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1 IntroductionThe Internet is rapidly becoming the foundation of an information economy. Valuable informationsources include on-line travel agents, nationwide Yellow Pages, job listing services, on-line malls,and many more. Currently, most of this information is available free of charge, and as a resultparallel search tools such as MetaCrawler[18] and BargainFinder [10] respond to requests by queryingnumerous information sources simultaneously to maximize the information provided and minimizedelay. However, information providers may start charging for their services [8, 12, 14]. Billing protocolsto support an \information marketplace" have been announced by large players such as Visa andMicrosoft [17] and by researchers [20].Once billing mechanisms are in place, consumers of information may face the problem of balancingthe bene�t of obtaining information against the cost (both monetary and temporal) of obtaining it.Information providers will di�er in the quality of the information they provide as well as the amountthey charge and the speed at which they deliver information. The consumer thus faces the problemof developing a schedule of queries to the providers that maximizes expected value, which can beexpressed in terms of (1) the bene�t associated with a successful query, (2) the likelihood that aparticular query will yield successful results, (3) the cost of making a query, and (4) the amount oftime it takes.This paper analyzes the \query scheduling" problem for a number of variants of the objectivefunction. We begin by stating the problem precisely, then summarize our main results.1.1 The ModelThe basic problem is to �nd a policy for obtaining the answer to a (single) query. The policy willdictate which information source will be queried and when. To de�ne a policy we begin with a (�nite)set of information sources, s1; : : : ; sn. For each source si we introduce a cost parameter ci and aduration parameter di. The former is the monetary cost assessed when the source is activated andthe latter is the amount of time it takes the source to process the query. The cost and duration areknown with certainty and are charged whether or not the source returns an answer to the query. 1Finally we have pi, the probability that si will return an answer to the query. Success probabilities areindependent for distinct sources, and whether or not si will answer a query is uncertain but consistent:if si successfully answers a query it will always do so subsequently, and if it fails to answer a queryit will always fail to do so subsequently.2 We assume that accurate estimates of these parameters areobtainable from the history of the interactions with the information sources.A policy can be represented as a sequence of pairs P = (si1 ; t1); (si2 ; t2); : : : ; (sim ; tm), wheret1 � t2 � � � � � tm. This speci�es that source si1 will be initiated at t1, si2 will be initiated at t2, andso on. An execution of the policy is terminated either when some source returns a correct answer orwhen the policy has been exhausted. Since each source in a policy succeeds probabilistically, a policygenerates a probability distribution over outcomes, where each outcome is one possible way that thepolicy might be played out. We use S(O), C(O) and T (O) to denote the outcome's success (1 or 0),1All our results can be extended to the case when the cost is charged only if the query is successful. Cost expectationsin place of costs should be used in a few of the models.2As a result it is never pro�table to query a source more than once.2



Objective fn time threshold linear in timecost threshold TT: max E[R � S(O)] TL: max E[R � S(O)� T (O)]s.t. 8O C(O) � & and T (O) � � s.t. 8O C(O) � &linear in cost LT: max E[R � S(O)� C(O)] LL: max E[R � S(O)� C(O)� T (O)]s.t. 8O T (O) � �Table 1: The four objective functions. Here, O denotes a possible outcome of the policy P to be found.total cost and duration, respectively. The value of an outcome O is a function of S(O), C(O) andT (O). The �rst component of the value function of an outcome O is always a constant reward R if thequery was answered and 0 otherwise. The function additionally contains two additive components,one a function of C(O) and one a function of T (O). The expected value of a policy P, denoted V (P),is simply the expectation of the values of all its outcomes.Our objective is to �nd a policy to maximize the expected value. We will consider four versions ofthe objective function: linear and threshold versions of the cost and time components. With suitablescaling of the monetary and time costs, the four objective functions assume the forms given in Table 1.We will hereafter refer to the four problems by their acronyms: TT for threshold in cost and time, LTfor linear in cost and threshold in time, TL for threshold in cost and linear in time, and LL for linearin cost and time. Note that in the threshold cases we try to �nd a policy with the maximum expectedvalue subject to the constraint that the policy never violates the threshold. In the remainder of thepaper, assume without loss of generality that R = 1, unless otherwise stated.1.2 \Batched" PoliciesThe results in this paper concerning the model LT will reect one more simplifying assumption: thatthe duration parameters di are the same for each source. This assumption is powerful because itallows us to consider scheduling sources in simultaneous \batches:" all sources will be scheduled att = 0; d; 2d; : : :, where d is the common duration.Although not fully general, this is a reasonable model of the current and probable future state ofinformation access on the Internet. The current common mode of providing information is to supplysmall amounts of information quickly and cheaply (rather than process large-scale lengthy requests)[18]. As a result the duration for processing a single query relative to the user's time threshold istypically small. Furthermore, the number of providers continues to grow dramatically. In the case inwhich there are many information providers but each takes a short amount of time, the assumptionof equal process duration may be an excellent approximation: the error introduced by assuming equaltimes will tend to be small relative to the amount of time the user is willing to wait for his information(and thus will not a�ect the quality of the schedule signi�cantly), yet the sheer number of potentialproviders will still require an algorithm to choose carefully among its sources since a simple policy ofcompletely serial or parallel queries is liable to be a very bad one.1.3 Summary of Our ResultsWe show that �nding an optimal policy is NP-hard for models TT and LT. Reductions from theproblems in LT and TT show that even approximating an optimal policy for models LL and TL isNP-hard. A fully polynomial time approximation scheme (FPTAS) is obtained for the model TT,3



using an extension of the well-known rounding technique for Knapsack [7]. The FPTAS also worksfor the model TL under a weak assumption: every source is \pro�table" individually according tothe TL objective function, i.e. for every source si, Rpi � di � 0. The approximation algorithmsfor the case LT, where the objective function is linear in total cost subject to a time threshold, areperhaps the most interesting technically. We assume that all sources have the same time duration,and consider batched policies with a bounded number of batches. We will �rst present an O(n2)time approximation algorithm for optimal single-batch policies with ratio 12 , and then extend it toa polynomial time approximation scheme (PTAS). For any constant r > 1, the PTAS runs in timeO(nr+1) to achieve an approximation ratio r�1r+1 . The algorithms are simple and are similar to theones in [16] for Knapsack, but the analyses are more sophisticated. We then design an approximationalgorithm with ratio 15 for optimal k-batch policies, running in time O(kn2). The algorithm is basedon the ratio 12 algorithm for single-batch policies, but it also involves some new ideas.1.4 Related WorkScheduling problems have been studied in many contexts including job-shop scheduling, processorallocation, etc. However, our Internet-inspired query scheduling problem has a unique avor due tothe need to balance the competing time and cost constraints on policies with unbounded parallelism.We here consider a number of alternative models that have appeared in the literature, underscoringthe di�erence from our own. If we constrain the policies to be serialized, then an optimal solution canbe found in polynomial time (see Section 4 for the LT case). Similar problems have been addressed in[5, 9, 13, 19] and elsewhere. The di�erence in this paper is the ability to query any number of sourcesin parallel. [4, 6] study scheduling tasks with unlimited parallelism, but their models are di�erentbecause all tasks have to be executed successfully, whereas in our model a successful answer fromany single source su�ces. Furthermore, the positive results in [4, 6] are restricted to an exponentialtime dynamic programming algorithm and some heuristics. Another model of optimal informationgathering has recently been studied in [3]. There, the objective is to �nd a query policy that minimizesthe expected value of a linear combination of the total dollar cost and total time cost. A constant ratioapproximation algorithm is obtained. Note that their model omits the positive reward associated withthe successful completion of a query, which changes the nature of the problem as far as the design ofapproximation algorithms is concerned.This paper provides complete proofs and adds new results to the work appearing in [2]. The paperis organized as follows. The hardness results for all four models are given in the next section. Sections 3and 4 present the approximation algorithms with their analyses for optimal single-batch policies andoptimal k-batch policies in the LT model. The FPTAS's for the two models involving a cost thresholdare given in Section 5. The proofs of some technical claims are provided in the appendix.2 The Complexity of Computing Optimal Querying PoliciesWe �rst prove that computing an optimal policy in models TT and LT is NP-hard. The proofs arereductions from the Partition Problem: Given a �nite multiset S of positive integers wi 2 S, is there asubset I � S such that Pwi2I wi = 12 Pwi2S wi. The only subtlety is that we have to use exponentialnumbers in the constructions. 4



Theorem 2.1 Finding an optimal policy in model TT is NP-hard.Proof. It is clear that any optimal policy in this model is in fact a single-batch policy. Hence weonly need to consider single-batch policies. We show that Partition reduces to this problem. Assumethat the duration parameters of all the sources are less than the deadline. Then, the expected valueof any policy P in this model is V (P) = 1� Ysi2P(1� pi):Thus, maximizing V (P) subject to a cost threshold is equivalent to minimizing Qsi2P(1 � pi) underthe same constraint, which in turn means maximizing Psi2P � ln(1� pi) under the same constraint.Consider an instance of Partition consisting of a set S = fw1; : : : ; wng of integers, and let C =Pni=1wi. For each source si, let its cost ci = wi, success probability pi = 1 � (1 + 1=C)�wi , andtime duration di = 0. Take the cost threshold to be C=2, and the time threshold to be some positivenumber. The expression (1+1=C)�wi can be evaluated using the standard repeated squaring techniqueor a binomial series expansion approximation. It will become clear that we only have to keep at most3 logC + logn precision bits during the process.Clearly, V (P) � 1 � (1 + 1=C)�C2 for any feasible policy P. Now, let x = Pwi2P wi and treat xas a continuous variable. Consider function h(x) = 1� (1 + 1=C)�x, which is clearly increasing in x.Since (1 + 1=C)�C2 +1 � (1 + 1=C)�C2 = (1 + 1=C)�C2 (1=C) > 1=(peC);where e is the natural constant, there is a separation of at least 1=(peC) in the value of the functionh(x) between point C2 and any point less than or equal to C2 � 1. If we keep 3 logC + logn bits duringcalculation of each 1� (1 + 1=C)�wi , then each pi would have 2 logC + log n precision bits. Thus, theprecision of our evaluation of V (P) = 1 �Qsi2P (1 � pi) is at least 2 logC bits, which is su�cient toallow us to distinguish between the case Psi2P ci = C2 and the case Psi2P ci < C2 , due to the above1=(peC) separation.For the problem instance LT we prove a stronger result by showing that a special case of theproblem is NP-hard.Theorem 2.2 Finding an optimal single-batch policy for the LT objective function is NP-hard.Proof. Note that the objective in the single-batch case is to �nd a set P of sources to query inparallel such that the function V (P) = R(1� Ysi2P(1� pi))� Xsi2P ci (1)is maximized. This is equivalent to minimizing the quantity RQsi2P(1�pi)+Psi2P ci over all possiblesets of sources.Consider an instance of Partition consisting of a set S = fw1; : : : ; wng of integers, and let C =Pni=1wi. De�ne the parameters for the optimal single-batch policy problem as follows:ci = wipi = 1� (1 + 1=C)�wi5



R = [ln(1 + 1=C)]�1(1 + 1=C)C2Again, it will become clear that only 4 logC+logn bits must be kept in the calculation of pi's andR. For any subset S1 � S we have:Xwi2S1 ci +R Ywi2S1(1� pi) = Xwi2S1 wi + [ln(1 + 1=C)]�1(1 + 1=C)C2 Ywi2S1(1 + 1=C)�wi= Xwi2S1 wi + [ln(1 + 1=C)]�1(1 + 1=C)C2 �Pwi2S1 wiAgain, let x = Pwi2S1 wi and treat x as a continuous variable. We want to locate the minimumof the following function h(x) = x+ [ln(1 + 1=C)]�1(1 + 1=C)C2 �x:Setting the derivative to zero,h0(x) = 1 + [ln(1 + 1=C)]�1[� ln(1 + 1=C)](1 + 1=C)C2 �x = 0) 1 = [ln(1 + 1=C)]�1 ln(1 + 1=C)(1 + 1=C)C2 �x) 1 = (1 + 1=C)C2 �x) x = C2 :We also note that the second derivative of h(x) is always positive, which shows the convexity ofthe function: h00(x) = [ln(1 + 1=C)]�1[ln(1 + 1=C)]2(1 + 1=C)C2 �x > 0:The following shows that there is a separation of 
(1=C2) in the value of the function h(x) betweenthe points C2 and C2 � 1. Assume that C > 2.h(C2 � 1)� h(C2 ) = C�1[ln(1 + 1=C)]�1 � 1> C�1( 6C36C2 � 3C + 2)� 1= 3C � 26C2 � 3C + 2> 1=(6C2):h(C2 + 1)� h(C2 ) = 1� ( 1C + 1)(ln(1 + 1=C))�1> 1� ( 1C + 1)( 2C22C � 1)> 1=(6C2):6



Therefore, we only have to keep 4 logC+logn precision bits in the calculation of R and pi's. Hencethe reduction can be done in polynomial time.Hence, the problem of deciding whether the expected value of some policy for the single-batch caseexceeds a certain threshold is NP-hard. This problem readily reduces to a problem in the LL modelwhere the duration parameters of the sources are all set to the threshold in question. In this case, itis not hard to see that there is a policy with a positive value for the LL model problem if and only ifthere is a policy for the single-batch model problem with expected value greater than the threshold.Below, by a positive approximation we mean constructing a policy which has positive expected valueif and only if the value of an optimal policy is positive. Positive approximation is a very relaxedapproximation criterion and we just argued that even positively approximating the optimal in modelLL is hard. A similar reduction from model TT shows that positively approximating problems inmodel TL is NP-hard as well:Theorem 2.3 Positively approximating an optimal policy for the objective functions in the modelsTL or LL is NP-hard.3 Approximating Optimal Single-Batch PoliciesIn this and the following sections our focus in on the LT model. In this section we consider policiesthat send out all their queries in a single batch, i.e. all queries are sent in parallel at time t = 0. Wepresent an algorithm that approximates the optimal single-batch policy with ratio 1=2, then developa PTAS. Although the PTAS is a straightforward extension of the ratio 1=2 algorithm, its analysis isvery di�erent.Recall again that a single-batch policy is just a set of sources, and our goal is to maximize theobjective function in equality 1.The following simple facts and de�nitions will be useful in this and the next sections. The �rstlemma shows the subadditivity of the objective function for batched policies.Lemma 3.1 Let OPT0 be an optimal k-batch policy. For any partition of OPT0 into two subpoliciesOPT1 and OPT2, where the sources in OPT1 and OPT2 are scheduled in the same batches as theyare in OPT0, V (OPT0) � V (OPT1) + V (OPT2).Proof. We prove it for k = 2; the extension to the general k is straightforward. For each i = 0; 1; 2and j = 1; 2, let Pi;j and Ci;j be the collective success probability and cost of the sources in batch jof OPTi, respectively. ThenV (OPT0) = P0;1�C0;1+(1�P0;1)(P0;2�C0;2) = P1;1�C1;1+P0;1�P1;1�C2;1+(1�P0;1)(P0;2�C0;2):Since P0;1 = P1;1 + P2;1 � P1;1P2;1, P0;1 � P1;1 = P2;1(1� P1;1) � P2;1. Hence,P1;1 � C1;1 + P0;1 � P1;1 � C2;1 � P1;1 � C1;1 + P2;1 � C2;1:Similarly we have P0;2 � C0;2 � P1;2 � C1;2 + P2;2 � C2;2:7



Because OPT0 is optimal, P1;2 �C1;2 � 0 and P2;2 � C2;2 � 0. Therefore,V (OPT0) � (P1;1 �C1;1 + P2;1 � C2;1) + (1� P0;1)(P1;2 � C1;2 + P2;2 � C2;2)= (P1;1 �C1;1 + (1� P0;1)(P1;2 � C1;2)) + P2;1 � C2;1 + (1� P0;1)(P2;2 � C2;2)� (P1;1 �C1;1 + (1� P1;1)(P1;2 � C1;2)) + P2;1 � C2;1 + (1� P2;1)(P2;2 � C2;2)= V (OPT1) + V (OPT2):Lemma 3.2 Suppose that P is any k-batch policy, i is an index between 1 and k, and sj is a sourcenot appearing in P. Let P1;P2;P3 denote the subpolicies consisting of the the �rst i� 1 batches, thei-th batch, and the last k � i batches of P, respectively. Also denote the expected cost and collectivesuccess probability of the sources in policy Pl as Cl and Pl, l = 1; 2; 3. Then adding sj to the i-th batchof policy P increases its expected value byV (P [ fsjg)� V (P) = (1� P1)(pj(1� P2)(1 � P3 +C3)� cj)= (1� P1)pj((1 � P2)(1 � P3 +C3)� cj=pj) (2)In particular, if k = i = 1, the net increase isV (P [ fsjg)� V (P) = pj(1� P2)� cj = pj(1� P2 � cj=pj) (3)Proof. The expected values of the policies P and P [ fsjg can be written asV (P) = (P1 � C1) + (1� P1)((P2 � C2) + (1� P2)(P3 � C3))V (P [ fsjg) = (P1 � C1) + (1 � P1)((P2 + pj � P2pj � C2 � cj) + (1� P2)(1 � pj)(P3 �C3))Taking the di�erence gives us the lemma.Thus, in the case of k = 1, adding sj to the policy P results in an increased expected value i�the collective failure probability 1�P2 of the sources in P is strictly greater than the cost-to-success-probability ratio cj=pj of source sj. Observe that the increased value pj(1�P2�cj=pj) is proportionalto the success probability pj as long as the ratio cj=pj is kept constant. Also observe that, for generalk, 1� P3 +C3 = 1� (P3 �C3) = 1� V (P3). It follows from Lemma 3.2 that a source si with ci > piis not useful if V (P3) � 0. Hence we can assume from now on that pi � ci for all i.We say that a source s is pro�table in a policy P if s is queried in P and dropping it from P wouldnot increase the expected value of P. The above lemma states that source sj in batch i of the k-batchpolicy P is pro�table in P if and only if cj=pj � (1 � P2;j)(1 � V (P3)), where P2;j is the collectivesuccess probability of sources in batch i excluding source sj. A policy P is irreducible if every sourcein P is pro�table in P. Clearly, every optimal k-batch policy is irreducible.3.1 A Ratio 12 Approximation AlgorithmOur algorithm, as shown in Figure 1, is somewhat similar to the greedy approximation algorithm forKnapsack given in [16], though the analysis of its performance is more complex.The algorithm Pick-a-Star sorts the sources in ascending order of the ratio ci=pi. It then goes overeach source si, picks it and then picks the rest from the sorted list (with si removed) until either the8



1. Sort the sources so that c1=p1 � � � � � cn=pn.2. APPR = ;. (* APPR is the best policy found so far. *)3. For i := 1 to n4. S := fsig. (* S is the current policy constructed. *)5. Q := 1� pi. (* Q is the collective failure probability of S. *)6. For j := 1 to n, where j 6= i7. If Q � cj=pj then (* pro�tability check *)8. S := S [ fsjg.9. Q := Q(1� pj).10. else exit to step 11.11. If V (APPR) < V (S) then APPR := S.12. Output policy APPR.Figure 1: The algorithm Pick-a-Star.list is exhausted or it reaches a source sj which cannot be pro�table, meaning that the pro�tabilitycriterion: Yk=i or k<j(1� pk) � cj=pjis not satis�ed. Equality 3 in Lemma 3.2 and the comments following the lemma explain the choice ofthe criterion. Pick-a-Star keeps track of the policy with the highest expected value over the iterations.Clearly the running time is O(n2).Now we analyze the performance of Pick-a-Star and show that it results in an expected valuethat is at least half of the optimum. Let APPR be the policy obtained by Pick-a-Star and OPT anoptimal single-batch policy. Since Pick-a-Star picks the �rst source optimally (i.e. through exhaustivesearch), V (APPR) � V (fsig) = pi � ci for all i � n. Thus, without loss of generality, we may assumejAPPRj > 1. Moreover, we will assume henceforth that the �rst source picked by Pick-a-Star is the\most pro�table" source in OPT, i.e. some source si with the maximum V (fsig) over all sourcesin OPT. Let slast be the last source picked by Pick-a-Star. We can assume that the collectivefailure probability of APPR is at least the ratio clast=plast, because otherwise we could modify APPRby decreasing plast while keeping clast=plast constant until the collective failure probability of APPRbecomes equal to clast=plast. This is possible since the collective failure probability of APPR� fslastgis greater than clast=plast. By Lemma 3.2 such modi�cation could only worsen the expected value ofAPPR. Note that if slast appears also in OPT , then it is treated as a di�erent copy and kept intact.Hence we do not change the expected value of OPT in this case (or in any other case). Note also thatthis potential modi�cation does not a�ect the �rst source picked by Pick-a-Star since jAPPRj > 1.De�ne S0 = APPR \ OPT, S1 = APPR � S0, and S2 = OPT � S0. For each i = 0; 1; 2, let Ciand Pi be the collective cost and success probability of the sources in Si. Note that if the successprobability of source slast is modi�ed in APPR as mentioned above and slast also appears in OPT,then the two copies of slast in APPR and OPT are viewed as distinct sources and thus slast will notbe included in S0. On the other hand, if slast is not modi�ed in APPR and slast appears in OPT,then the two copies of slast in APPR and OPT are viewed as the same source and thus slast will be9



included in S0. Observe that 8si 2 S18sj 2 S2; ci=pi � cj=pj (4)Let us �rst consider the (easier) case in which S2 = ;. Observe that S1 � fs1; : : : ; slastg. Since thecollective failure probability of APPR�fslastg is greater than clast=plast � � � � � c1=p1, every elementof S1 is pro�table in the set APPR�fslastg. By Lemma 3.2, V (APPR�fslastg) � V (OPT�fslastg).We also know that V (APPR) � V (APPR�fslastg) by Lemma 3.2. Since V (APPR) � V (fslastg) andV (OPT) � V (OPT� fslastg) + V (fslastg) by Lemma 3.1,2V (APPR) � V (OPT� fslastg) + V (fslastg) � V (OPT):Now suppose that S2 6= ;. Since OPT is irreducible and Pick-a-Star picks sources until no remainingsource can be pro�table, S1 6= ;. Let m = jS2j and l = jS1j. Let�1 = maxsi2S1 cipi(1� P0) � clastplast(1� P0)�2 = minsi2S2 cipi(1� P0)By relation 4, clearly �1 � �2. The next lemma relating �1; �2 to P1; P2 is a key to our analysis.Lemma 3.3 (i) �1 � 1� P1 � �2 and (ii) 1� P2 � � mm�12 .Proof. Recall that we have assumed that (1� P0)(1 � P1) � clast=plast. Thus, 1� P1 � �1. SincePick-a-Star stopped before picking anything from S2, (1� P0)(1� P1) � ci=pi for any si 2 S2. Theseprove (i). To prove (ii), let pmin = minsi2S2 pi. Since OPT is irreducible, (1�P0)(1�P2)=(1�pmin) �cmin=pmin � (1� P0)�2. So, (1� P2)m�1m � (1� P2)=(1 � pmin) � �2:I.e. 1� P2 � � mm�12 .Now we want to �nd a lower bound for the ratioV (APPR)V (OPT) = P0 �C0 + (1� P0)P1 � C1P0 �C0 + (1� P0)P2 � C2 (5)Since V (S0) � V (S2)=m by the choice of the �rst source picked by Pick-a-Star and the fact that S0 isirreducible, V (OPT) � V (S0) + V (S2) � (m+ 1)V (S0):This implies (1� P0)P2 � C2P0 � C0 + (1� P0)P2 � C2 � mm+ 1 :De�ne r = (1� P0)P1 � C1(1� P0)P2 � C2 (6)To obtain a lower bound of 1=2 for the ratio in equality 5, we need1m+ 1 + r mm+ 1 � 12 ; i.e. r � m� 12m ; (7)which we show below. The following lemma gives a clean lower bound for ratio r.10



Lemma 3.4 r � min�1�1�P1��2 P1 � l(1� (1� P1)1=l)�1(1� �m=(m�1)2 )(1� �2) :Proof. Observe that r = (1� P0)P1 � (Psi2S1 pi cipi )(1� P0)P2 �C2� (1� P0)P1 � (Psi2S1 pi)(1� P0)�1(1� P0)P2 � C2� P1 � (Psi2S1 pi)�1P2 � C2=(1 � P0)� P1 � (Psi2S1 pi)�1P2 � P2�2� P1 � (Psi2S1 pi)�1(1� �m=(m�1)2 )(1� �2) :The last step follows from (ii) of Lemma 3.3. SinceXsi2S1(1� pi) � l[ Ysi2S1(1� pi)]1=l = l(1� P1)1=l;Psi2S1 pi � l � l(1� P1)1=l. Hence the lemma follows from (i) of Lemma 3.3.Now we try to simplify the lower bound function3.Claim 3.5 The ratio P1 � l(1� (1� P1)1=l)�1(1� �m=(m�1)2 )(1� �2)is increasing in P1 when 1� P1 � �1.By Lemma 3.3, the smallest P1 can be is 1��2. The above ratio is clearly decreasing in �1 � �2.For convenience, let x = �2. We set P1 = 1� x and �1 = x, and we get,r � 11� xm=(m�1) [1� x� l(1� x1=l)x1� x ] (8)Claim 3.6 The right hand side of inequality 8 is nonincreasing in l.Taking the limitliml!1 l(1� x1=l) = liml!1 1� x1=l1=l = liml!1 (�x1=l)(lnx)(�1=l2)�1=l2 = � lnx;we get r � 11� xm=(m�1) [1� x+ x lnx1� x ] (9)3The proofs of the claims appear in the appendix. 11



Claim 3.7 The right hand side of inequality 9 is decreasing in x 2 (0; 1).Since the right-hand-side expression is unde�ned at x = 1, we take the limitr � limx!1[ 11� xm=(m�1) (1� x+ x lnx1� x )]= limx!1 1� x+ x lnx1� x� x mm�1 + x 2m�1m�1= limx!1 �1 + lnx+ x=x�1� mm�1x 1m�1 + 2m�1m�1 x mm�1= limx!1 1=x� mm�1 1m�1x 2�mm�1 + 2m�1m�1 mm�1x 1m�1= 1� m(m�1)2 + m(2m�1)(m�1)2 = 1mm�1 (�1+2m�1m�1 )= m� 12m :This veri�es inequality 7 and completes the proof that V (APPR)=V (OPT) � 1=2.Theorem 3.8 Pick-a-Star produces a single-batch policy with an expected value that is at least half ofthe optimum.3.2 Extending Pick-a-Star to a PTASThe extension of the algorithm is straightforward. Let r � 1 be any �xed constant. The new algorithmiterates over all possible choices of at most r sources and schedules the rest of the sources based on thecost-to-success probability ratio, using the same stopping criterion. It then outputs the best policyfound in all iterations. Call the new algorithm Pick-r-Stars. Clearly, it runs in O(nr+1) time. Weshow that Pick-r-Stars achieves an approximation ratio of r�1r+1 . The analysis is di�erent from theprevious subsection in that we will make use of the r sources in the optimal policy with the highestsuccess probability instead of the the most pro�table ones. We would like to remark here that thisnew strategy does not work for Pick-a-Star, nor does our analysis of Pick-a-Star work for general rbecause the best lower bound that the analysis yields for the ratio de�ned in equality 6 is m�12m .Let APPR be the policy found by Pick-r-Stars and OPT an optimal policy. As in the previoussubsection, we assume without loss of generality that (i) jAPPRj > r and jOPTj > r, (ii) APPRcontains the r sources in OPT with the highest success probability, and (iii) the collective failureprobability of APPR is at least the ratio clast=plast, where slast is the last source picked by Pick-r-Stars.Since OPT is irreducible, we can also assume that APPR 6� OPT, because otherwise APPR = OPT.Again, let S0 = APPR \ OPT, S1 = APPR � S0, and S2 = OPT � S0 and the correspondingcollective costs and success probabilities Ci and Pi, for each i = 0; 1; 2. We also have ci=pi � cj=pj forall si 2 S1; sj 2 S2. De�ne l = jS1j, m = jS2j, and�0 = maxsi2S0 cipi12



�1 = maxsi2S1 cipi � clastplast(1� P0)�2 = minf1; minsi2S2 cipi gThen, we again have �1 � (1� P0)(1� P1) � �2 (10)To obtain a clean lower bound for the approximation ratio V (APPR)=V (OPT), we go througha sequence of simplifying steps. In the process we will guarantee that the ratio V (APPR)=V (OPT)never improves and inequality 10 always holds.First, we will assume that jS0j = r, i.e. APPR and OPT share exactly r common sources, by thefollowing argument. Let si 2 S0 be any source. Then,V (APPR)V (OPT) = 1� (1� P0)�C0 + (1� P0)P1 � C11� (1� P0)�C0 + (1� P0)P2 � C2= 11�pi � 1�P01�pi � C01�pi + (1�P0)P11�pi � C11�pi11�pi � 1�P01�pi � C01�pi + (1�P0)P21�pi � C21�pi= 1�ci1�pi � 1�P01�pi � C0�ci1�pi + (1�P0)P11�pi � C11�pi1�ci1�pi � 1�P01�pi � C0�ci1�pi + (1�P0)P21�pi � C21�pi> 1� 1�P01�pi � C0�ci1�pi + (1�P0)P11�pi � C11�pi1� 1�P01�pi � C0�ci1�pi + (1�P0)P21�pi � C21�piThe last step holds because pi� ci = V (fsig) > 0 and thus 1� ci > 1�pi. Hence, we can de�ne a newpair of APPR and OPT by removing the source si and dividing the cost of every remaining source inS0 by 1� pi. Clearly inequality 10 still holds for the new pair.Second, we can assume that �1 = �2 = (1 � P0)(1 � P1). This can be achieved by increasing thecost of each source in S1 and decreasing the cost of each source in S2. So now, ci = �1pi for eachsi 2 S1 [ S2.Third, we assume without loss of generality that the r sources in S0 have the same success proba-bility p = 1 � (1 � P0)1=r. Since these sources are assumed to have the largest success probability inOPT, pi � p for each si 2 S2. Moreover, we can assume that pi = p for each si 2 S2 by the followingargument. If pi < p, we increase pi to p and ci to �1p. By Lemma 3.2, this improves V (OPT) becausethe set OPT is irreducible. If this results in a set that is not irreducible, we can make it irreducibleby dropping some sources in S2, again improving the expected value of OPT.Forth, we can assume that ci=pi = �0 for all si 2 S0. The condition can be achieved by increasingthe costs of the sources in S0. This would decrease the expected value of both APPR and OPT bythe same amount, and thus decrease the ratio V (APPR)=V (OPT).Finally, we can worsen APPR by assuming thatpi = 1� (1� P1)1=l = 1� (�1=(1 � P0))1=l = 1� (�1=(1 � p)r)1=l13



for each pi 2 S1, as mentioned in the previous subsection.Now we have clean formulas for the expected values:V (APPR) = 1� (1� p)r �1(1� p)r � �0rp� l�1[1� ( �1(1� p)r )1=l]V (OPT) = 1� (1� p)r+m � �0rp� �1mpWe further simplify the formulas by getting rid of l and m.Lemma 3.9 V (APPR) � 1� �1 � �0rp+ �1 ln( �1(1 � p)r ):Proof. Since �1=(1 � p)r < 1 by inequality 10, the function �l�1[1� ( �1(1�p)r )1=l] is nonincreasingin l by Claim 3.6 in the last subsection. Taking the limit, we getV (APPR) � liml!1 1� �1 � �0rp� l�1(1� ( �1(1� p)r )1=l)� 1� �1 � �0rp+ �1 ln( �1(1� p)r )Lemma 3.10 V (OPT) � 1 + �1pln(1� p) � �0rp� �1pln(1 � p) ln[ ��1p(1 � p)r ln(1� p) ]:Proof. We can treat m as a continuous variable and maximize 1� (1� p)r+m ��0rp��1mp overall real values of m. Taking the derivative with respect to m and setting it to 0, we getm = 1ln(1� p) ln( ��1p(1� p)r ln(1� p)):Hence,maxm 1� (1� p)r+m � �0rp� �1mp = 1 + �1pln(1� p) � �0rp� �1pln(1� p) ln( ��1p(1� p)r ln(1� p))Now we are ready to show that V (APPR)=V (OPT) � (r � 1)=(r + 1). It su�ces to prove thatV (OPT)� V (APPR)V (APPR) � 2r � 1 (11)We �rst give an overestimate of the di�erence V (OPT)�V (APPR). The following simple mathematicalfacts for 0 < p < 1 will be useful.p < � ln(1� p) = p+ p22 + p33 + � � � < p1� p0 < 1 + pln(1� p) = 1� 11 + p=2 + p2=3 + � � �< 1� 11 + p+ p2 + � � �= p� ln( �pln(1� p)) = � ln(1� (1 + pln(1� p)))> 1 + pln(1� p)14



Lemma 3.11 V (OPT)� V (APPR) < f1(�1) = �1p2 � �1p ln( �1(1� p)r ):Proof. From Lemmas 3.9 and 3.10, we knowV (OPT)� V (APPR) � �1(1 + pln(1� p))� �1(1 + pln(1� p)) ln( �1(1� p)r )� �1pln(1� p) ln( �pln(1� p)):Therefore,V (OPT)� V (APPR) < �1(1 + pln(1 � p))� �1p ln( �1(1� p)r ) + �1pln(1� p)(1 + pln(1� p))= �1(1 + pln(1 � p))2 � �1p ln( �1(1� p)r )� �1p2 � �1p ln( �1(1 � p)r ):Next we �nd an underestimate of V (APPR). Observe that the following conditions follow frominequality 10, the simplifying assumptions on the sources in Si (e.g. 8si 2 S0; ci=pi = �0), and thearguments for the second claim of Lemma 3.3:(1� p)r > �1(1� p)r�1 = ((1 � p)r) r�1r > �0Lemma 3.12V (APPR) > f2(�1) = r(r � 1)2 (1� p)r�2p2 + �1 ln( �1(1� p)r ) + (1� p)r � �1:Proof.V (APPR) � 1� �1 � �0rp+ �1 ln( �1(1� p)r )= 1� (1� p)r � �0rp+ �1 ln( �1(1 � p)r ) + (1� p)r � �1> 1� (1� p)r � (1� p)r�1rp+ �1 ln( �1(1� p)r ) + (1� p)r � �1= p2(1 + 2(1 � p) + � � �+ (r � 1)(1 � p)r�2) + �1 ln( �1(1� p)r ) + (1� p)r � �1> r(r � 1)2 (1� p)r�2p2 + �1 ln( �1(1 � p)r ) + (1� p)r � �1:Hence we have the following clean lower bound for the ratio (V (OPT)� V (APPR))=V (APPR).Lemma 3.13 V (OPT)� V (APPR)V (APPR) > min�1<(1�p)r f1(�1)f2(�1) :15



Lemma 3.14 For all �1 < (1� p)r, f1(�1)=f2(�1) > 1=(r � 1).Proof. First consider the case �1 � (1�p)2r�1. Let �1 = (1�p)x. Hence, r < x � 2r�1. Observethat because the function y ln y + 1� y is positive for all y > 0,�1 ln( �1(1� p)r ) + (1� p)r � �1 = (1� p)r( �1(1 � p)r ln( �1(1 � p)r ) + 1� �1(1� p)r ) > 0:This means f2(�1) > r(r�1)2 (1� p)r�2p2. So,f1(�1)f2(�2) < (1� p)xp2 � (x� r)(1� p)xp ln(1� p)r(r�1)2 (1� p)r�2p2< (1� p)xp2 + (x� r)(1� p)x�1p2r(r�1)2 (1� p)r�2p2< 1 + x� rr(r � 1)=2� 2rr(r � 1)= 2r � 1 :When �1 � (1� p)2r�1, we claim that the function f2(�1)� r�12 f1(�1) is decreasing in �1.Claim 3.15 The function f2(�1)� r�12 f1(�1)= r(r�1)2 (1� p)r�2p2 + �1 ln( �1(1�p)r ) + (1� p)r � �1 � r�12 (�1p2 � �1p ln( �1(1�p)r ))is decreasing in �1, for �1 � (1� p)2r�1.Hence, for any �1 � (1� p)2r�1,f2(�1)� r � 12 f1(�1) � f2((1� p)2r�1)� r � 12 f1((1� p)2r�1) > 0:This concludes the analysis for Pick-r-Stars.Theorem 3.16 Pick-r-Stars produces a single-batch policy with an expected value that is at least(r � 1)=(r + 1) of the optimum.4 Approximating Optimal k-Batch PoliciesHere, we present an algorithm for the linear cost and time threshold (LT) model that approximatesoptimal k-batch policies with a constant ratio 1=5. Recall that our simplifying assumption here is thattime durations are equal, consequently optimal batched policies exist. The k-batch approximationalgorithm, called Reverse-Greedy, is illustrated in Figure 2. The algorithm works by constructingan irreducible policy. It greedily constructs the policy batch by batch, starting from the last batch16



1. Sort the sources so that c1=p1 � � � � � cn=pn.2. APPR = ;. (* APPR denotes the k-batch policy. *)3. For i := k downto 14. S = ;. (* S is the best i-th batch found so far. *)5. Q = 1. (* Q is the collective failure probability of S. *)6. For j := 1 to n, where sj =2 APPR7. S1 := fsjg.8. Q1 := 1� pj . (* Q1 is the collective failure probability of S1. *)9. For l := 1 to n, where l 6= j and sl =2 APPR10. If Q1(1� V (APPR)) � cl=pl then (* pro�tability check *)11. S1 := S1 [ fslg.12. Q1 := Q1(1� pl).13. else exit to step 14.14. If V (S) < V (S1) then S := S1;Q = Q1.15. For each sj in S (* Make S irreducible. *)16. If cj=pj > Q1�pj (1� V (APPR))17. S = S � fsjg; Q = Q=(1� pj);18. Add S to APPR as the i-th batch.19. Output policy APPR.Figure 2: The algorithm Reverse-Greedy.(rightmost) and going in reverse time. For each batch, it invokes the single-batch algorithm Pick-a-Star, but with a modi�ed pro�tability criterion that follows from equality 2 of Lemma 3.2 (see thecomments following the Lemma). Even though each source is pro�table at the time it is added toa partially constructed batch, the completed batch may not be irreducible, i.e. some of the sourcespicked before the last source may become nonpro�table after the addition of the last source. Thusafter each call to Pick-a-Star, the algorithm scans back over the newly created batch and drops anysource that is nonpro�table. In this way, the �nal policy is surely irreducible. Clearly Reverse-Greedycan be implemented to run in time O(kn2).The analysis of Reverse-Greedy makes use of Theorem 3.8. The di�culty here is that becausethe sources can be scheduled in di�erent batches, some batches of an optimal k-batch policy couldbe arbitrarily better individually than their counterparts in APPR. To get around this, we relatean irreducible k-batch policy to its optimally serialized version. For any policy P, let P denote theoptimal serial policy for the sources in P. It is not hard to see that V (P) � V (P). Note that a serialpolicy P may violate the time threshold, however we use V (P) in the analysis as a means of boundingthe value of an optimal scheduling of the sources in P. First, let us characterize an optimal serialpolicy.Lemma 4.1 For any set of sources, an optimal serial policy (including all sources in the set) sortsthe sources in the nondecreasing order of their cost to success probability ratios.Proof. Consider any serial policy P = si1 ; : : : ; sim . ThenV (P) = pi1 � ci1 + (1� pi1)(pi2 � ci2) + � � � + m�1Yj=1 (1� pij )(pim � cim):17



Hence swapping source sij and source sij+1 would result in a net value ofj�1Yl=1(1� pil)(pij+1 � cij+1 + (1� pij+1)(pij � cij ))� j�1Yl=1(1� pil)(pij � cij + (1� pij )(pij+1 � cij+1))= j�1Yl=1(1� pil)(pij+1cij � pijcij+1);which is positive if cij+1=pij+1 < cij=pij .The following property of optimal serial policies is a side product of the above lemma and will beuseful in the analysis.Corollary 4.2 Let S1 and S2 be two sets of sources and S1 � S2. An optimal serial policy for S2gives an expected value at least that of an optimal serial policy for S1.Proof. Recall our basic assumption from section 3 that pi � ci for all sources si. As a consequencean optimal serial policy for the sources in S2 exists that includes all the sources in S2. Starting fromsuch an optimal serial policy for S2, we can gradually swap the sources that are not in S1 towardsthe end of the sequence, and eventually remove them. By Lemma 4.1, no such swap or removal canincrease the expected value.The following lemma, which is somewhat surprising, is a key to our analysis. It states thatserializing an irreducible batched policy can at most triple the expected value.Lemma 4.3 Let P denote the success probability of an irreducible batched policy P. Then V (P) �(2 + P )V (P).Proof. The proof is by induction on the number of sources of the policy. Assume that the statementholds for any irreducible policy consisting of n� 1 � 1 sources, and consider an irreducible policy Pconsisting of n sources. Let S denote the set of sources in the �rst (leftmost) batch and sn denote asource in S. In order to maximize the di�erence between V (P) and V (P) we assume that the cost-to-success-probability ratios of all the sources in S are at the maximum possible (without violatingthe irreducibility condition). We perturb the initial policy P and transform it into another irreduciblepolicy P 0, by moving sn to the left in the time-line so that it �nishes before all the other sources. Weincrease the cost of source sn and other sources in S by amounts to be described below. Note thatpolicy P 0 will not be di�erent from policy P if S �fsng = ;. Due to the potential increase in costs inthe transformation, we will see that V (P 0) � V (P) and V (P 0) � V (P). We �rst show that2 �V (P)� V (P 0)� � V (P)� V (P 0): (12)We complete the proof by showing, using the inductive hypothesis, that the statement of the lemmaholds for policy P 0.Let Q denote the collective failure probability of the sources in S and Va denote the expectedvalue of policy P without batch S. Let S0 = S � fsng. Since the cost-to-success-probability ratios ofsources in S are as high as possible, we have ci=pi = Q=(1 � pi)(1 � Va) for si 2 S according to thede�nition of irreducibility. Let c0n and c0i be the costs of sources sn and si 2 S0 in policy P 0. Again,we set these costs to be as high as they can be: c0i = pi(Q=(1 � pi)(1 � pn))(1 � Va) = ci=(1 � pn)18



and c0n = pn(Q=(1 � pn) +Psi2S0 c0i � Q=(1 � pn)Va). Therefore we have that 8si 2 S0; c0i � ci =c0i � (1 � pn)c0i = c0ipn and c0n � cn = Psi2S0 pnc0i. Thus the change in the cost of sn is equal to thetotal change in the costs of the sources in S0.We have V (P 0) = 1�Q� c0n� (1�pn)Psi2S0 c0i+QVa, and V (P) = 1�Q�Psi2S ci+QVa. ThusV (P) � V (P 0) = c0n � cn = pnPsi2S0 c0i. In other words, in going from policy P 0 to policy P, onlythe reduction in the cost of source sn is felt in the increase of the expected value. Observe that thisreduction is exactly half of the total change in all costs. Now it is easy to see that 2 (V (P) � V (P 0)) �V (P)� V (P 0): In the transition from the optimal serial policy P 0 to the optimal serial policy P, thereduction in the costs of both source sn and the sources in S0, which is twice the reduction in the cost ofsource sn, is reected in the increase of the expected value. However, V (P) � V (P 0) � 2pnPsi2S0 c0i,since in a serial policy the e�ect of a cost reduction on each source is reduced due to the successprobability of the sources queried earlier.Next we show V (P 0) � (2 + P )V (P 0): (13)Note that source sn is the only scheduled source in the leftmost batch of policy P 0, and since itscost-to-success-probability ratio cn=pn is maximized, cn=pn = 1 � V , where V denotes the expectedvalue of the policy P 0 excluding sn. Again, since cn=pn is maximized, V = V (P 0), i.e. the presence ofsn in P 0 does not increase V (P 0) (see Lemma 3.2). Hence cn=pn = 1� V (P 0). Consider the subpolicyA consisting of the sources in P 0 with cost-to-success-probability ratio less than 1 � V (P 0) and letPA denote its success probability. Let B denote the subpolicy consisting of the rest of the sources inP 0 with success probability PB . The sources in B have higher cost-to-success-probability ratios thanthe sources in A, hence they are queried later than the sources in A in policy P 0. Therefore we haveV (P 0) = V (A) + (1 � PA)V (B). Since P 0 is irreducible, V (A) � V (P 0), and because subpolicy A isirreducible and does not include sn, we have V (A) � (2 +PA)V (A) � (2 +PA)V (P 0) by induction. Itis not hard to see that V (B) � PBV (P 0): Let the sources in B be s1; : : : ; sm, and let �i denote thecost-to-success-probability ratio of si, where �1 � � � � � �m. ThenV (B) = p1(1� �1) + (1� p1)p2(1� �2) + � � � + (m�1Yi=1 (1� pi))pm(1� �m)�  p1 + (1� p1)p2 + � � � + (m�1Yi=1 (1� pi))pm! (1� �1)� PBV (P 0)Therefore V (P 0) = V (A) + (1 � PA)V (B) � 2V (P 0) + PAV (P 0) + (1� PA)PBV (P 0)= 2V (P 0) + (PA + (1� PA)PB)V (P 0)= (2 + P )V (P 0)We complete the proof using inequalities 12 and 13:V (P) � 2(V (P)� V (P 0)) + V (P 0))19



� 2V (P) � 2V (P 0) + (2 + P )V (P 0)� 2V (P) + PV (P) = (2 + P )V (P)A similar proof shows that lemma 4.3 also holds for the general case of an irreducible schedulewith sources that can have unequal durations. However the irreducibility criterion is slightly morecomplicated than what is derived from 3.2 for batched schedules, and unfortunately, unlike for the casefor batched schedules, we don't know how to use that fact to derive an approximation algorithm forthe general case. The interested reader is referred to [11] for a proof for the general case. Interestingly,serializing a single irreducible batch of sources can at most double the value (this result was used in[2]).Now we analyze the performance of algorithm Reverse-Greedy. Just as in the case for single-batchpolicies, we will also use set operations on k-batch policies when there is no ambiguity. Denote theoptimal policy as OPT, and partition OPT asOPT1 = APPR \OPT;OPT2 = OPT�OPT1;where the sources in OPT1 and OPT2 are scheduled in the same batches as they are in OPT. ByLemma 3.1, V (OPT) � V (OPT1) + V (OPT2):We compare the performances of OPT1 and OPT2 with that of APPR separately.Lemma 4.4 V (OPT1) � 3V (APPR).Proof. This follows immediately from Corollary 4.2 and Lemma 4.3.Lemma 4.5 V (OPT2) � 2V (APPR).Proof. For each i = 1; : : : ; k, let OPT2(i) and APPR(i) denote the subpolicies of OPT2 andAPPR consisting of the last k � i + 1 batches. We prove inductively, starting from the last batch,that V (OPT2(i)) � 2V (APPR(i)). Without loss of generality, we may assume that V (APPR(i)) �V (OPT2(i)) for all i because otherwise we could always replace the last k � i + 1 batches of OPT2with those of APPR and continue with the induction. This could only improve V (OPT2).The base of the induction is clearly true by Theorem 3.8. Note that making each batch irreduciblecan only increase the expected value of the batch. Suppose that the claim holds for i + 1 � k, andconsider batch i. Let Po; Co be the collective success probability and cost of the sources in the i-thbatch of OPT2 and Pa; Ca the corresponding quantities for APPR. By Lemma 3.2,V (APPR(i)) � V (APPR(i+ 1)) = Pa(1� V (APPR(i+ 1))) � CaV (OPT2(i)) � V (OPT2(i+ 1)) = Po(1� V (OPT2(i+ 1))) � CoTaking the ratio and noting that V (APPR(i+ 1)) � V (OPT2(i+ 1)),Pa(1� V (APPR(i+ 1))) � CaPo(1� V (OPT2(i+ 1))) � Co = �1� V (APPR(i+ 1))1� V (OPT2(i+ 1)) � Pa � Ca=(1� V (APPR(i+ 1)))Po � Co=(1 � V (OPT2(i+ 1)))20



� Pa � Ca=(1� V (APPR(i+ 1)))Po � Co=(1� V (OPT2(i+ 1)))� Pa � Ca=(1� V (APPR(i+ 1)))Po � Co=(1 � V (APPR(i+ 1))) :Let set S consist of all sources that do not appear in APPR(i + 1). Clearly, S includes allsources in OPT2 and thus all sources in the i-th batch of OPT2. Divide the cost of each source by1�V (APPR(i+1)). Then on input S, Pick-a-Star would return exactly the same set as the i-th batchof APPR with expected value being Pa �Ca=(1� V (APPR(i+ 1))). By Theorem 3.8, the value is atleast half of the optimal expected value for set S which is in turn at least Po�Co=(1�V (APPR(i+1))).This means 2(V (APPR(i))� V (APPR(i+ 1))) � V (OPT2(i)) � V (OPT2(i+ 1));and hence 2V (APPR(i)) � V (OPT2(i)).Lemmas 4.5 and 4.4 together give the following theorem.Theorem 4.6 Algorithm Reverse-Greedy returns a k-batch policy with an expected value at least 1=5of the optimum.5 Approximation Algorithms for the Cost Threshold ModelsWe �rst present an FPTAS for model TL under a weak assumption: pi�di � 0 for every source si (diis the time duration of si), i.e. every source considered is pro�table by itself. The extension to modelTT (with no restriction) is straightforward. Note that in model TT our goal is simply to maximizethe overall probability of getting the information under the time and cost constraints.The main idea is the rounding technique introduced in [7] for Knapsack. As mentioned before,in the cost threshold model TL, an optimal policy should be in fact a single-batch policy. Let P =fsi1 ; : : : ; simg be a single-batch policy, where di1 � � � � � dim . Then,V (P) = 1� mYj=1(1� pij )� mXj=1 j�1Yl=1(1� pil)pijdij � mYj=1(1� pij )dim :We cannot apply the rounding technique to the above objective function directly because it involvessubtractions. Let's rewrite the expression asV (P) = mXj=1 j�1Yl=1(1� pil)pij (1� dij )� mYj=1(1� pij )dim= m�1Xj=1 j�1Yl=1(1� pil)pij (1� dij ) + m�1Yj=1 (1� pij )(pim � dim) (14)Since pi � di � 0 by our assumption, every term is nonnegative in equation 14, and we can applyrounding as follows. 21



Let � > 0 be any desired relative error. Sort the sources in the ascending order of their timedurations. We will exhaustively consider every possible choice of sim . For each i � n, consider onlypolicies that includes the source si and possibly some others from fs1; : : : ; si�1g, subject to the samecost threshold. Let OPT(i) denote an optimal such policy. For simplicity, assume that jOPT(i)j > 1.We �nd a trivial lower bound for V (OPT(i)):V (OPT(i)) � Li = maxfpi � di; maxj<icj+ci�& pj(1� dj)g:Similar to [7], we formulate a new instance by rounding pi�di and each pj(1�dj) down to the nearestmultiple of �Li=(2i). But here we also need round each 1�pj to the nearest power of (1��=(2i))1=(i�1) .In other words, we round each log(1� pj) to the nearest multiple of (log(1� �=(2i)))=(i� 1). We solvethe new instance optimally. Let OPTi denote an optimal policy for the new instance. It is su�cient tobound the di�erence between V (OPT(i)) and V (OPTi) and we do this by obtaining an upper boundbetween each term of OPT (i) and the corresponding rounded value. Each term di�erence is upperbounded when the pi�di or pi(1�di) part of a term is at its maximum Li and the probability factorsin the unrounded term are all 1 (otherwise they are factored out and reduce the di�erence). Thus weobtain a maximum di�erence of Li�Li(1� �2i)[(1� �2i) 1i�1 ]i�1 for every term and there can be at mosti many: V (OPT(i)) � V (OPTi) � i�Li � Li(1� �2i)[(1 � �2i ) 1i�1 ]i�1�= iLi(1� (1� �2i )2)� iLi(1� (1� �i ))= �Li� �V (OPT(i))Hence, the new instance approximates the original problem with the desired ratio.We can compute OPTi for the new instance by dynamic programming in the space Si of all possiblevalues of V (OPTi). Denote Qi = Qj<i(1� pj). By the above rounding, the cardinality of Si is upperbounded by i(2i� )( (i� 1) logQilog(1� �=(2i)) ) < i(2i� )(2i2 logQi�� ) = �4i4 logQi�2 ;which is polynomial in the input size and 1=�. In the above inequality, the factor 2i� represents thenumber of di�erent values that pi�di and pj(1�dj) can have after being rounded to the nearest multipleof �Li=(2i), and the factor (i�1) logQilog(1��=(2i)) represents the number of di�erent exponents that a product ofthe form Qj�1l=1 (1� pil) can have after being rounded to the nearest power of (1� �=(2i))1=(i�1) .Rewrite the expression in equality 14 as a nested form:pi1(1� di1) + (1� pi1)[pi2(1� di2) + (1� pi2)[� � �+ (1� pim�1)(pim � dim)]]:The form easily suggests a backward inductive algorithm. The algorithm will cycle through the listsi�1; : : : ; s1. For each j = i; : : : ; 1 and each possible value x 2 Si, it computes and records a policy22



of expected value x for the subset of sources fsj ; : : : ; sig that contains the source si and costs theleast. The above nested form allows the algorithm to �nd the cheapest policy of a speci�c expectedvalue for subset fsj ; : : : ; sig by expanding the cheapest policies of the same or lower expected valuesrecorded before for subset fsj+1; : : : ; sig to potentially include the source sj. The running time is atmost O(i2jSij), which is polynomial in the input size and 1=�.Theorem 5.1 Assume that pi � di � 0 for every source si. There is an FPTAS for the problem ofcomputing optimal policies in model TL.Corollary 5.2 There is an FPTAS for the problem of computing optimal policies in model TT.Proof. Recall that the objective function in this case isV (P) = 1� mYj=1(1� pij );which involves only the success probabilities of the sources queried. Hence, the above FPTAS worksif we simply throw out all sources whose time duration exceeds the deadline.6 Concluding RemarksAs charging for information on the Internet becomes more common, information-acquisition algorithmswill have to trade o� the bene�ts of acquiring information with the cost of doing so. Characteristicsof these problems are (1) the fact that the information provided by a source cannot be fully predictedin all cases, so the bene�t of asking for information can be uncertain, (2) the fact that there canbe monetary and time costs associated with information requests, and (3) the fact that informationproviders can be accessed both serially and in parallel.We have developed a model that takes into account these aspects of information scheduling, andhave established worst-case complexity and approximation results for a variety of objective functions:those in which the value is linear in the cost or time attributes and the consumer supplies a costand/or time threshold for acquiring information. All of these models have plausible applications forinformation access on the World Wide Web.AcknowledgmentsMany thanks to Richard Anderson and Richard Karp, for the discussions and their very valuablesuggestions, and to the two anonymous referees for their careful reading and constructive criticism ofthe paper.References[1] D. Dreilinger. Integrating Heterogeneous WWW Search Engines. Masters Thesis, Colorado StateUniversity. May, 1995. 23
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APPENDIX. Verifying the Claims.We prove the claims made on the behavior of the various functions that came up in the main proofs.Proof of Claim 3.5. We show that the function P1 � l(1� (1�P1)1=l)�1 is decreasing in P1, where1� P1 � �1.We take the derivative with respect to P1 and get1� �1(1� P1) 1l�1 = 1� �1(1� P1) l�1lThe ratio is increasing in P1 as long as (1� P1) l�1l > �1.Proof of Claim 3.6. We show that the function h(l; p1) = l(1� (1� p1)1=l) is nondecreasing in l.Taking the derivative we have@h(l; p1)@l = 1� (1� p1)1=l + ln(1� p1)(1� p1)1=llWe observe that @h(l;0)@l = 1� 1 + 0 = 0 and@h(l; p1)@p1@l = 1=l(1 � p1)1=l�1 � (1� p1)1=ll(1� p1) � (1� p1)1=l�1 ln(1� p1)l2= �(1� p1)1=l�1 ln(1� p1)l2 � 0Therefore @h(l;p1)@l is nonnegative for all p1 2 [0; 1:0]. Whence h(l; p1) is nondecreasing in l.Proof of Claim 3.7. We need show that the ratio � 11�xm=(m�1) ��1�x+x lnx1�x � is decreasing in x 2 (0; 1).We take the derivative0@ mm�1x 1m�1(1� x mm�1 )21A�1� x+ x lnx1� x �+ � 11� xm=(m�1)��(1� x) lnx+ 1� x+ x lnx(1� x)2 �= 1(1� xm=(m�1))(1 � x) 240@ mm�1x 1m�11� x mm�1 1A (1� x+ x lnx) + �1� x+ lnx1� x �35The factor 1(1�xm=(m�1))(1�x) is poitive in the interval, hence it su�ces to show that the term in thebrackets is negative. Noting that 1 � x + x lnx in the left summand is nonnegative (the derivativelnx is negative, and the function is zero at 1), and that in the right summand 1 � x + lnx � 0, weconclude that the left summand is nonnegative, while the right one is nonpositive. We will verify that11� x � mm�1x 1m�11� x mm�1 : (15)This eliminates the extra factors and makes it su�cient to show that h1(x) = (1 � x + x lnx) + 1 �x+ lnx < 0. We note that h1(x) is negative at x arbitrarily close to zero, and zero at x = 1, and itsderivative �1 + lnx+ 1=x = 1�x+x lnxx is nonnegative in the interval.25



Rearranging 15 we need to verify thatmm�1x 1m�1 (1� x)1� x mm�1 � 1:The fraction is zero at x = 0 and taking the limit as x approaches 1 we havelimx!1 mm�1x 1m�1 (1� x)1� x mm�1 = mm�1 ( 1m�1 � mm�1)� mm�1 = 1Finally, we can verify that the derivative is nonnegative in the region. We may ignore the factormm�1 and to simplify a little, we make the substitution u = x 1m�1 . Hence we want to show that thederivative of h2(u) = u(1�um�1)1�um is positive. Taking the derivative,h02(u) = (1�mum�1)(1� um) +mum(1� um�1)(1� um)2We will show that the numerator1�mum�1 � um +mu2m�1 +mum �mu2m�1 = um�1((m� 1)u�m) + 1is positive. The function h3(u) = um�1((m�1)u�m)+1 is nonnegative on the interval since h3(0) = 1and h3(1) = 0 and h03(u) < 0 on the interval:h03(u) = (m� 1)um�2((m� 1)u�m) + (m� 1)um�1= (m� 1)um�2((m� 1)u�m+ u) = (m� 1)um�2(m(u� 1)) < 0:Hence h02(u) � 0.Proof of Claim 3.15. We need to show that the functionf2(�1)� r�12 f1(�1)= r(r�1)2 (1� p)r�2p2 + �1 ln( �1(1�p)r ) + (1� p)r � �1 � r�12 (�1p2 � �1p ln( �1(1�p)r ))is decreasing in �1, for �1 � (1 � p)2r�1. Taking the partial derivative on f2(�1) � r�12 f1(�1) withrespect to �1,@ h r(r�1)2 (1� p)r�2p2 + �1 ln( �1(1�p)r ) + (1� p)r � �1 � r�12 (�1p2 � �1p ln( �1(1�p)r ))i@�1= ln( �1(1 � p)r ) + 1� 1� r � 12 p2 + (r � 1)p2 ln( �1(1� p)r ) + (r � 1)p2< ln( �1(1 � p)r ) + (r � 1)p2� (r � 1) ln(1� p) + (r � 1)p2< �(r � 1)p+ (r � 1)p2� 0: 26


