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ABSTRACT

Although employment at individual firms tends to be highly non-stationary, the employment size

distribution of all firms in the United States appears to be stationary. It closely resembles a Pareto

distribution. There is a lot of entry and exit, mostly of small firms. This paper surveys general

equilibrium models that can be used to interpret these facts and explores the role of innovation by

new and incumbent firms in determining aggregate growth. The existence of a balanced growth

path with a stationary employment size distribution depends crucially on assumptions made about

the cost of entry. Some type of labor must be an essential input in setting up new firms.

∗Luttmer, University of Minnesota and Federal Reserve Bank of Minneapolis. Prepared for the Annual Reviews
of Economics 2010. The views expressed herein are those of the author and not necessarily those of the Federal

Reserve Bank of Minneapolis or the Federal Reserve System.



1. I

It has long been known that the employment size distribution of firms is highly skewed.

In modern US data, the number of firms with more than n employees behaves roughly

like 1/nζ , for some tail index ζ slightly greater than 1. This implies that a large share

of aggregate employment is accounted for by a relatively small number of large firms.

There are about 6 million employer firms in the US. Around half of the labor force of

these firms is employed by the roughly 18,000 firms with more than 500 employees, and a

good quarter is accounted for by the 1,000 or so firms with more than 10,000 employees.

This pattern of extreme skewness appears to be quite stable over time, although the

existence of large private corporations is of course a relatively modern phenomenon.

Firms play an important role in theories of aggregate growth and fluctuations. Yet,

few studies in which firm boundaries matter are consistent with the highly skewed size

distribution observed in the data. The situation is different in the modern trade liter-

ature. Helpman, Melitz and Yeaple [2004], Melitz [2003], Bernard, Eaton, Jensen and

Kortum [2003], Eaton, Kortum and Kramartz [2008] are leading examples of quantita-

tive theories of trade that explicitly take into account the firm size distribution. In most

of the work on trade, the Fréchet or Pareto-like size distribution is a direct reflection

of an underlying productivity distribution. But the origin of this productivity distri-

bution is typically left unexplained, and one could argue that this amounts to setting

aside the most important puzzle in the data. Even the extreme-value interpretation of

Kortum [1997] and Eaton and Kortum [1999] depends on an underlying distribution of

productivities that is itself skewed. In large samples, the maximum of a random sample

from a distribution with compact support does not converge to a thick-tailed Fréchet

distribution but piles up near the upper bound of that support.1

This paper surveys general equilibrium models that can be used to interpret the 1/nζ

phenomenon. These models build on a rich history of research on firm growth and size

distributions. No attempt is made here to cover this history (see Sutton [1997], Neal

and Rosen [2000], and Gabaix [1999, 2009].) Although several examples are taken from

the trade literature, trade is not the focus here. This survey also cannot do justice to

the vast and related literature on innovation and growth. Excellent survey and textbook

presentations can be found in Aghion and Durlauf [2005] and Acemoglu [2008]. The

object of interest here is the firm–not establishments, such as manufacturing plants,

1See Alvarez, Buera and Lucas [2008] for more on the relation between the distribution from which
productivities are drawn and the distribution of frontier productivities.
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administrative offices, or retail stores.2 In data constructed by the U.S. Census, there is a

fairly clear empirical definition of an employer firm. Models differ in their interpretation

of this empirical construct.

The discussion is organized around two polar interpretations of the firm size distri-

bution. One is that the 1/nζ tail is the result of replication of organization capital. A

firm is defined by its firm-specific organization capital, and it takes pieces of this capital

to create more pieces. This can easily give rise to Gibrat’s law–the proposition that

firm growth rates are independent of size. If there is also persistent entry of small new

firms, then the Pareto-like tail follows. In the simplest version of this interpretation, all

organization capital is the same and there are no productivity differences. All measured

productivity differences must be attributed to unobserved differences in the quantity of

organization capital across firms.3 More plausibly, there are differences in the quality

of organization capital across firms. Firms with high-quality organization capital have

strong incentives to create more of it. These firms will grow fast and large firms will be

those that have had frontier-quality organization capital for a sufficiently long time.

The second polar interpretation is that firm size directly reflects productivity dif-

ferences, moderated only by decreasing returns to scale or downward sloping demand

curves. The scale of the firm can be adjusted instantaneously and firm growth is the

result of productivity growth. If productivity growth is independent of productivity lev-

els, Gibrat’s law can again arise and entry of sufficiently productive new firms will result

in a stationary distribution with a Pareto-like tail. Randomness in firm-level produc-

tivity growth can be interpreted as learning by doing or experimentation. Firms with

sufficiently many lucky draws survive and others are forced to exit. If entrants can do

better than these exiting firms, the economy-wide productivity distribution will trend

upwards over time.

In both types of economies, not enough entry would result in non-stationary size

distributions, typically with a thin right tail. When the productivity of incumbent

firms improves over time, enough entry to induce stationarity can only occur if potential

entrants can take advantage of the improvements made by incumbents.4 This can happen

2See Rossi-Hansberg and Wright [2007] for empirical evidence and a general equilibrium model of
establishment size dynamics. In the US, the right tail of the size distribution of establishments is
noticeably thinner than that of firms.

3McGrattan and Prescott [2009] emphasize the importance of unmeasured investment.
4An important alternative possibility, not considered here, is that relative prices change to allow

new industries to arise. Entrants into these new industries need not learn anything from incumbents in
old industries.
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through trade of something that embodies those improvements, or as a result of imitation

externalities. The welfare implications are different. Both mechanisms for the transfer

of knowledge are likely to play a role empirically, and it is a continuing challenge to

quantify their relative importance. The fact that the stationary distribution has a tail

index ζ only slightly above 1 arises because, while there is sufficient entry for stationarity,

incumbent firms account for much of aggregate employment growth.

The rest of this survey is divided into three parts. The motivating evidence is briefly

discussed in Section 2. The organization capital and productivity interpretations are

presented in Sections 3 and 4, with hybrid models appearing in both sections. Through-

out, the focus is on examples that are sufficiently tractable to allow one to think through

aggregate implications.5

2. S M F

Figure 1 shows that the aggregate civilian labor force and various firm counts exhibit

a common trend over the past 80 or so years. Completely consistent firm counts over

this period are not available. Lucas [1978] used the series V13 “Firms in Operation”

published in the Statistical Abstract of the United States. The County Business Patterns

(CBP) publication of the U.S. Census provides a long series of what were referred to

as reporting units before 1974 and subsequently became establishments. The Small

Business Administration (SBA) reports both a count of firms and of establishments,

including establishments that have zero employment during the March reporting period.

Establishments that do have employment in that period correspond to the establishments

reported in the Business Dynamics Statistics (BDS) of the Census, available since 1977.

The old V13 firm count was discontinued after 1963 after errors were discovered. Rather

mysteriously, the V13 number of firms exceeds the County Business Patterns number of

reporting units by a wide margin. As one would expect, the SBA establishment count

exceeds its firm count.

The firm size distributions reported by the SBA for 1992, 2000 and 2006 are shown

in Figure 2. The first and second panel show the left and right cumulative distribution

functions, respectively. The Pareto right tail and the fact that the tail index is close to

1 are evident. A simple regression based on firms with more than 100 employees gives a

5See Weintraub, Benkard and van Roy [2008] for an attempt to narrow the gap between the Hopen-
hayn [1992] style models considered here and models that allow for dynamic strategic interaction such
as Ericson and Pakes [1995].
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F 2 The Firm Size Distribution

tail index of ζ ≈ 1.06. Although the SBA data do not go back in time very far, Figure
2 clearly suggests a size distribution that is stationary. This stability can be illustrated

further using BDS data that go back to 1977. The BDS does not show firm counts but

it does report aggregate employment accounted for by various firm size categories. The
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share of aggregate employment in the right tail of the firm size distribution as reported

by the BDS is shown in Figure 3.
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F 3 The Right Cumulative Distribution of Employment Across Firms

Although the repeated cross-sections are stable, the picture for individual firms could

not be more different. Since Gibrat [1931], the empirical benchmark is that firms grow

according to Gibrat’s law: growth rates are independent of size. Thus the size of an indi-

vidual firm is non-stationary. Sutton [1997] surveys the literature. Hall [1987] suggests

that Gibrat’s law cannot be rejected for large firms and only weakly for small firms.

Evans [1987] finds that firm growth rates decrease with size, even after controlling for

selection issues related to exit. He also finds an important role for age, as do Dunne,

Roberts and Samuelson [1989]. Small and young firms are very volatile and highly likely

to exit. SBA data for 1988-2006 show an average exit rate of about 10.4% per annum for

firms with fewer than 20 employees, versus 2.5% for firms with 500 or more employees.

Compared with small firms, few large and established firms disappear in a given year.

A revealing piece of evidence on what large firms are like is shown in Figure 4. It

shows the average number of establishments of all firms in the firm employment size

categories reported by the SBA. Not shown is the average number of establishments per

firm, equal to 676, in the unbounded size category of 10,000 or more employees. For

firms with more than about 100 employees, the relationship is essentially log-linear, with
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an elasticity only slightly below 1. The average large firm has many establishments, and

not, typically, a single large establishment.
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F 4 The Average Number of Establishments per Firm

3. O C

A natural way to obtain Gibrat’s law and Pareto-like size distributions is to take firm

size to reflect accumulated organization capital, as in Prescott and Visscher [1980]. In

the examples given here, entrepreneurs create start-up capital, and this capital can be

used to produce consumption and more of the same capital. A firm is identified with

all the capital produced, directly or indirectly, from the same initial start-up stock of

capital. Transferring capital from one firm to another is taken to be sufficiently costly

for it not to occur.

3.1 A Deterministic Example

Consider an economy with a population of infinitely lived infinitesimal agents Ht =

Heηt that grows at a positive rate. Agents have a subjective discount rate ρ > η and

logarithmic utility over per-capita consumption flows. Everyone can exert one unit of

effort per unit of time. This effort can be used to supply labor or to create start-up

capital, as an entrepreneur. Individuals are endowed with a skill vector that determines

the amount of labor they can supply, and the rate at which they can create start-

up capital. The distribution of these skills is time invariant, and agents choose to be

workers or entrepreneurs based on comparative advantage, as in Roy [1951]. Specifically,

suppose the price of a unit of start-up capital is qt and the wage is wt, both in units
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of consumption. An agent who can supply x units of labor or create a unit of start-up

capital at a Poisson rate y will choose to be a worker if wtx > qty and an entrepreneur if

the reverse inequality holds. Using the skill distribution to sum over all agents will give

rise to a per-capita labor supply L(qt/wt) and a per-capita supply of start-up capital

E(qt/wt). Clearly, these functions are decreasing and increasing in qt/wt, respectively.

A newly created firm starts out with one unit of start-up capital. Once the firm

is created, there is joint production: its capital can simultaneously be used to produce

consumption goods and more capital. Consumption can be produced according to a

production function F (nt, ntlt), where nt ∈ [1,∞) is the capital stock of the firm, and
nt × lt is production labor. The firm’s capital stock grows according to

Dnt = G(nt, ntmt) (1)

where ntmt is capital-producing labor. Both F and G are increasing, concave, and

exhibit constant returns to scale. The assumption of constant returns ensures that the

value of the firm can be written as the price of a unit of capital times the capital stock of

the firm. Given an interest rate rt, the price of one unit of capital satisfies the Bellman

equation

rtqt = max
l,m≥0

{F (1, l) + qtG(1,m)− wt(l +m) + Dqt} (2)

and a transversality condition.

This structure is clearly reminiscent of Lucas [1967] and Hayashi [1982]. But observe

that final output in this economy is used only for consumption. Capital is produced

either using old capital and labor, or from scratch by entrepreneurs. The economy

has a balanced growth path in which per-capita consumption is constant and capital is

accumulated to keep up with population growth. Along the balanced growth path, the

interest rate is rt = ρ and [qt, wt] = [q, w]. Given interest rates and wages, the price of

a unit of capital is determined by

w = D2F (1, l) = qD2G(1,m), q =
F (1, l)− w(l +m)

ρ−G(1,m) . (3)

Firm employment equals l + m times the capital stock of the firm. Let Neηt denote

the aggregate capital stock along the balanced growth path. The labor market clearing

condition is then

(l +m)N = L(q/w)H. (4)

Existing capital produces new capital at the rateG(1,m). Entrepreneurs account for any

additional growth in the capital stock. Since both aggregate capital and the population
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of entrepreneurs grow at the rate η, it must be that

ηN = G(1,m)N +E(q/w)H. (5)

The balanced growth path is determined by solving (3)-(5) for N , l, m, q and w. As-

suming capital is essential for producing consumption, N will be positive. Together

with E(q/w) ≥ 0 this implies η ≥ G(1,m), and then the assumption ρ > η ensures

ρ > G(1,m).

Suppose first that the talent distribution is such that E(q/w) = 0 for low enough

q/w. That is, the supply of start-up capital dries up when the price of capital is low

enough. Then the balanced growth path may exhibit no investment in start-up capital

by entrepreneurs. Incumbent firms grow at the rate η andN is determined by initial con-

ditions. Although there is balanced growth, the firm size distribution is non-stationary:

the distribution of log capital shifts to the right as incumbent firms produce new capital

at a rate η.

Suppose instead that E(q/w) is strictly positive for all q/w positive. There are always

some entrepreneurs for whom it is profitable to create new start-up capital. Then (5)

implies that the balanced growth path must be such that G(1,m) = μ < η. A natural

assumption is that G(1, 0) is negative, and so μ need not be positive in equilibrium.

Firms could enter and then shrink forever. Throughout the following, assume this is not

the case. Because μ < η, there is continuous entry of new firms. The number of firms,

as well as the number of entering firms, grows at the rate η. At time t the number of

firms in the cohort of firms of age a is proportional to eη(t−a). The age distribution of
firms is therefore stationary, with a density ηe−ηa. As new firms all enter with one unit
of capital and accumulate capital at the common rate μ, a firm of age a has na = eμa

units of capital. The size of a firm is a deterministic function of age. If μ is positive,

then changing variables from age to capital gives a distribution of firm size in terms of

capital that has a density6

p(n) =
η

μ
n−(1+η/μ),

for all n ∈ [1,∞). The firm size distribution is Pareto. Since employment and output

scale with capital, this is true for any of these measures of firm size.

The right-tail probabilities of p(n) are n−ζ , where ζ = η/μ. This implies the log-linear

relationship shown in Figure 2, and its slope reveals the tail index ζ of the distribution.

Because (5) implies η > μ when entry is positive, the tail index ζ is guaranteed to be

6Benhabib and Bisin [2006] trace this argument back to Cantelli and Fermi.
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above 1 if at any price there will be some entrepreneurs who choose to create start-

up capital. This ensures the size distribution has a finite mean, given by ζ/(ζ − 1).
Zipf’s law arises when ζ approaches 1 from above. But this limiting distribution is

not an equilibrium distribution in this economy. As seen above, without entry the size

distribution is non-stationary.

The fraction of all capital held by firms with more than n units of capital is n−(ζ−1),
which approaches 1 for any n as the equilibrium distribution approaches Zipf’s law. If the

smallest firm has one employee, then the fact that firms with more than 500 employees

account for 50% of employment implies ζ = 1 + ln(2)/ ln(500) = 1.11. An analogous

calculation for the 27% of employment accounted for by firms with more than 10,000

employees yields the very similar ζ = 1.14, a reflection of the accuracy of the fit of the

Pareto distribution in this range of the data.

The formula ζ = η/μ implies that μ must be close to the population growth rate.

In the United States this is approximately 1% per annum, and so firms in this economy

should grow at a rate of about .9% per annum. If new firms enter with one employee,

then one obtains the rather problematic implication that it takes ln(10,000)/.009 =

1, 023 years to become one of the roughly 1,000 firms with more than 10,000 employees

observed in US data.

A further anomalous implication of this simple model is that there is no exit. In

U.S. data the exit rate is approximately 10% per annum. An easy fix is to assume that

firms die randomly, with all their capital, at a rate δ. The equilibrium conditions (3)-(5)

require only minor modification: ρ must be replaced by ρ + δ in (3) and η by η + δ in

(5). The number of firms of age a at time t is proportional to eη(t−a)−δa, and so the age
distribution has a density (η + δ)e−(η+δ)a. The resulting size distribution is Pareto with
a tail index ζ = (η + δ)/μ. Population growth is no longer needed to obtain a Pareto

size distribution. What matters is that firms have a chance to grow. The resulting

distribution will fit the empirical size distribution if μ is a little below η+δ. Now we can

have μ ≈ . 1, and then firms that start with one employee only take ln(10,000)/.1 = 92
years to reach 10,000 employees. This is closer to the median age of 75 years for firms

of 10,000 or more employees reported in Luttmer [2008]. But, as reported in Section 2,

the assumption that the likelihood of exit is independent of firm size is starkly at odds

with US data.
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3.2 A Brownian Example

Firm age and logarithmic employment size are positively correlated in US data. But

the correlation is far from perfect. A simple way to account for this is to introduce a

random component to firm growth. Specifically, assume the capital stock of a particular

firm evolves according to

dnt = nt [G(1,mt)dt+ σdWt] , (6)

where Wt is a firm-specific standard Brownian motion and mt is the amount of labor

used to produce new capital, per unit of existing capital. The Brownian component of

(6) amounts to a common multiplicative shock to all the units of capital inside the firm.

This is still a technology that exhibits constant returns to scale. But firm boundaries

matter, in the sense that re-allocating a unit of capital from one firm to another exposes

that unit of capital to different shocks.

Along a balanced growth path, rt = ρ, wt = w, and the value of a firm with n units

of capital, Q(n), must satisfy the Bellman equation

ρQ(n) = max
l,m

F (n, nl)− wn(l +m) +G(n, nm)DQ(n) + 1
2
σ2n2D2Q(n) .

The constant-returns-to-scale assumptions imposed on F and G immediately suggest a

solution of the form Q(n) = qn. With this conjecture, the Bellman equation reduces to

the balanced growth version of the deterministic Bellman equation (2). The result is a

constant mt = m, and this implies that firm growth satisfies Gibrat’s law, in a strict

sense: for any ∆ > 0, the distribution of nt+∆/nt is independent of firm size nt, and of

anything else. Conditions (3)-(5) continue to define the balanced growth path.

To compute the size distribution, apply Ito’s lemma to (6) to conclude that the drift

of ln(nt) is equal to μ = G(1,m) − σ2/2. The log-size distribution of a cohort of age

a is normal with mean μa and variance σ2a. If the balanced growth path is such that

η = G(1,m), then there is no entry. If all firms are initially the same, then the size

distribution along the balanced growth path is log normal with mean (N/H) + μt and

variance σ2t. There is no stationary size distribution in that case. In contrast to the

deterministic example, scaling firm size with an exponential trend does not make the

size distribution stationary.

If G(1,m) < η then there is positive entry and the age distribution will have a density

ηe−ηa along the balanced growth path. Integrating the normal density for log size given
age against this exponential age density and converting the resulting density for log size
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back to size gives what is known as the double Pareto distribution7

p(n) =
ζζ∗

ζ + ζ∗
min nζ∗−1, n−(1+ζ) , (7)

where

ζ = − μ

σ2
+

μ

σ2

2

+
η

σ2/2
, ζ∗ =

μ

σ2
+

μ

σ2

2

+
η

σ2/2
. (8)

Another way to show this result is to use the fact that the density f of s = ln(n) satisfies

the Kolmogorov forward equation ηf(s) = −μDf(s) + 1
2
σ2D2f(s) for all s, except at

the entry point s = 0. The density is continuous at that point, but there is a kink

η = 1
2
σ2[D−f(0) − D+f(0)] that reflects the entry that takes place at s = 0. The

remaining boundary conditions are that f is positive and integrates to 1. Note that

G(1,m) < η implies μ + σ2/2 < η. This inequality is equivalent to ζ > 1, which is

precisely the condition needed to ensure that the mean firm size, ζζ∗/(ζ − 1)(ζ∗ + 1), is
finite. The tail index ζ approaches 1 from above as μ+ σ2/2 increases towards η.

All this is predicated on η > 0. But, if there is also random exit at a rate δ, then

η must be replaced by η + δ in the above calculations, and one only needs to assume

η + δ > 0.

3.3 Stochastic Replication

Taking organization capital to be continuous makes for easy calculations but does not

aid interpretation. Organizations can be viewed as collections of matches, contracts, or

trading relationships, that are more naturally taken to be discrete. One is an employee,

supplier, or customer of a firm, or one is not. Large firms typically operate many plants,

offices or stores that are geographically dispersed. In the following, the discrete units

that make up organization capital are referred to generically as “blueprints.” Firm

growth is about the replication of these blueprints.

3.3.1 Independent Replication

Entrepreneurs create a start-up “blueprint” that defines a new firm. This blueprint can

be replicated within the firm, and every resulting blueprint can itself be replicated inside

the firm. Let nt ∈ N denote the number of blueprints of the firm. Consumption produced
7See Reed [2001], Mitzenmacher [2004], and references therein. This uses the fact that for any

A ≥ 0, T

0
1√
2πt
exp − 1

2t(t−A)2 dt = Φ −A+T√
T

− e2AΦ −A−T√
T

, where Φ is the standard normal
cumulative distribution function. A recent application can be found in Arkolakis [2009].
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by a firm with nt blueprints is again F (nt, ntlt), where lt is production labor used per

blueprint. Combining mt units of labor with a blueprint generates a new blueprint at a

Poisson rate G(1,mt). In this example, G will be assumed to be strictly positive. The

Bellman equation is again (2) and the economy will have a balanced growth path defined

by (3)-(5). Write μ = G(1,m) for the rate at which blueprints are replicated.

Let {pn,a}n∈N denote the probability distribution of the number of blueprints of a
firm at age a. These probabilities satisfy the differential equations

Dp1,a = −μp1,a, Dpn+1,a = μnpn,a − μ(n+ 1)pn+1,a, n ∈ N, (9)

and the initial condition is p1,0 = 1. Clearly, p1,a = e−μa and one can then proceed to
construct pn,a inductively. This results in a geometric distribution of size given age,

pn,a = e
−μa 1− e−μa n−1

, n ∈ N. (10)

Observe that the mean of this distribution is eμa, as expected. There may again be a bal-

anced growth path with no entry if entrepreneurs stop creating new firms at sufficiently

low blueprint prices. As in the Brownian example, the resulting size distribution is non-

stationary, and there is no way to de-trend firm size to make it stationary. A stationary

distribution arises if the entry rate is positive, so that η > μ. The age distribution again

has the density ηe−ηa. Combining this with (10) gives

pn =
∞

0

ηe−ηapn,ada =
η

μ

∞

0

e−(1+η/μ)b 1− e−b n−1
db.

There are several ways to calculate this integral. One is to change variables to x = e−b

and recognize the result as the beta function with parameters 1+η/μ and n. Another is

to expand (1− e−b)n−1 using the binomial formula and do the integration term by term.
Probably the most direct way is to use repeated integration by parts. The result is

pn =
η

μ

Γ(n)Γ (1 + η/μ)

Γ (n+ 1 + η/μ)
(11)

for all n ∈ N. Here, Γ is the gamma function, which specializes to Γ(x) = (x − 1)!
for integer values of x. The result (11) is due to Yule [1925] and Simon [1955]. The

process that gives rise to (11) is widely known as the Yule process (Feller [1968], Karlin

and Taylor [1975], or Ross [1996].) Integrating the mean eμa of firm size given age

against the age density ηe−ηa shows that (11) must have a mean η/(η − μ). Stirling’s

formula implies that n! ∼ nn+ 1
2 e−n and thus pn ∼ n−(1+η/μ). To compute the right-tail

probabilities, note that they are (1− e−μa)n−1 for a cohort of age a. Averaging against
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the age density ηe−ηa gives an integral just like the one that defines pn. The resulting
right-tail probabilities are

∞

k=n

η

μ

Γ(k)Γ (1 + η/μ)

Γ (k + 1 + η/μ)
=

η

μ

Γ(n)Γ(η/μ)

Γ (n+ η/μ)
∼ n−η/μ.

A Zipf plot for this distribution is log-linear for large n, with a slope −η/μ < −1. Zipf’s
Law arises as μ ↑ η, which gives pn = 1/[n(n + 1)] and right-tail probabilities equal to
1/n.

Stochastic Depreciation The Yule process implies that firms can only grow. A

natural generalization is to allow individual blueprints to depreciate in one-hoss-shay

fashion at some rate λ, where λ may depend on labor assigned to “maintain” blueprints.

A firm exits when it loses its last blueprint and therefore has no blueprints that can

be replicated anymore. The conditions for a balanced growth path are similar to (3)-

(4) and will imply that η > μ − λ if there is positive entry. Firm size follows a simple

birth-death process that is a special case of the more general time-dependent birth-death

process studied in Kendall [1948]. Conditional on survival, the cohort size distribution

is again geometric as in (10), but the variable 1 − e−μa in (10) must be replaced by
(e(μ−λ)a−1)/(e(μ−λ)a−λ/μ). Although the population of firms grows exponentially, exit

is highly size-dependent: only the firms with one remaining blueprint can exit. This

seems to be closer to US data than random exit. A characterization of the stationary

size and age distributions (no longer exponential) can be found in Luttmer [2008]. The

right-tail probabilities of the size distribution behave like n−ζ with ζ = η/(μ− λ) when

μ > λ. The thick right tail observed in the data arises when firms are expected to grow

at a positive rate.

3.3.2 Synchronized Replication

In the case of the Yule process and its birth-death generalization with constant μ and λ,

replication and decay are independent across blueprints. All randomness in firm growth

arises at the blueprint level. At the opposite extreme, consider a replication technology

with the feature that the random event of replication is perfectly synchronized across all

blueprints within the same firm. Specifically, suppose a synchronized replication event

occurs at a Poisson rate G(n, nm) if a firm with n blueprints uses nm units of labor to

attempt replication. The arrival of such a synchronized replication event generates n

new blueprints, and the cost of replication is proportional to n. Because of this, just as
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in the Brownian example, the value of a firm with n blueprints is still linear in n. The

Bellman equation (2) holds. The balanced growth conditions are again given by (3)-(5).

As before, write μ = G(1,m).

Measured in numbers of blueprints, the possible firm sizes are now 2s, for all s+1 ∈ N.
For a firm with n blueprints, the variable s = log2(n)measures the number of replications

that have occurred since the firm was set up. Along a balanced growth path, the

distribution of the number of replications in a cohort of age a satisfies

Dp0,a = −μp0,a, Dps+1,a = μps,a − μps+1,a, s+ 1 ∈ N.

Starting from p1,0 = 1 this yields

ps,a =
1

s!
e−μa(μa)s

for all s + 1 ∈ N. This is, of course, the Poisson distribution with mean μa. As in all

previous examples, there are now two possibilities that depend on whether entrepreneurs

create new firms or not. If they do not, and all firms have one blueprint at time t = 0,

then the distribution of log firm size will be Poisson with mean μt at time t. Alternatively,

if μ < η, then the age distribution of firms has the exponential density ηe−ηa. Combining
this with the fact that s given age a is Poisson with mean μa, this implies

ps =
∞

0

ηe−ηaps,ada =
η

η + μ

μ

η + μ

s

(12)

for all s+ 1 ∈ N. Thus log size is geometrically distributed. The right-tail probabilities
for the firm size distribution, with firm size measured in numbers of blueprints, are

therefore ∞

s=log2(n)

ps =
μ

μ+ η

log2(n)

= n− log2(1+η/μ)

for all n on the grid 2s, s + 1 ∈ N. On this grid, these right-tail probabilities converge
to 1/n as μ ↑ η, just as in the case of the Yule process. Obviously, the sample paths

of firm size are extremely unrealistic in this example. But it illustrates, together with

the independent replication example, how a thick-tailed size distribution can arise from

replication acting at different levels of aggregation within the firm.

3.4 The Spin-off Interpretation

When firms can grow forever, the key ingredient in generating a stationary size distri-

bution is entry. In all examples presented above, the amount of entry depends on how
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many agents have a comparative advantage in creating blueprints from scratch versus

using the replication technology available to incumbent firms. In Chatterjee and Rossi-

Hansberg [2007], the amount of entry depends instead on the incentives of an employee

to report or sell an idea to his employer, versus keeping the idea and using it to start a

new firm. Related, in Franco and Filson [2006] employees can start new firms by copying

from their employers.

To show the mechanics, consider the independent replication economy of Section

3.3.1 and suppose that no blueprints can be created from scratch. Rather, among the

blueprints created within the firm, a fraction 1 − α become spin-offs. Because there

are no independent entrepreneurs, the equilibrium conditions (4) and (5) have to be

replaced by N(l +m) = 1 and η = G(1,m). One can view (3) as determining l and m

as functions of the wage w, and then these modified equilibrium conditions determine

N and w. The rate at which the aggregate number of blueprints grows is still η. But

the fact that a fraction 1 − α of all new blueprints are spin-offs means that the rate

at which firms accumulate blueprints is μ = αη ∈ (0, η). The remaining newly created
blueprints are the seeds of new firms, and hence the flow of new firms grows at the rate

η. The firm age distribution is again exponential, and hence the size distribution will

be (11). This spin-off interpretation is a direct translation of the way Yule [1925, p. 24]

constructed his distribution: within a species, every individual replicates at the rate η,

and occasionally a mutation occurs that generates a new species.

3.5 Heterogeneous Organization Capital

Luttmer [2008] combines independent replication of blueprints with heterogeneity in

blueprint quality. In a competitive version of the model, output of a quality-z blueprint

is zF (1, l). New firms are created with a frontier blueprint quality z = Zt, where Zt grows

at some exogenous rate θ. Blueprint quality continues to follow the frontier, but a firm

and all its blueprints may experience a one-time reduction in quality at some random

time, following an exponentially distributed waiting time with mean 1/δ. As before, all

blueprints can be replicated at rates G(1,m), wherem is labor. New blueprints are exact

copies of the blueprints from which they were produced. When the firm-wide reduction

in quality occurs, incentives to replicate and maintain blueprints are reduced, and this

slows down the growth rate of the firm. The Bellman equation (2) requires only minor

modification and firms grow at either high or low constant rates along a balanced growth

path. If fast-growing firms gain and lose blueprints at rates μ and λ, then the tail index

of the size distribution is ζ = (η + δ)/(μ− λ), provided that μ > λ and the distribution
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of slow-growing firms does not have an even thicker tail. The combination of rapid

initial growth and slower long-term growth allows one to account for the fact that the

median age of US firms with 10,000 or more employees is only about 75 years, without

the random exit assumption and its anomalous implication for the size of exiting firms.

In the resulting account of the data, Gibrat’s law does not hold. But an econometrician

running short panel regressions of growth rates on size would find that Gibrat’s law

holds except for small firms, as in Evans [1987] and Hall [1987].

3.5.1 Obsolescence

An alternative way to account for the slowdown in firm growth, inspired by the vintage

capital model of Hopenhayn [2007], is as follows. Instead of the one-time reduction in

quality, suppose that frontier blueprints stop tracking the frontier altogether after an

exponentially distributed waiting time with mean 1/δ.

The Bellman equation (2) now requires a more substantial modification. At time t,

let Qt be the value of a blueprint at the frontier, and write qv,t for the value of a blueprint

with a productivity that stopped growing at time v ≤ t. Along a balanced growth path,
wages are wt = weθt and the interest rate is rt = ρ + θ. Conjecture Qt = Qeθt and

qv,t = q(t− v)eθt. The Bellman equation for Q is then

ρQ = max
l,m

{ZF (1, l) +QG(1,m)− w(l +m)}+ δ [q(0)−Q] , (13)

and the function q(a) must solve

ρq(a) = max
l,m

Ze−θaF (1, l) + q(a)G(1,m)− w(l +m) + Dq(a). (14)

This implies that frontier blueprints are replicated at a rate G(1,M), where M attains

the maximum in (13). Blueprints behind the frontier will be replicated at slower rates,

if at all. If the marginal product D2F (1, 0) is finite, then there will be a finite age A,

measured since the time a blueprint’s productivity stopped growing, at which a blueprint

becomes obsolete. For example, if F (1, l) = min{1, l} then the age of obsolescence is
A = ln(Z/w)/θ.

Suppose that D2F (1, 0) is indeed finite and that the blueprints that can be created

by entrepreneurs are so far behind the frontier as to make them obsolete. Then all new

blueprints are produced from the existing stock of blueprints. Along a balanced growth

path, G(1,M) = η + δ, so that the population of frontier blueprints grows at the rate

η. Since M is a function only of wages, this equilibrium condition determines the level
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of wages. Given the replication rates implied by (14), it is not difficult to calculate the

productivity distribution of blueprints behind the frontier. The equilibrium number of

blueprints then follows from clearing the labor market using the employment decision

rules implied by (13)-(14).

3.5.2 Endogenous Growth

It is easy to turn this into a model of endogenous growth by letting owners of improvable

blueprints employ u units of labor per blueprint to improve the productivity of individual

blueprints at a rate θ = R(1, u), where R is a constant-returns-to-scale production

function. Blueprints cease to be improvable at a rate δ. As in Boldrin and Levine [2002],

a blueprint of a particular productivity level is an input in producing a blueprint of a

higher quality level. The technology exhibits constant returns to scale. The incentives

to improve blueprints are the same for all blueprints at the frontier that can still be

improved, and so all frontier blueprints will be improved at a common rate. This will

also be the growth rate of wages and per-capita consumption in the economy. Aggregate

growth is driven entirely by the incentives of owners of frontier blueprints to improve

the quality of their blueprints.

The spin-off device of Chatterjee and Rossi-Hansberg [2007] can now be used to

obtain a firm size distribution with the Pareto-like tail observed in the data. As above,

let a firm be a collection of blueprints produced from a common spin-off blueprint. A

frontier firm generates spin-offs at the rate (1−α)G(1,M). Suppose all blueprints within
a firm stop growing in productivity at the same time. Then employment at firms with

frontier blueprints grows at the average rate αG(1,M), and the age distribution of firms

with frontier blueprints will have a density (η + δ)e−(η+δ)a. The size distribution of all
firms at the frontier is again a Yule distribution, with a tail index ζ = 1/α. Since firms

that can no longer keep up with the frontier exit in finite time, frontier firms dominate

the right tail of the size distribution. In this economy, large firms are firms that have

been at the frontier of productivity growth for a long time.

3.6 Multiproduct Firms

It has been assumed up to now that every firm produces the same good for a competitive

market. Different blueprints describe, for example, different production lines, plants or

stores.

Alternatively, Klette and Kortum [2004] consider an economy, based on the quality-

ladder model of Grossman and Helpman [1991], in which firm size is a reflection of
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the number of different products a firm sells. Recall that in Grossman and Helpman

[1991] there is a unit measure of distinct commodities at every point in time. There is a

constant population of consumers who have logarithmic preferences. Potential producers

in a given market each own a blueprint that describes a linear labor-only technology for

producing at a certain level of quality. The producer with the highest quality in a given

market takes the whole market by setting a price that reduces the potential profits of the

producer with the next highest quality to zero. Entrepreneurs can use labor to create a

blueprint with a discrete multiplicative quality improvement over that of the incumbent,

at some Poisson rate. Upon the arrival of an improved blueprint, the owner of the new

blueprint takes over the market. The combination of an evenly spaced quality ladder (in

logs) and logarithmic utility implies that profits in a particular market are independent

of quality.

Klette and Kortum [2004] modify this economy by allowing an incumbent in one

market to combine m units of labor with the incumbent’s blueprint for that market to

generate a blueprint for a randomly selected alternative market, at some Poisson rate

G(1,m). Just as with blueprints created by entrepreneurs, the quality of the blueprint

is a discrete multiplicative improvement over the one being used in that market. A

firm is a collection of blueprints for different markets, and firm size can be measured

by the number of markets n ∈ N in which it operates. Along a balanced growth path
μ = G(1,m) for all incumbent producers, and there will be some positive flow ν of

markets taken over by entrepreneurs. Since there is a unit measure of markets, this

implies that incumbents lose markets at a rate λ = μ + ν. Let pn be the stationary

distribution of firm size. Requiring the flows in and out of a state n to add up to zero

gives 0 = λ2p2 − (μ + λ)p1 + ν and 0 = μ(n − 1)pn−1 + λ(n + 1)pn+1 − (μ + λ)npn for

all n+1 ∈ N. This can be written as (n+1)pn+1− npn = (μ/λ)[npn− (n− 1)pn−1] and
then one can use npn = − ∞

k=n[(k + 1)pk+1 − kpk] to conclude that

pn ∝ 1

n

μ

λ

n

.

The problem with this distribution is that its right tail is even thinner than that of a

geometric distribution. It behaves like (μ/λ)n instead of n−ζ for some ζ. The underlying
reason is that firms in this economy cannot grow on average: the number of markets is

fixed and positive entry means that the average incumbent has to lose markets.

Random exit can save the day. If firms exit from all their markets at some positive

rate δ, then λ = μ− δ + ν and hence μ− λ = δ − ν will be positive if δ is large enough

relative to the rate at which entrepreneurs take over markets. Firms can grow conditional
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on survival, and the size distribution will then have a tail index ζ = δ/(μ−λ). As noted

before, a difficulty with this solution is that there will be a lot of exit of large firms.

An alternative is to assume that the productivity of a firm’s replication technology is

high for new firms and drops to a lower level following some exponentially distributed

waiting time with mean 1/δ.

In the monopolistic competition version of Luttmer [2008], distinct blueprints also

describe new products that can be produced using a linear labor-only technology. But

no two products in the economy are perfect substitutes. Preferences are as in Dixit

and Stiglitz [1977] and the number of goods can grow over time. Because of this, new

products created by one firm do not imply the elimination of a product by another

firm. When there is population growth at a rate η, the total number of products in the

economy will grow at the same rate η along a balanced growth path. Hence positive

firm growth and positive entry can go together, resulting in the tail index ζ = η/(μ−λ)

reported above.8

3.7 Networks, Search and Matching

Replication of organization capital across distinct locations is a natural interpretation

of firm growth. In the models considered so far, the only link between different units of

the firm comes at the investment stage: existing units can be used to create more units.

Removing a particular unit of the firm has no effect on how the others function. This

is very different from viewing a large firm as an integrated network. Other parts of a

hub-and-spoke airline will be affected when one of its hubs goes down. The model of

WalMart in Holmes [2009] has an integrated distribution network at its core. It is quite

likely that these types of firms are heavily represented among the largest firms we see

in the data.

The accumulation of new “blueprints” need not be the result of firm investment.

An important and complementary alternative is product or labor market search. If

consumers choose to purchase from suppliers not by randomly sampling firms but by

randomly sampling other consumers and following their example (Steindl [1965]), then a

firm will gain customers in proportion to how many customers it already has. Similarly,

if workers find jobs by contacting other workers (Rees [1966], Granovetter [1974], Bur-

dett and Vishwanath [1988]), then employers will find new employees in proportion to

how many workers they already have. This is known as preferential attachment in the

8Bernard, Redding and Schott [2006] present detailed evidence on the importance of turnover in the
products produced by US manufacturing firms.
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literature on network formation. Gibrat’s law is a natural outcome and positive entry

will produce a Yule-type distribution (Luttmer [2006]). The extensive literature on this

topic is presented in Jackson [2008].

3.8 Growth Rate Variances and Aggregate Fluctuations

The independent and synchronous replication examples have very different implications

for the variance of firm growth. In the case of the Yule process, a firm of size nt expands

to size nt+1 with a probability approximately equal to μnt∆ over a small period of time

∆. Therefore Et[(nt+∆ − nt)/nt]/∆→ μ and vart[(nt+∆ − nt)/nt]/∆→ μ/nt as ∆ goes

to zero. Firm growth rates satisfy Gibrat’s law in a weak sense: only the mean growth

rate is independent of size. The realized growth rate of a firm of size n is, roughly, the

sample average of nt independent and identically distributed random variables. Such a

sample average has a variance that behaves like 1/nt.9

In the case of synchronized replication, a firm of size nt expands to size 2nt with

a probability approximately equal to μ∆ over a small period of time ∆. Therefore

Et[(nt+∆ − nt)/nt]/∆ → μ and vart[(nt+∆ − nt)/nt]/∆ → μ as ∆ goes to zero. Since

replication events affect the firm as a whole, the variance of the growth rate of the firm

is also independent of firm size, just as it is in the Brownian example.

The data seem to be somewhere in between these two extremes. Hymer and Pashigian

[1962] long ago noted that the standard deviation of firm growth seems to decline with

size but not as fast as 1/
√
n. More recently, Stanley et al. [1996] report a standard

deviation that behaves like 1/n1/6 for Compustat employment data. Davis et al. [2006]

study growth rate variances over time for both Compustat and Census data. For the

year 2000, they report a Compustat sample of only about 8,500 employer firms with an

average employment of around 5,300 employees, whereas their Census data set has about

4.7 million firms with an average employment of 18 employees. The respective growth

rate standard deviations for 2000 are about .25 and .4 (Davis et al. [2006] Figure 6). In

the context of the simple examples given here, the randomness that affects replication

must be neither completely dependent nor fully independent across blueprints. More

generally, growth rate shocks may occur at different levels of aggregation within the firm.

Interesting suggestions for models that can account for this can be found in Stanley et

al. [1996] and Sutton [2002].

9Feller [1951] pointed out that certain branching processes, such as the Yule process, can be approx-
imated for large nt by the diffusion dnt = μntdt + σ

√
ntdWt, which implies the growth rate variance

σ2/nt.
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As pointed out by Gabaix [2009], the rate at which growth rate variances decline

with firm size has implications for aggregate fluctuations when one moves away from

the abstraction that there is a continuum of firms. To illustrate, ignore the fact that

labor supply is completely inelastic in the formal model presented here. In the example

of independent replication across blueprints, firm boundaries do not affect aggregate

outcomes, and the rate at which a collection of Nt blueprints grows has a variance that

behaves like 1/Nt. For the whole economy, Nt will be very large and the aggregate growth

rate will have a negligible variance. But in the case of synchronous replication, a firm

j with nj,t blueprints will have a growth rate variance of vart [(nj,t+∆ − nj,t)/nj,t] ≈ μ∆,

and hence the number of blueprints in a collection of Jt independent firms grows at a

rate with a variance

vart

Jt
j=1
(nj,t+∆ − nj,t)
Jt
j=1
nj,t

≈ μ∆
Jt

j=1

nj,t
Jt
j=1
nj,t

2

.

The coefficient multiplying μ∆ is the Herfindahl index for {nj,t}Jtj=1. Given the distribu-
tion of log size (12), the mean of n = 2s is 1/(1−μ/η) and this is well defined and finite

as long as there is entry. The mean of n2 = 22s is 1/(1− 3μ/η) if η/μ > 3 and infinite
otherwise. This corresponds to a tail index ζ = log2(1 + η/μ) > 2. Thus for ζ > 2 the

Herfindahl index behaves like 1/Jt, and this will be very small since the number of firms

is large. But if ζ ∈ (1, 2), then the average of {n2j,t}Jtj=1 does not converge as Jt becomes
large and the Herfindahl index will not behave like 1/Jt. Gabaix [2009] shows that the

variance of aggregate growth behaves like 1/J2(1−1/ζ)t for ζ ∈ (1, 2] and 1/(2 ln(Jt)) in
the ζ ↓ 1 limit. The data support ζ close to 1, and for 6 million firms, 1/Jt ≈ 1.67×10−7
while 1/(2 ln(Jt)) ≈ .032.10

4. H P

Replication is a powerful and natural logic that can explain exponential growth in orga-

nization capital, and hence Gibrat’s law. A similar logic is far from clear when it comes

to productivity growth. As Solow [2005, p.10] notes in the context of aggregate growth,

exponential growth “ought to require much more convincing justification than it gets

in the standard models of endogenous technological change or accumulation of human

capital.” Special functional forms such as the Cobb-Douglas production function (as

10In Durlauf [1993] and Conley and Dupor [2003] aggregate fluctuations are affected by sources of
correlation that have nothing to do with firm boundaries.
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in Lucas [1978]) or the constant-elasticity-of-substitution utility function also play an

unfortunate but central role in deriving Gibrat’s law.11

The heterogeneous productivity economies surveyed in this section are based on the

Dixit-Stiglitz model of differentiated commodities produced by monopolistic competi-

tors, as in Luttmer [2007]. One advantage of this formulation is that it allows for shifts

in tastes across differentiated commodities to play a role in accounting for heterogeneity

across firms. But many of the observable implications also apply to models with firms

that produce for a competitive output market using a Cobb-Douglas technology with a

firm-specific fixed factor. Recent examples are Atkeson and Kehoe [2005] and Luttmer

[2009].

As before, flow utility is a logarithmic function of composite consumption, and dy-

nastic consumers discount utility flows at the rate ρ. The population of consumers in

the economy is Ht = Heηt and everyone has one unit of effort per unit of time. The

population growth rate η is non-negative.

4.1 Product Market Equilibrium

Every period, there are many differentiated commodities and preferences are as in Dixit

and Stiglitz [1977]. The type of a commodity is a state variable z that can be interpreted

as quality. The measure of commodities with a quality level at or below z is At[z] at

time t. The technology and market structure will be such that all commodities of the

same quality z trade at the same price pt[z]. As a result, all commodities of quality

level z are consumed at the same rate, denoted by ct[z]. Aggregate consumption of the

composite good is

Ct = (zct[z])
1−1/γ dAt[z]

1/(1−1/γ)
,

where γ > 1 is the elasticity of substitution. Cost minimization gives the familiar iso-

elastic demand curves

zct[z] =
pt[z]/z

Pt

−γ
Ct,

where Pt is the CES price index Pt = (pt[z]/z)
1−γ dAt[z]

1/(1−γ)
.

All commodities are produced by monopolist producers using the labor-only linear

technology yt[z] = lt[z]. Let wt be the wage in units of final output. Monopolist produc-

11Houthakker [1955-1956] shows how the Cobb-Douglas production function can arise from a Leontief
technology and Pareto productivities. Anderson, de Palma and Thisse [1992] show how CES utility can
be derived from Fréchet taste parameters. Exactly how this might fit together with the size distribution
of firms, or perhaps the distribution of consumer wealth, remains an open question.
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ers set pt[z] equal to 1/(1 − 1/γ) times the marginal cost of commodity z. This yields
pt[z] = Ptwt/(1− 1/γ) and the definition of Pt then implies

wt = (1− 1/γ)N
1

γ−1
t Qt, (15)

where Nt is the number of commodities and Qt measures average quality,

Nt = dAt[z], Qt =
1

Nt
zγ−1dAt[z]

1
γ−1
.

Note that Qt is the CES price index applied to prices 1/z and the probability measure

At[z]/Nt. Using the demand curves, the constant markup over marginal cost, and the

equilibrium real wage, it is easy to see that real revenues for a type-z producer are

(z/Qt)
γ−1Ct/Nt. A fraction 1 − 1/γ of real revenues goes to labor and the remaining

fraction 1/γ to profits. Write vt[z] for profits of a type-z producer. Then

lt[z],
vt[z]

wt
= 1− 1

γ
,
1

γ

z

Qt

γ−1
Ct
wtNt

. (16)

Employment, profits, and revenues all scale with (z/Qt)γ−1. When commodities are
almost perfect substitutes, tiny quality differences lead to large size differences.

Let Lt denote the aggregate amount of labor used to produce differentiated com-

modities. Aggregating (16) over all producers gives wtLt = (1− 1/γ)Ct and then (15)
implies

Ct = N
1

γ−1
t QtLt. (17)

Aggregate consumption increases one for one with average quality and labor, and the

elasticity with respect to the number of goods is (1/γ)/(1− 1/γ).
Everything now depends on how At[z] evolves over time.

4.2 One-World Melitz [2003]

The simplest example one can imagine is a closed-economy and continuous-time version

of Melitz [2003]. In contrast to the initial example of Section 3, labor and entrepreneurial

effort are perfect substitutes in this economy. Anyone can hire λE > 0 units of labor to

generate entry opportunities at a unit Poisson rate. An entry opportunity results in a

draw of a quality level z from a time-invariant distribution of entry qualities. If entry

occurs, this quality level will remain constant, until it drops to zero forever, resulting

in exit. This happens following an exponentially distributed waiting time. In addition,

quality must be “maintained” at a flow cost of λF > 0 units of labor, or else quality
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drops to zero permanently, again resulting in exit. The resulting flow profits vt[z]−wtλF
are determined by (15)-(17).

There is no population growth. Together with the time-invariant entry distribution,

this gives rise to a balanced growth path with no growth. Firm numbers, average quality,

and wages are constant. As a result, profits are constant and entry opportunities result

in actual entry if and only if the quality draw z from the entry distribution is such

that vt[z] − wtλF is positive. The employment size distribution of firms is completely
determined by the quality distribution from which potential entrants draw, truncated at

the lowest z for which profits are non-negative. If the entry productivity distribution is

Pareto with a tail index α, then the employment size distribution of firms will be Pareto

with tail index ζ = α/(γ − 1). This results in well-defined aggregates if and only if,
somehow, α > γ − 1.
In this economy, all size differences are attributed to random draws that happen

right before firms enter. In US data, most new firms are very small, and substantial

size differences appear only over time. This makes calibration difficult. In particular,

estimates of the cost of entry are likely to be biased upward to a significant extent, as

entrepreneurs do not anticipate uncertain growth but expect to become an average firm

right upon entry. Entry amounts to hitting the jackpot in this economy: given that ζ is

close to 1, the average firm will be very large.

4.3 Stochastic Productivity Growth

Consider the following modification of the Melitz [2003] economy. The technology for

generating entry opportunities is the same, but instead of drawing from some time-

invariant quality distribution, anyone with an entry opportunity at time t can start with

a common but time-dependent entry quality Zt = ZeθEt. Following entry at time t,

quality zt,a evolves with firm age a according to

d ln(zt,a) = θIda+ σIdWa, (18)

where {Wa}a≥0 is a Brownian motion that is independent across firms. For now, both
θE and θI are taken as parameters. As before, a fixed cost of λF units of labor is required

to keep the firm alive.

4.3.1 Balanced Growth

We are interested in versions of this economy that have a balanced growth path with a

stationary employment size distribution. Conjecture that Lt/Ht is constant along such a
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balanced growth path, so that constant shares of the labor force are used for producing

differentiated commodities and for paying entry and fixed costs. The employment size

distribution can then only be stationary if Nt/Ht is constant. Since the labor share

wtLt/Ct is constant, it follows that Ct/(wtNt) is constant, and hence a stationary em-

ployment size distribution corresponds to a stationary distribution for z/Qt, by (16). In

particular, Zt/Qt must be constant. Entry and average quality must grow at the same

rate θE. Together with (15), (17), and the fact that the number of firms grows at the

rate η, this implies that wages and per-capita consumption grow at a rate κ given by

κ = θE +
1/γ

1− 1/γ η. (19)

That is, growth is driven by a combination of entry productivity growth and gains

in variety that result from increases in the number of firms. The rate of incumbent

productivity growth θI plays no role in determining the growth rate of this economy.

It remains to determine if there is indeed a stationary size distribution when the

number of firms grows at the rate η and wages and aggregate consumption grow at the

rate κ given in (19).

4.3.2 Exit and Entry Decisions

Given (16), it is convenient to define the state variable

est[z] =
vt[z]

λFwt
=

1

γλF

z

Qt

γ−1
Ct
wtNt

. (20)

This represents variable profits of a type-z firm at time t, measured in units of labor,

relative to the fixed cost of continuing a firm. For entrants, st[Zt] = S is a constant. As

the firm ages, st[zt−a,a] = sa evolves with age according to dsa = μda+ σdWa, where

[μ,σ] = (γ − 1) [θI − θE,σI] . (21)

Using the tools presented in Dixit and Pindyck [1994], one can verify that the optimal

policy is to exit when sa falls below some threshold B < S. The resulting market value

of a firm in state s at time t is wtλFV (s), where V (s) satisfies the Bellman equation

ρV (s) = es − 1 + μDV (s) +
1

2
σ2D2V (s)

for all s ≥ B, together with two boundary conditions: V (B) = 0 and the requirement
that V (s) is bounded above by a multiple of es. This differential equation can be solved
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explicitly. The result is an increasing and convex value function with an asymptote that

is linear in es when s becomes large.

Entry must be such that λE ≥ λFV (S), with equality if entry is positive. Conve-

niently, the function V (·) only depends on the rate parameters ρ, μ, and σ2. Thus,

λE = λFV (S) determines S if entry is positive.

4.3.3 The Stationary Size Distribution

The number of firms in state s is now f(s)Nt, where f(s) is a probability density on

[B,∞). It can be shown that the flow of firms that exit at the barrier B is 1
2
σ2Df(B)Nt.

For the number of firms to grow at the rate η, it must be that the entry rate is ε = η +
1
2
σ2Df(B). The density f satisfies the Kolmogorov forward equation ηf(s) = −μDf(s)+
1
2
σ2D2f(s) for all s ∈ (B,S)∪ (S,∞). The density is continuous at S, but it has a kink
because of entry. The remaining boundary conditions are f(B) = 0 and the requirements

that f must be positive and integrate to 1 on (B,∞). This results in the stationary
density

f(s) =
ζζ∗

ζ + ζ∗
min

e(ζ+ζ∗)(s−B) − 1
eζ∗(S−B) − 1 ,

e(ζ+ζ∗)(S−B) − 1
eζ∗(S−B) − 1 × e−ζ(s−B) (22)

where ζ and ζ∗ are defined in (8).
This is essentially the same result as (7), except that the support of (22) has a finite

lower bound B, whereas the s = ln(n) version of (7) would have support (−∞,∞).
In fact, the same distribution would arise here if there were no fixed cost. The two

distributions are the same conditional on s ≥ S. The difference only shows up below
S, and S must be small because entering firms are small. Thus differences between (7)

and (22) only appear for very small firms. The real payoff of the current formulation is

that it has a better prediction about where most of the exit we see in the data should

be observed: at the very low end of the distribution.

As in (7) the condition for es, and thus firm employment, to have a finite mean is

ζ > 1, or equivalently, μ+ 1
2
σ2 < η. Since firm employment is lt[z] ∝ est[z], this simply

says that the mean employment growth rate of incumbent firms not at the exit barrier is

less than the population growth rate. Incumbent productivity cannot grow too fast. In

contrast to (7), the difficulty is now that there is no equilibrium condition that ensures

this will be the case. Furthermore, there is no explanation for why ζ is close to 1 in the

data.
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4.3.4 No Fixed Costs

If there are no fixed costs, a balanced growth path exists even if μ + 1
2
σ2 ≥ η. In that

case, the number of firms is whatever it is at the initial date, Lt = Ht, and wages and

per-capita consumption grow at the rate

θI +
1

2
(γ − 1)σ2I ≥ θE +

1/γ

1− 1/γ η.

The left-hand side is just the growth rate of Qt when incumbent firms never exit and

there is no entry, and the right-hand side is the growth rate that arises when there is

non-trivial entry along the balanced growth path. Multiplying both sides by γ − 1 and
using the definitions (21) of μ and σ2 shows that this inequality is just μ + 1

2
σ2 ≥ η.

In this economy, wages are driven up by rapid productivity growth among incumbents,

and entry productivity cannot keep up. Aggregate growth is now entirely determined

by how fast incumbents grow.

Although there is a balanced growth path, the size distribution is no longer stationary

but spreads out forever. If all firms happen to be the same at the initial date, then the

distribution of log employment is simply normal with a mean and variance that are

linear in time. The employment size distribution of U.S. firms is certainly very different

now from what it was a century or two ago, and this type of spreading out may in fact

account for what happened during the early part of the twentieth century. But this

steady spreading out is hard to reconcile with data for recent decades.12

4.3.5 Trade

Firms in the economy just described pay an entry cost once and can then sell to all

consumers. One can imagine there are geographically distinct markets, and that entry

into each requires a market-specific entry cost. Irarrazabal and Opromolla [2008] do this

in a two-country world. In their economy, firms can enter the domestic market at one

cost and pay another cost to enter the foreign market. As usual, shipping to the foreign

market is also subject to iceberg transportation cost and labor markets are distinct.

Firm-specific productivity keeps changing, and as a result some exporters will not be

12Despite its counterfactual implications, the economy without fixed costs has some distinct advan-
tages in terms of tractability, resulting from the fact that Qt suffices to determine aggregate dynamics.

The economy is isomorphic to a durable goods economy in which durable goods are produced using
laborHt−Lt and (1−1/γ) ln(Lt) is added to flow utility. The dynamics can be completely characterized
in a simple phase diagram.
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selling as much in the domestic market as other firms that never entered the foreign

markets. Furthermore, their exports may be small and not enough to recover the cost

of setting up the export operation. This is what is seen in the data and could not occur

in Melitz [2003].13

4.4 The Managerial Productivity Interpretation

Up to now, the quality variable z has been an attribute of a firm. Anything produced

by the firm has quality z, no matter who is hired to do the work. An alternative is to

assume the quality variable z is an attribute of the manager who runs the firm, as in

Lucas [1978]. An entrepreneur can use λE units of labor to create an entry opportunity.

When the entry opportunity arises, the entrepreneur becomes the manager of the firm.

As long as this manager runs the firm, quality evolves according to (18). A manager

cannot be supplying labor on the side, and quality drops to zero if the manager decides

to quit. The manager’s outside opportunity remains to work at the wage wt. In this

economy, λF = 1 and the value of being a manager is simply wt(V (s) + 1/ρ) when the

firm is in state s at time t. The manager shuts down the firm and becomes a worker

again when this value falls below wt/ρ, which is exactly when s reaches B.

An obvious difficulty with this very simple story is that we do observe turnover in

top management, and most larger firms do not break up when their CEO retires. But

the example serves to emphasize that V (s) need not be the market value of a firm. The

quality z could be due to a manager or team of managers who are in control of the

firm. Interesting issues arise when one asks to what extent z can be transferred from

one manager to the next.

One can take this a step further by taking z to be a composite of firm and managerial

attributes. Holmes and Schmitz [1995] take this approach in their analysis of managerial

turnover at small businesses. Gabaix and Landier [2008] and Tervio [2008] describe a

competitive assignment model, in the tradition of Rosen [1982] and Sattinger [1993], in

which there is heterogeneity in both firm and managerial attributes. The quantitative

implications of fully dynamic versions of these models remain to be investigated.

4.5 Endogenizing Incumbent Productivity Growth

In the economy described so far, aggregate growth does not depend on how incumbent

productivity grows when there is a balanced growth path with a stationary size distrib-

13Arkolakis [2006] explains the existence of small exporters by introducing a marketing cost that
exhibits increasing marginal costs in the number of consumers reached.
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ution. But the level of the balanced growth path certainly does. This is one reason to

open the black box that produces the zt,a given in (18).

In a two-country version of the above economy, Atkeson and Burstein [2009] make θI
a choice variable of the firm. Their main assumption is that the cost, in units of labor, of

choosing a particular growth rate θI is equal to zγ−1 times an increasing convex function
of θI. Because vt[z]/wt ∝ zγ−1, the assumption that costs scale with zγ−1 is critical
to ensure that Gibrat’s law holds for large z. The same proportionality arises in the

organization capital examples of Section 3, but the constant-returns-to-scale justification

given there is no longer available to motivate the assumption of Atkeson and Burstein

[2009].

To provide a motivation for this way of accounting for Gibrat’s Law, suppose the

fixed cost λF includes compensation for a manager who has one unit of effort per unit of

time that can be allocated to overseeing current production and improving productivity.

Productivity grows at a rate θI = g(x) when the manager uses x units of effort to

improve productivity. Current productivity is z×(h(y))1/(γ−1) instead of z if the manager
uses y units of effort to manage current production. So managerial attention has a

multiplicative effect on current quality. Because of the unique position the manager is

in, neither task can be delegated or outsourced, and so x and y have to add up to the

one unit of effort available to the manager. Both g and h are increasing and smooth,

and h is positive. The Bellman equation for the value of the firm is then

ρV (s) = max
x∈[0,1]

esh(1− x)− 1 + (γ − 1)(g(x)− θE)DV (s) +
1

2
σ2D2V (s) ,

and V (B) = 0 at an exit boundaryB. Conjecture that x is approximately independent of

s for large s. Recall that the present value of es received in perpetuity is es/(ρ−[μ+σ2/2])
if the drift of s is a constant μ. For large s, the fixed cost has a minor effect on the

value of the firm, and thus one expects V (s) to behave like es when s is large. In turn,

the optimal allocation of managerial effort satisfies esDh(1 − x) = (γ − 1)Dg(x)DV (s)
if it is interior, and this then confirms the conjecture. In words, an approximate version

of Gibrat’s law arises here because the tasks of overseeing production and improving

productivity must be assigned to the same manager.

4.6 Endogenizing Entry Productivity Growth

The entry quality process Zt has up to now been viewed as an independent source of ideas

that drives aggregate growth when it increases fast enough relative to what incumbent

producers can come up with. Perhaps some fraction of the population is motivated
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simply by the bragging rights of having raised Zt to Zt(1 + θEdt), for the public good.

Perhaps the economy has a sector that replicates and improves blueprints along the lines

of Section 3.5, and entrepreneurs need these blueprints to start new firms.

An alternative is to assume that ideas are generated by incumbent firms and that

Zt is the result of imitation by entrants. This type of spillover goes back to Arrow

[1962] and has played a dominant role in modeling endogenous growth over the past

two decades. Take θI again to be exogenous and interpret the quality process (18) as

the outcome of learning by doing or experimentation by incumbent firms. Firms choose

to stop this process and exit when their quality reaches a level Xt < Zt that solves

st[Xt] = B. Entrants imitate and improve the quality of exiting firms. The entry cost

λE allows entrants to start with a quality e(γ−1)∆Xt for some ∆ > 0. From (20), this

implies S−B = ∆. Along a balanced growth path with positive entry, the cost of entry

must match the value V (S) of newly created firms. Hence

λE = λFV (B +∆). (23)

Since B and V (·) depend only on ρ, μ = (γ − 1)(θE − θI) and σ = (γ − 1)σI, this
equilibrium condition determines θE.

The simple equilibrium condition (23) leads to straightforward comparative statics.

An increase in the equilibrium value of θE lowers the function V (·), as incumbents fall
behind more quickly. It follows that θE is increasing in ∆, as the higher value of entry

implied by an increase in ∆ is off-set in equilibrium by a higher growth rate θE. Greater

improvements by entrants raise the growth rate of the economy. More rapid increases

in incumbent quality also raise the growth rate of the economy: an increase in the

incumbent growth rate θI leads to a one-for-one increase in θE, so that μ and therefore

V (·) remain unchanged. In sharp contrast to what happens when entry productivity is
an independent source of ideas, the equilibrium growth rate of the economy now responds

one for one to changes in incumbent growth.

4.6.1 Ensuring Stationarity

A difficulty is, again, that there may not be a balanced growth path with a stationary size

distribution. The equilibrium value of μ implied by (23) does not guarantee η > μ+σ2/2,

and if this condition is violated then the aggregate demand for labor by firms is infinite.

This turns out to be an artifact of the assumption, maintained so far in Section 4,

that entrepreneurial effort and labor are perfect substitutes. This makes the equilibrium

condition (23) depend only on growth rates, and not on the number of firms. If instead
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the supplies of labor and entrepreneurial effort are not perfectly elastic, as in Section 3,

then the equilibrium conditions become

E(V (B +∆))

L(V (B +∆))
=

η + 1
2
σ2Df(B)

λF 1 + (γ − 1) ∞
B
esf(s)ds

N

H
, (24)

where E(·) and L(·) are the supplies of entrepreneurial effort and labor introduced in
Section 3.1. The first condition ensures that there is enough entry to make the number

of firms grow at the population growth rate. The second is the labor market clearing

condition. The value function V , the exit barrier B and the stationary density f are all

functions of θE, via μ. These two conditions therefore jointly determine θE and N/H,

and the labor market clearing condition forces the mean of es to be finite (Luttmer

[2009].)

4.7 Alternative Entry and Fixed Cost Assumptions

The assumption that some type of labor is essential for starting and continuing firms is

a key ingredient in generating a stationary employment size distribution. The following

two examples illustrate what can happen when one deviates from this assumption.14

4.7.1 Romer [1990]

Famously, Romer [1990] has an important scale effect that arises from the assumption

that the cost of introducing new goods, measured in units of labor, declines with the

existing number of goods. Consider, therefore, what happens when there is no population

growth. The entry cost in Romer [1990] is λE/Nt units of labor, reflecting a positive

externality from having many producers. Balanced growth can arise only if the fixed cost

is taken to be λF/Nt. The growth rate of consumption and wages is κ = θE + ω/(γ − 1)
instead of (19), where ω is the equilibrium growth rate of the number of commodities.

Along a balanced growth path Ct and wt grow at the same rate, and so est[z], as defined

in (20) with λE replaced by λE/Nt, continues to be proportional to (z/Qt)γ−1. Since
both entry and fixed costs are proportional to 1/Nt, the equilibrium condition with

positive entry is λE = λFV (S), and this determines S as before. The Kolmogorov

forward equation for the size distribution is now ωf(s) = −μDf(s) + 1
2
σ2D2f(s), and

this implies a size distribution (22), but with ζ and ζ∗ now a function of ω instead of η.
The remaining condition for a balanced growth path is now the labor market clearing

14An appendix with detailed calculations for this section can be found at www.luttmer.org.
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condition

H = λE ω +
1

2
σ2Df(B) + λF 1 + (γ − 1)

∞

B

esf(s)ds , (25)

which no longer depends on N because entry and fixed costs are (λF,λE)/Nt. This

equilibrium condition determines the growth rate ω, and the scale effect is apparent

from the fact that this equilibrium condition depends on H. By construction, (25) will

force ω to be such that the mean of es is finite. As in (24), the fact that the growth rate

of the economy is jointly determined with the labor market clearing condition ensures

that the stationary size distribution will have a finite mean. But it is important to note

here what is actually stationary: the state variable st[zt−a,a]. The definition (20) with λF

replaced by λF/Nt tells us that zt−a,a/Qt will be stationary, and then (16) implies that
Ntlt[zt−a,a] is stationary. Since Nt grows at the rate ω, the employment size distribution
cannot be stationary. As the number of firms and goods in the economy grows over

time, while the population is constant, the average firm must shrink at an exponential

rate as the economy moves along its balanced growth path. This does not fit the data.

4.7.2 Atkeson and Burstein [2009]

Atkeson and Burstein [2009] take entry and fixed costs to be proportional to a Cobb-

Douglas composite of labor and final output. To describe what this does, consider the

extreme case in which entry and fixed costs are constant in units of final output. This is

the lab-equipment specification of Rivera-Batiz and Romer [1991]. Interpret λE and λF

to be the cost parameters in units of final output and define est[z] = vt[z]/λE instead of

est[z] = vt[z]/(λFwt). Conjecture that there is a balanced growth path with the number

of firms growing at some rate ω. With firms exiting at a constant exit barrier B, this

implies an entry rate ε = ω + 1
2
σ2Df(B). The aggregate resource constraint is then

Ct + (λEε+ λF)Nt = N
1

γ−1
t QtHt,

instead of (17). Balanced growth requires that Ct and Nt grow at the common rate ω,

and then the right-hand side of this resource constraint implies ω = θE+ η+ ω/(γ − 1).
Provided γ 9= 2, this yields

ω =
θE + η

1− 1/γ
1−1/γ

.

It is easy to see that the calculations in Sections 4.3.2 and 4.3.3 continue to apply, with η

replaced by ω. In particular, the modified definition of st[z] implies that the distribution
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of zt−a,a/Qt is stationary, and the mean of est[zt−a,a] will be finite if μ + 1
2
σ2 < ω. Per-

capita consumption and wages grow at the rate κ = ω − η. That is, growth manifests

itself entirely in the difference between the growth rate of the number of firms and the

population growth rate. If γ > 2, this is positive if θE + η is positive, and thus average

firm employment must decrease exponentially over time. The firm employment size

distribution cannot be stationary. In Atkeson and Burstein [2009], these complications

do not come to the fore because θE and η are both assumed to be zero, and hence ω = 0

if γ > 2. In the knife-edge case of γ = 2, aggregate output simplifies to NtQtHt and

there is a balanced growth path if θE = η = 0. The resulting economy is an AK economy

and if entry costs are not too high, the number of firms will grow at some positive rate

ω. The employment size distribution must again be non-stationary.

5. C R

Firms can be large for many reasons. They can be highly productive and face only

weak decreasing returns to scale, or produce a variety that is a close substitute for what

others can produce. They can be marginally more productive than other firms and have

had enough time to grow and exploit this advantage. Their managers may be highly

skilled and therefore control larger teams of employees or larger hierarchies. A better

account of the quantitative importance of each of these interpretations is needed. Such

an account can tell us more about what drives aggregate productivity growth. More

generally, it can serve as a backbone for attempts to improve our understanding of the

aggregate economy. Why does unemployment take such a long time to come down

following a recession? Perhaps some of the work discussed here can provide a basis for

better models of how new and existing firms create jobs.

A common thread in the models surveyed in this paper is the importance of selection

and reallocation as a mechanism for getting the economy to grow. Blueprints that

can no longer be improved fall behind and are discarded, while frontier blueprints are

improved and replicated rapidly. Firms that achieve few productivity improvements are

forced to exit and are replaced by entrants that can do better. Selection can operate at

many levels, ranging from the level of individual employees to that of firms as a whole.

Trial and error combined with selection is a mechanism that can be helped by foresight

but does not require it, and the large gross flows we see at all levels indicates that

getting productivity improvements right is difficult. The empirical work of Restuccia

and Rogerson [2008] and Hsieh and Klenow [2009] suggests that impediments to this

reallocation process can have large effects on aggregate output.
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