +1 —
z +Inz < 0. We note that hy(z) is negative at z arbitrarily close to zero, and zero at = = 1, and its

derivative =1 +1Inz + 1/z = % is nonnegative in the interval.

25

Rearranging 15 we need to verify that

1

(- g)
1—gm-1

The fraction is zero at z = 0 and taking the limit as = approaches 1 we have

1 1
lim e (1=) _ G —) 1
11 1 pmot —

Finally, we can verify that the derivative is nonnegative in the region. We may ignore the factor
1

—_ and to simplify a little, we make the substitution v = z=-7. Hence we want to show that the

m—1
— m—1 . o,
derivative of ho(u) = m%um) is positive. Taking the derivative,

(1 — mu™ H(1 —u™) +mu™(1 —u™ 1)
(1 —um)?

By (u) =

We will show that the numerator

1 2m—1

1—mu™ " —u™ +mu + mu™ — mu™ =™ ((m - Du —m) +1

is positive. The function hz(u) = u™ '((m—1)u—m)+1 is nonnegative on the interval since h3(0) = 1
and h3(1) = 0 and h4(u) < 0 on the interval:

Ry(u) = (m—1Du™ *((m - Du—m)+ (m—1)u™"
= (m—1D)u"2((m —Du—m+u)=(m— 1)u™ ?(m(u—1)) <0.
Hence hh(u) >0. N
Proof of Claim 3.15. We need to show that the function
folar) = 55+ fi(an)
= 51— p) 2?4 o In(525) + (1= p)" — a1 = S5t (arp? — anp In(257))

)2r=1. Taking the partial derivative on fo(a1) — "5t f1(ay) with

is decreasing in a1, for a3 < (1 —p 5

respect to aq,

O [N (1 = p) 2?4 o In(205) + (1= p)” = a1 = 5 (np? = capIn(2L57))|

8(11
B o r—1, (r—=1)p o (r—1)p
= ln(i(l_p)r)-l-l—l— 5P + 5 ln((l_p)r)-l- 5
o (r—1)p
< ln((l—p)r)—l_ 5
< (r—l)ln(lfp)-l-(?‘;l)p
(r—1)p

IN
=
|

26

