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This article studies the pricing of options in an extended Black Scholes economy in

which the underlying asset is not perfectly liquid. The resulting liquidity risk is

modeled as a stochastic supply curve, with the transaction price being a function of

the trade size. Consistent with the market microstructure literature, the supply curve

is upward sloping with purchases executed at higher prices and sales at lower prices.

Optimal discrete time hedging strategies are then derived. Empirical evidence reveals

a significant liquidity cost intrinsic to every option.

Risk management is concerned with controlling three financial risks:

market risk, credit risk and liquidity risk.1 Starting with the Black

Scholes–Merton option pricing formula, both market and credit risk
have been successfully modeled with Duffie (1996) and Bielecki and

Rutkowski (2002) offering excellent summaries of these literatures. In

contrast, our understanding of liquidity risk is still preliminary.

This article defines liquidity risk as the increased variability in realized

returns from forming a replicating portfolio or implementing a hedging
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strategy because of the price impact of random transactions. In particu-

lar, the corresponding price impacts for the series of transactions required

to hedge an option are stochastic since they depend on the evolution of

the stock price. Consequently, the liquidity cost associated with replicat-

ing an option is random. This liquidity cost is the manifestation of the

liquidity risk inherent in the hedging strategy’s performance.2

The approach in Çetin, Jarrow, and Protter (2004) hypothesizes the

existence of a stochastic supply curve for a security’s price as a function of
order flow.3 Specifically, a second argument incorporates the size (num-

ber of shares) and direction (buy versus sell) of a transaction to determine

the price at which the trade is executed. For a given supply curve, traders

act as price takers. The greater an asset’s liquidity, the more horizontal its

supply curve. In the context of continuous trading, they characterize

necessary and sufficient conditions on the supply curve’s evolution to

ensure there are no arbitrage opportunities in the economy. Furthermore,

conditions for an approximately complete market are also provided.
In the most general setting with unrestricted predictable trading stra-

tegies, three primary conclusions regarding liquidity risk are available.

First, all liquidity costs are avoidable when (approximately) replicating a

derivative’s payoff using continuous trading strategies of finite variation.

Second, as a consequence of the previous statement, the value of a

derivative security is identical to its price in the classical theory which

assumes markets are perfectly liquid. Third, there are no implied bid-ask

option spreads that are attributable to illiquidities in the underlying asset.
It is important to emphasize that these conclusions assume continuous

trading of arbitrarily small quantities.

However, not all predictable trading strategies are possible to implement

in practice. In particular, one cannot trade continuously with arbitrarily

small quantities. To accommodate these limitations, we define discrete

trading strategies as those simple trading strategies where the minimum

time between successive trades is greater than a given constant d > 0.

Although one may trade at any point in time, subsequent trades occur
after at least d time units have elapsed.4 This situation is distinct from the

classical approach in which ‘‘discrete’’ trading strategies are not constrained

to have a positive time step between trades, enabling them to approximate

any predictable trading strategy, with the cost of approximately replicating

2 This notion of liquidity risk is valid even if the cost per transaction is stable over time since the sign and
size of transactions generated by the hedge strategy remain functions of the random stock price.

3 Chen, Stanzl, and Watanabe (2001) examined the impact of illiquidity on the price of subsequent
transactions but not the price impact of trades within the context of a coherent mathematical model.
By means of a statistical analysis, Lillo, Farmer and, Mantegna (2002) also constructed a supply curve
without a mathematical model.

4 These trading strategies have been previously studied by Cheridito (2003) in the context of fractional
Brownian motions.
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a contingent claim given in Duffie and Protter (1988). In contrast, by

imposing a minimum time between trades, the classical theory is no longer

valid. Specifically, one cannot approximate (arbitrarily closely) a deriva-

tive’s payoff even in the absence of illiquidity. Furthermore, with illiquid-

ity, we have an additional complication as the liquidity costs do not

converge to zero even for highly liquid assets. Consequently, option bid-

ask spreads are partially attributable to illiquidities present in the under-

lying asset, along with the number of options being hedged.
The purpose of this article is to investigate the pricing of derivatives

using discrete trading strategies when the underlying asset is not assumed

to be perfectly liquid. Specifically, we study the pricing and hedging of a

European call option on a stock in an extended Black Scholes economy

with illiquidity. In this economy, transaction prices reflect the price impact

of order flow.

After calibrating the model’s parameters to market data, we investigate

optimal hedging strategies in the context of these illiquidities. The optimal
hedging strategy results from a dynamic program which super-replicates the

option payoffs. Two non-optimal discrete time trading strategies based on

the Black Scholes hedge are implemented for comparison. In particular, we

implement Black Scholes hedges at random as well as fixed time points.

These Black Scholes hedging strategies are studied for two reasons. First,

they are used in practice (Jarrow and Turnbull, 2004) given the infeasibility

of continuous hedging (due to market frictions). Therefore, it is instructive

to investigate whether these strategies are nearly optimal in our setting.
Second, because of their popularity in practice, they provide a useful

standard for comparison for understanding the optimal hedging strategy.

Not surprising, our empirical results confirm the non-optimality of the

Black Scholes hedging strategies. Furthermore, our empirical results

demonstrate that even under the optimal hedging strategy, liquidity costs

comprise a significant component of an option’s price.

It is important to relate our article to the literature on transactions

costs, including Leland (1985), Boyle and Vorst (1992), as well as
Edirisinghe, Naik, and Uppal (1993). Although transaction costs also

increase option prices, liquidity risk is endogenous to the trading process.

Moreover, liquidity risk is characterized by a continuous supply curve

that is differentiable at the origin, implying a well-defined limit exists,

even for continuous trading. Çetin (2003) contains further details regard-

ing the distinction between illiquidity and transaction costs.

Our proposed framework is also similar to the feedback effects on stock

prices generated by option hedging demands as well as the literature on
large traders. These issues are studied in Schonbucher and Wilmott

(2000), Platen and Schweizer (1998), and Frey (1998). However, in this

context, it is important to emphasize that our specification is a ‘‘reduced-

form’’ illiquidity model since the supply curve is independent of
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transactions by other agents. Furthermore, our framework focuses on

temporary price impacts.5 Permanent price impacts associated with very

large transactions or a sequence of trades with the same direction are not

typical properties of hedging strategies.

The remainder of this article begins with a description of the general

model in the next section, whereas Section 2 introduces the extended

Black Scholes economy. Estimation of the liquidity parameter using a

sample of five NYSE firms is conducted in Section 3. The derivation of
optimal discrete time hedging strategies is the subject of Section 4. For

comparative purposes, two non-optimal discrete time hedging strategies

are also implemented in Section 5. Empirical results follow in Section 6

with Section 7 offering our conclusions.

1. The Model

This section summarizes the relevant portions of Çetin, Jarrow, and Protter

(2004) used in the subsequent analysis. We are given a filtered probability

space [O, F, Ftð Þ0�t�T , P] satisfying the usual conditions, where T is a fixed

time, and P represents the statistical or empirical probability measure for a

stock that pays no dividends. Also traded is a money market account that
accumulates value at the spot rate of interest denoted r.

Let S(t,x) represent the stock price, per share, at time t 2 [0,T ] that a

trader pays/receives for order flow x normalized by the value of a money

market account. A positive order (x > 0) represents a buy, a negative

order (x < 0) signifies a sale, and x ¼ 0 corresponds to the marginal trade.

1.1 Trading strategies and liquidity costs
A trading strategy is summarized as (Xt, Yt : t 2 [0,T ], �), where Xt represents

the trader’s aggregate holding of stock at time t and Yt the aggregate

position in the money market account while � denotes the liquidation

time of the stock in the replicating portfolio. The trading strategy is

subject to the following restrictions6:

(1) X0– � Y0– � 0,

(2) XT ¼ 0 and

(3) X ¼ H1[0,�) for some process H(t,o), where � � T is a stopping

time.7

These restrictions ensure that the trading strategy is liquidated before

time T which ensures that round-trip liquidity costs are incurred. The

stopping time � allows the portfolio to be liquidated before time T.

5 As a consequence, our model is not appropriate for applications involving the liquidation or acquisition
of large positions in the stock relative to the number of outstanding shares.

6 Xt and Yt are predictable and optional processes, respectively.

7 Here, H(t,o) is a predictable process, and � is a predictable (Ft: 0 � t � T) stopping time.
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A self-financing trading strategy (SFTS) generates no cash flows for all

times t 2 (0,T ) after the initial purchase. More formally, a SFTS is

represented as (Xt, Yt : t 2 (0,T ), �), where

(i) Xt is càdlàg with finite quadratic variation ([X,X]T <1),

(ii) Y0 ¼ –X0S(0,X0) and

(iii) For 0 < t � T,

Yt ¼ Y0 þ X0S 0;X0ð Þ þ
ðt
0

Xu�dSðu; 0Þ � XtSðt; 0Þ � Lt; ð1Þ

where Lt is the liquidity cost, defined as

Lt ¼
X

0�u�t

DXu S u;DXuð Þ � Sðu; 0Þ½ � þ
ðt
0

@S

@x
ðu; 0Þd X ;X½ �cu � 0 ð2Þ

with L0– ¼ 0.
The expression X ;X½ �tc denotes the quadratic variation of the contin-

uous component of X at time t (Protter, 2004).

Observe that the liquidity cost consists of two components. The first is

due to discontinuous changes in the share holdings, whereas the second

results from continuous rebalancing. For a continuous trading strategy,

the first term in Equation (2) equals

L0 ¼ X0 S 0;X0ð Þ � Sð0; 0Þ½ �;

even after time zero. If the trading strategy is also of finite variation,

then the second term in Equation (2) is zero, because X ;X½ �tc¼ 0. Thus,

for a trading strategy that is both of continuous and of finite variation,

the entire liquidity cost is due to forming the initial position and mani-

fested in L0. Furthermore, if one chooses a continuous trading strategy of

finite variation with an initial stock position equal to zero (X0 ¼ 0) that
quickly ‘‘approaches’’ the desired level, then the liquidity cost of this

approximating SFTS is also zero. This insight is required to extend the

fundamental theorems of asset pricing.

1.2 Fundamental theorems of asset pricing with illiquidity

As is standard in the literature, an arbitrage opportunity is any SFTS (X, Y, �)

such that PfYt � 0g ¼ 1 and PfYt > 0g ¼ 0. A modified first fundamental

theorem of asset pricing is available with illiquidity. For b � 0, define

�� � SFTSðX ;Y ; �ÞjðX� � sÞt � �� for all t almost surely
� �

:

Pricing Options in an Extended Black Scholes Economy with Illiquidity

497



The modified first fundamental theorem of finance with illiquidity states

that if there exists a probability measure Q � P such that S(�,0) is a Q -local

martingale, then there is no arbitrage for (X, Y, �) 2 Yb for any b.

For pricing derivatives, we assume the existence of such a Q -local

martingale for S(�,0). Next, a market is defined to be approximately

complete if given any contingent claim C, defined as a Q -square integrable

random variable, there exists a sequence of self-financing trading strate-

gies (X n, Y n, � n) such that YT
n! C as n!1 in L2(dQ ).8 This definition

parallels the standard definition of a complete market. The difference is

that the payoff of any contingent claim is only approximately attained.

Given this definition, a modified second fundamental theorem of asset

pricing also holds in this setting. The modified second theorem states that

the existence of a unique probability measure Q � P such that S(�,0)¼ s is

a Q -local martingale implies that the market is approximately complete.

It is perhaps surprising that in an approximately complete market, a

continuous and finite variation trading strategy is always available to
approximate any contingent claim that starts with zero initial holdings

in the underlying stock. Indeed, given any contingent claim C, there exists

a predictable process X such that C ¼ cþ
Ð T

0
X u dsu and a sequence of

SFTS (X n, Y n, � n), where X n is continuous and of finite variation with

the properties X0
n¼ 0;XT

n¼ 0 and Y n
0 ¼ c such that Y n

T ! C in L2(dQ ).

The liquidity cost of this sequence of SFTS equals zero (since the first

trade is of zero magnitude, and the SFTS is continuous and of finite

variation) with the contingent claim’s payoff at time T approximated by

Y n
T ¼ cþ

ðT
0

X n
u dSðu; 0Þ: ð3Þ

Consequently, the arbitrage free value for the contingent claim is its

classical value,

EQ½C�: ð4Þ

This summarizes the three primary conclusions of Çetin, Jarrow, and

Protter (2004) and motivates the extended Black Scholes economy with

illiquidity presented in the next section.

2.2. An Extended Black Scholes Economy

To value a European call option in an extended Black Scholes economy,

we assume that the stock’s supply curve satisfies

8 The space L2(dQ ) is the set of FT– measurable random variables that are square integrable using the
probability measure Q .
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Sðt; xÞ ¼ e�xSðt; 0Þ with � > 0 ð5Þ
where

Sðt; 0Þ � st

ert
¼ s0e�tþ�Wt

ert
; ð6Þ

for constants m and s, with Wt denoting a standard Brownian motion.

Equation (6) states that the marginal stock price S(t,0) follows a geo-
metric Brownian motion, whereas the extended Black Scholes economy’s

supply curve is given in Equation (5). The e�x functional form for the

supply curve is chosen for simplicity and is easily generalized. It is

important to emphasize that the supply curve given in Equation (5) is

stochastic. After a trade is executed, a new supply curve S(t,x) is gener-

ated for subsequent trades.

Under the supply curve in Equation (5), there exists a unique martin-

gale measure Q for S(t,0) as explained in Duffie (1996). Hence, applying
the extended first and second fundamental theorems of asset pricing with

illiquidity, the market is arbitrage-free and approximately complete.

2.1 Pricing a European call option

Consider a European call option on the stock with a strike price K and

maturity T, with the corresponding payoff CT ¼ max[S(T,0) – Ke�rT,0].

Equation (4) implies that the European call value equals

EQ CT½ � ¼ e�rT EQ max sT � K; 0ð Þ½ �

¼ s0N h0ð Þ � Ke�rT N h0 � �
ffiffiffiffi
T
p� �

;
ð7Þ

where N(�) denotes the standard cumulative normal distribution function

whose argument is

ht �
log stð Þ � log K þ rðT � tÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p þ �

2

ffiffiffiffiffiffiffiffiffiffiffiffi
T � t
p

: ð8Þ

In this setting, the Black Scholes hedging strategy Xt ¼ N(ht) is con-

tinuous but not of finite variation. Therefore, although the Black Scholes

formula remains valid given liquidity costs, the standard hedging strategy

does not attain this value. Indeed, Equation (2) implies the Black Scholes
hedging strategy results in a positive liquidity cost9

9 Both LT and Y n
T are already normalized by the value of the money market account.
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LT ¼ X0 S 0;X0ð Þ � S 0; 0ð Þð Þ þ
ðT
0

� N 0 huð Þð Þ2su

T � u
du; ð9Þ

as proved in Appendix A.
An example of SFTS that is of continuous and finite variation, yet,

approximates the call option’s payoff is

X n
t ¼

n1 1
n
;T�1

n½ ÞðtÞ
Ðt

t�1
nð Þ

+

N h uð Þð Þdu; if 0 � t � T � 1
n

n TX n

T�1
nð Þ � tX n

T�1
nð Þ

� �
; if T � 1

n
� t � T :

8>>><
>>>:

ð10Þ

This strategy starts with X0
n¼ 0 and quickly approaches an ‘‘average’’ of

the Black Scholes hedge at time t. Then, just before maturity, liquidation

transfers the accumulated value into the money market account. The

above trading strategy is seen to have zero liquidity costs with

Y n
T ¼ EQ CT½ � þ

ðT
0

X n
u�dSðu; 0Þ ! CT ¼ max SðT ; 0Þ � Ke�rT ; 0

	 

ð11Þ

in L2(dQ ). To summarize, the above trading strategy is a ‘‘smoothed’’

version of the Black Scholes hedging strategy that eliminates liquidity

risk.10

2.2 Discrete hedging strategies

As previously noted, the continuous hedging strategy in Equation (10)

cannot be implemented in practice. A class of feasible trading strategies

are the discrete trading strategies defined as any simple SFTS Xt, where

Xt 2 x�0
1 �0ð Þ þ

XN

j¼1

x�j
1 �j�1;�jð �

1: �j are F stopping times for each j;
2:x�j

is inF �j�1
for each j ðpredictableÞ;

3: �0� 0 and �j >�j�1þ� for a fixed �> 0:

������
8<
:

9=
;

These trading strategies are discontinuous, because once a trade is exe-

cuted, the subsequent trade is separated by a minimum of d > 0 time

units, as in Cheridito (2003). For the remainder of the article, lower case

values x and y denote discrete trading strategies.

10 An integral of a continuous function with respect to the Lebesgue measure is of bounded variation and
continuous.
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By restricting the class of trading strategies, we retain an arbitrage-free

environment although the minimum distance d between trades prevents

the market from being approximately complete. In an incomplete (not

approximately complete market), the cost of replicating an option

depends on the chosen trading strategy.

For any discrete trading strategy, the liquidity cost equals

LT ¼
XN

j¼0

x�jþ1
� x�j

� 
S �j; x�jþ1

� x�j

� 
� S �j; 0

� 	 

: ð12Þ

For a discrete trading strategy with xT ¼ 0, the hedging error is given by

CT�YT¼CT� y0þx0Sð0;0Þþ
XN�1

j¼0

x�jþ1
S �jþ1;0
� 

�S �j;0
� 	 
( )

þLT : ð13Þ

Thus, there are two components to this hedging error. The first quantity,

with a sign reversal for ease of reference in later applications,

y0 þ x0Sð0; 0Þ þ
XN�1

j¼0

x�jþ1
S �jþ1; 0
� 

� S �j; 0
� 	 
( )

� CT ; ð14Þ

is the error in replicating the option’s payoff CT and is consequently

referred to as the approximation error. Thus, a positive approximation

error signifies a surplus in the replicating portfolio relative to the liability

of the contingent claim’s payoff, whereas a negative value represents a

deficit. The second component in Equation (13) is the liquidity cost LT

defined in Equation (12).
Furthermore, since a perfect balance between long- and short-option

positions offsets their liabilities and eliminates the need to hedge using the

underlying asset, this article offers a methodology to infer option spreads

conditional on a specified imbalance in the number of long- and short-

option positions (aggregated over strike prices and maturities). As

emphasized repeatedly in the remainder of this article, Equation (12)

implies that liquidity costs increase quadratically with the number of

options being hedged while prices increase at a linear rate. This is best
seen from Equation (16) in the next section. Finally, we focus on replicat-

ing long (hedging short) call positions as they entail the possibility of

negative cash flows at maturity.

To provide realistic illustrations of the impact of liquidity costs and

hedging errors on the option’s price, we first need to calibrate the �
parameter and confirm that the supply curve is upward sloping. This is

the subject of the next section.
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3. Supply Curve Estimation

To investigate the liquidity costs incurred when constructing options with

discrete trading strategies, this section details the estimation of the supply

curve liquidity parameter � using the TAQ database. For illustrative
purposes, we select five well-known companies trading on the NYSE

with varying degrees of liquidity; General Electric (GE), International

Business Machines (IBM), Federal Express (FDX), Reebok (RBK), and

Barnes & Noble (BKS). Our empirical analysis is conducted over a four-

year period with 1011 trading days, from January 3, 1995 to December 31,

1998. These five firms represent a cross-section of stocks with respect to

daily trading volume which have options on the Chicago Board of

Options Exchange (CBOE).11

3.1 Estimation procedure

A simple regression methodology is employed to estimate the liquidity

parameter � in Equation (5). Although the true price S(t,0) is unobser-

vable, this term is eliminated by considering two consecutive intra-day

transactions. Let � i denote the time index with corresponding order flow

x� i
and stock price S(� i,x� i

) for every transaction i¼ 1,...,N in a given day.
Thus, we are led to the following regression specification

ln
S �iþ1; x�iþ1

� 
S �i; x�i
ð Þ

� �
¼ � x�iþ1

� x�i

� 
þ � �iþ1 � �ið Þ þ �e�iþ1;�i

: ð15Þ

The error e�iþ1;�i
equals e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iþ1 � �i
p

with e being distributed N(0,1).

Observe that the left side of Equation (15) is the percentage return
between two consecutive trades, and this expression reduces to a standard

geometric Brownian motion when � is identically zero. Transaction prices

instead of the bid-ask spread are utilized for three reasons. First, trades

may be executed ‘‘inside the spread’’ which implies that quotes potentially

overestimate liquidity costs. Second, the bid-ask spread is a commitment

to a specific volume which may change according to market conditions.

Third, quotes may be ‘‘stale’’ for infrequently traded stocks.

Given a series of transaction prices, the first issue is to sign the trade volume
as either buys or sells. To accomplish this task, the Lee and Ready (1991)

algorithm is employed. Since our analysis concerns the frequent hedging of

options in small quantities, we limit our attention to transaction sizes (abso-

lute value of order flow) that are less than or equal to 10 lots.

11 Subsequent research by Blais and Protter (2005) provides additional support for the linear supply curve
structure given in Equation (15) below for liquid stocks. Our stocks, with options trading on the CBOE,
would fall into this category. For illiquid stocks, the supply curve appears to be piecewise linear but with
stochastic slopes and a jump discontinuity at zero.

The Review of Financial Studies / v 19 n 2 2006

502



Our estimation procedure generates daily estimates for � over the

sample period. Therefore, a total of 1011 regressions are performed for

each of the five firms. The average number of observations per day for

each firm is reported in Table 1.

3.2 Estimation results

Table 1 summarizes the regression results from Equation (15). The ninth

and tenth columns record the number of significant � and m coefficients.
Observe that the estimated � parameters are almost always significantly

positive at the 5% level, in contrast to the m estimates. Thus, much of the

variation in intra-day stock prices is attributable to order flow. Further-

more, the statistically positive � estimates confirms the existence of our

hypothesized upward-sloping supply curve in Equation (5).

However, the � estimates are somewhat ‘‘noisy’’ which suggests that

alternative supply curve formulations may be worth considering, two of

which are explored in the next subsection as robustness tests. Further-
more, it is important to emphasize that the standard errors are only valid

goodness-of-fit measures for an individual day since the estimation pro-

cedure is performed daily.

Figure 1 displays the estimated time series of � parameters over the

sample period for IBM, FDX, and BKS that represent high, medium, and

low liquidity securities, respectively. Figure 2 plots the corresponding

estimates for GE and RBK. As expected, the � estimates for IBM and

GE are lower than those of BKS and RBK, confirming our intuition
regarding differences in their liquidity.

It is important to emphasize that the liquidity cost of a transaction

depends on both � and marginal stock price S(�,0). In particular, for a

small �, a Taylor series expansion of exp � x�jþ1
� x�j

� 	 

in Equation (12)

implies that the terms in the summation are approximately

x�jþ1
�x�j

� 
S �j;0
� 

exp � x�jþ1
�x�j

� 	 

�1

� �
	�S �j;0

� 
x�jþ1
�x�j

� 2
: ð16Þ

Observe the symmetry between purchases and sales as Equation (16)

indicates that the sign of order flow is irrelevant. Furthermore, we find

evidence in Figure 2 that � and the marginal stock price move inversely to
each other. For example, as GEs stock price increases over this sample

period, its � parameter declines. Intuitively, this suggests that market

makers strive to obtain a constant dollar-denominated fee per lot trans-

acted. Overall, the liquidity cost is a function of both the � parameter and

the frictionless stock price S(�,0).

3.3 Robustness tests

As a robustness check of our � estimates, we alter our original estimation
procedure in three ways. The first modification continues with Equation (15)
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Table 1
Summary statistics for the daily parameter estimates of a (in lots) and m generated by the regression model in Equation (15) for each of the five firms

Company
ticker Mean n Parameter 1st percentile Median

99th
percentile Mean

Standard
deviation

5% level
days

5% level
percentage

Stock
price

Volatility
(annual) (%)

GE 1061 �̂ 
 10�4 0.20 0.44 1.63 0.59 0.38 1011 99.99 $75 23.25
SE 
 10�4 0.012 0.050 0.106 0.061 0.038 � �
�̂ 
 10�7 �33.96 �3.62 13.03 �4.34 9.08 24 2.37

IBM 656 �̂ 
 10�4 0.06 0.17 0.43 0.19 0.08 998 98.71 $115 30.93
SE 
 10�4 0.018 0.033 0.094 0.037 0.016 – –
�̂ 
 10�7 �26.22 �2.81 13.76 �3.71 7.93 31 3.07

FDX 249 �̂ 
 10�4 0.15 0.53 1.32 0.56 0.21 971 96.04 $65 28.41
SE 
 10�4 0.051 0.137 0.311 0.143 0.063 � �
�̂ 
 10�7 �13.12 �0.61 10.90 �0.66 4.83 50 4.95

BKS 318 �̂ 
 10�4 0.34 1.18 2.84 1.28 0.50 962 95.15 $35 37.39
SE 
 10�4 0.099 0.263 0.828 0.306 0.163 � �
�̂ 
 10�7 �30.46 �0.73 14.58 �1.41 7.56 46 4.55

RBK 159 �̂ 
 10�4 0.11 0.99 2.50 1.08 5.00 957 94.66 $35 36.22
SE 
 10�4 0.152 0.278 0.684 0.317 0.119 � �
�̂ 
 10�7 �23.26 �2.70 14.24 �3.09 7.01 25 2.47

BKS, Barnes & Noble; FDX, Federal Express; GE, General Electric; IBM, International Business Machines; RBK, Reebok.
The second column records the average number of daily transactions available. Under each of the � summary statistics is their standard error (SE). The ninth and tenth columns
detail the number of days for which the parameter estimates are significant at the 5% level along with the corresponding percentage relative to the 1011-day sample period. The
last two columns record the average stock price and implied volatility of each firm during the sample period.

T
h
e

R
eview

o
f

F
in

a
n
cia

l
S

tu
d
ies

/
v

1
9

n
2

2
0
0
6

5
0

4



but excludes transactions larger then five lots. Although the empirical

evidence in Hausman, Lo, and MacKinlay (1992) suggests decreasing
marginal price impacts, frequent hedging of an option implies small

transactions, and this renders many of the transactions recorded in the

TAQ database irrelevant to our analysis.12 The second and third robust-

ness checks consist of two alternative supply curves with diminishing

marginal price impacts,13

sgnðxÞ
ffiffiffiffiffiffi
jxj

p
ð17Þ

and

sgnðxÞ ln 1þ jxjð Þ: ð18Þ

These two formulations are upward sloping and satisfy the property that
S(�,0) ¼ 0. Furthermore, they only require the estimation of one parameter
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Figure 1
Plot of estimated � parameters each day of sample period from January 3, 1995 to December 31, 1998
based on Equation (15) for International Business Machines (IBM), Federal Express (FDX), and Barnes
& Noble (BKS). The dotted line denotes the average daily stock price of the firm. These three companies
represent high, medium, and low liquidity firms with respect to NYSE stocks that have traded Chicago
Board of Options Exchange (CBOE) options.

12 In reality, there may exist economies of scale for option pricing since replication costs are not linear in the
number of underlying contracts.

13 The function sgn(x) is defined as

1 ifx>0

0 ifx ¼ 0
�1ifx<0

8<
: .
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using the regression procedure in Equation (15). In particular, after

applying a logarithm to the ratio of transaction prices, the exponential

functional form facilitates a simple regression analysis for the calibration

of �. More complicated supply curves involving additional parameters

are left for future research.
The modified marginal price impacts in Equations (17) and (18) are

both calibrated with order flow up to and including 10 lots using the

following two regressions which parallel Equation (15),

ln
S �iþ1; x�iþ1

� 
S �i; x�i
ð Þ

� �
¼ �sgn x�iþ1

� x�i

� 	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x�iþ1
� x�i

�� ��q
þ � �iþ1 � �ið Þ þ � e�iþ1;�i

and

ln
S �iþ1; x�iþ1

� 
S �i; x�i
ð Þ

� �
¼ �sgn x�iþ1

� x�i

� 
ln 1þ x�iþ1

� x�i

�� ��� 
þ � �iþ1 � �ið Þ þ � e�iþ1;�i

:

ð19Þ

The results of our three robustness tests are now summarized.14 The

first robustness test results in the average number of available daily
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Figure 2
Plot of estimated � parameters each day of sample period from January 3, 1995 to December 31, 1998
based on Equation (15) for General Electric (GE) and Reebok (RBK). The dotted line denotes the
average daily stock price of the firm. Note the inverse relationship between � and S(t,0).

14 For brevity, detailed tables containing the results are not reported but available upon request.
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transactions declining from those reported as n in Table 1 to 720, 432,

181, 226, and 122 for GE, IBM, FDX, BKS, and RBK, respectively.

Thus, a loss of information is incurred.

All three robustness tests produce very significant � estimates. Overall,

the � estimates are smallest for Equation (15) with a 10 lot upper bound

(the original procedure) followed by those generated by transactions of

five lots or less. Next in magnitude are the square root estimates from

Equation (17), with the log formulation in Equation (18) producing the
largest � coefficients.

However, the original formulation in Equation (15) produces � esti-

mates with the lowest standard errors. This result is consistent across all

five firms. Thus, our subsequent option pricing investigation is justified in

using the � estimates from Table 1.

To further validate the supply curve formulation of liquidity in Section 1,

we perform an additional experiment whose results are contained in Table 2.

The ‘‘hypotheses’’ on the left side of Table 2 offer the implications of our
upward sloping supply curve when both time (t) and information (o) are

fixed. The price inequalities indicate the ordering of transaction prices

realized in a given sequence of trades. These statements amount to identify-

ing different locations on the supply curve. To approximate this comparative

static in the data, we examine consecutive transactions in which the influence

of m is negligible. Despite the noise introduced by a change in time (and

information), if the upward sloping supply curve formulation is valid, then

we expect the inequalities to hold for the majority of transaction sequences
studied.

Table 2
Summary of order flow and transaction prices

Trade type and hypothesis Company ticker (%)

First
trade (x1)

Second
trade (x2)

Transaction price
hypothesis GE IBM FDX BKS RBK

Sell Buy S(t1,x1)�S(t2,x2) 100.00 100.00 100.00 100.00 100.00
Buy Sell S(t1,x1)�S(t2,x2) 100.00 100.00 100.00 100.00 100.00
Small buy Large buy S(t1,x1)�S(t2,x2) 98.77 98.58 98.46 98.58 99.05
Small sell Large sell S(t1,x1)�S(t2,x2) 98.10 97.99 98.61 98.43 98.95
Large buy Small buy S(t1,x1)�S(t2,x2) 93.60 90.28 80.59 80.53 83.88
Large sell Small sell S(t1,x1)�S(t2,x2) 90.33 87.33 78.87 78.67 81.89

BKS, Barnes & Noble; FDX, Federal Express; GE, General Electric; IBM, International Business
Machines; RBK, Reebok.
Recorded below are the relationships between consecutive transaction prices as a function of order flow.
The first two rows impose no constraints on the magnitude of the transaction. The next four rows have
small (large) trades defined as those less than or equal to (greater than) 10 lots. Note that large trades are
not included in our subsequent estimation procedure for � as these transactions are deemed irrelevant for
the purposes of frequent hedging.
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The results on the right side of Table 2 confirm the validity of our

liquidity model. It is important to emphasize that our model assumes

transitory price impacts, and the comparative static implication assumes

no change in information. Hence, only transactions less than 10 lots are

likely to be consistent with those arising from frequent hedging and

non–information-based trades (with o fixed). These situations are best

reflected in the first two rows of Table 2. The last four rows of Table 2

consider situations in which small buy (sell) orders are subsequent to
large buy (sell) orders. In these four rows, information may not be

constant across the two transactions. Therefore, we expect a decline in

consistency relative to the first two rows. This pattern is observed

although the decline is slight. More importantly, the bottom four

rows in Table 2 continue to support the implications of our liquidity

framework.

3.4 Stochastic liquidity
It is important to emphasize that variability in the � estimates over time

does not imply a misspecified liquidity model. The standard errors of the

� coefficients reported in Table 1 attest to its accuracy. Moreover, a

‘‘stochastic’’ � process is unnecessary if this parameter varies inversely

with the marginal price, implying a roughly constant dollar-denominated

liquiditycostper transaction.15 Figures 3 and 4 offer visual evidence consistent

with this property.

Statistically, with t representing daily estimates, an AutoRegressive (1)
model is applied to the product �(t) � S(t,0)

�ðtÞSðt; 0Þ ¼ �� t� 1ð ÞS t� 1; 0ð Þ þ et ð20Þ

�ðtÞSðt; 0Þ � � t� 1ð ÞS t� 1; 0ð Þ ¼ � � 1ð Þ� t� 1ð ÞS t� 1; 0ð Þ þ et: ð21Þ

We then estimate the b coefficient to investigate whether it is statistically

different from one. If not, then the model,

�ðtÞSðt; 0Þ � � t� 1ð ÞS t� 1; 0ð Þ ¼ et; ð22Þ

cannot be rejected, and variation in the product over time is merely noise.

Several time intervals, such as 30, 90, and 180 days, are examined with
Equation (22) offering similar results. For example, 95% confidence

intervals for the b parameters over the last 90 days of the sample period

are 0.9943 6 0.0293, 0.9856 6 0.0876, 0.9693 6 0.0902, 0.9947 6 0.0811,

15 Dramatic evidence of this property is found around stock splits. Note that � expresses illiquidity in
percentage terms while LT is a dollar-denominated quantity.
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and 0.9744 6 0.0801 for GE, IBM, FDX, BKS, and RBK, respectively.

Consequently, time variation in � is not a serious concern when calibrat-

ing liquidity costs. Over the entire sample, a slight downward bias is

detected with b being statistically less than one. However, this time period

greatly exceeds available equity option maturities.
In our later empirical implementation of the discrete option hedging

strategies, we consider two calculations of the total liquidity cost; the first

using Equation (12) and the second derived from the approximate liquid-

ity cost in Equation (16). In the second instance, we assume that the

�(� j)S(� j, 0) terms are fixed at their initial value �S(0,0). In particular,

we define the approximate liquidity cost as

�LT ¼
XN

j¼0

� �j

� 
S �j ; 0
� 

x�jþ1
� x�j

� 2 � �S 0; 0ð Þ
XN

j¼0

x�jþ1
� x�j

� 2
: ð23Þ
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Figure 3
Plot of the product �(t) � S(t,0) each day of sample period from January 3, 1995 to December 31, 1998
for International Business Machines (IBM), Federal Express (FDX), and Barnes & Noble (BKS). The
value of S(t,0) is the average stock price on a particular date according to transactions in the TAQ
database.
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The economic importance of a time-varying � to option pricing is

examined empirically by comparing the liquidity cost estimates in Equa-

tion (12) versus Equation (23). This comparison is conducted for each of

the three discrete time-trading strategies analyzed, with details contained

in Section 6.

For emphasis, although the estimates of � and S(t,0) appear inversely

related, one cannot estimate � after normalizing the x�iþ1
� x�i

� 
term in

Equation (15) by S(t,0). Indeed, the marginal price S(t,0) is implied from

transaction prices S(t,x) conditional on an estimated � parameter. Speci-

fically, a time series of marginal prices corresponding to transactions with

zero-order flow is unobservable. Instead, only transaction prices in a less

than perfectly liquid market are available. Consequently, inferences

regarding S(t,0) as well as its volatility s (and expected return m) utilize

transaction prices S(t,x). These transaction prices are then ‘‘inverted’’ to

determine marginal prices under an assumed supply curve formulation
along with estimates for its parameters such as �.

Therefore, an estimation procedure which attempts to calibrate �
´
in the

regression formulation
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Figure 4
Plot of the product �(t) � S(t,0) each day of sample period from January 3, 1995 to December 31, 1998 for
General Electric (GE) and Reebok (RBK). The value of S(t,0) is the average stock price on a particular
date according to transactions in the TAQ database.
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ln
S �iþ1; x�iþ1

� 
S �i; x�i
ð Þ

� �
¼ �

0

Sðt; 0Þ x�iþ1
� x�i

� 
þ � �iþ1 � �ið Þ þ � e�iþ1;�i

: ð24Þ

instead of Equation (15) is misspecified.

4. Optimal Discrete Option Hedging Strategies

This section derives optimal discrete time hedging strategies for super-

replicating an option. Super-replication is often invoked in the incomplete

markets literature because of its independence from investor preferences

and probability beliefs.

4.1 Super-replication of options

Our hedging analysis utilizes the discrete trading strategies from Subsec-
tion 2.2 with the property that �N ¼ T. Let Et[�] denote an expectation

with respect to the martingale measure and define Zt ¼ XtS(t,0) þ Yt as

the time t marked to market value of the replicating portfolio.

For super-replicating a call option, the optimization problem is

min
ðX ;YÞ

Z0 s:t: ZT � CT ¼ max S T ; 0ð Þ � Ke�rT; 0
	 


ð25Þ

where

ZT ¼ y0 þ x0S 0; 0ð Þ þ
XN�1

j¼0

x�jþ1
S �jþ1; 0
� 

� S �j; 0
� 	 


� LT :

At an intermediate time t � 0, this problem is written as16

min
ðX ;Y Þ

Zt s:t: ZT � CT ¼ max S T ; 0ð Þ � Ke�rT; 0
	 


: ð26Þ

4.2 Solution methodology

The solution to the super-replication problem exists since an investor can

always hedge by purchasing one unit of the underlying stock. Given the

super-replication problem in Equation (25), the following lemma demon-

strates that liquidity costs are minimized by trading as frequently as
possible with the smallest possible quantities.

Lemma 1. The optimal hedging strategy trades whenever possible with the

smallest possible transactions. Thus, this strategy has the minimum expected

liquidity cost among all super-replicating portfolios with trades at d-intervals.

16 Since ZT ¼ YT + xTS(T,0), the same principle applies at time T with xT being non-zero.
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Proof. Under the martingale measure,

E CT½ � � E ZT½ � ¼ y0 þ x0S 0; 0ð Þ � E LT½ �: ð27Þ

Now, consider trading at two different time points 0 and t with quan-

tities a > 0, b > 0 versus one combined transaction at time t comprised of

a þ b > 0. The expected liquidity cost of trading twice is

S 0; 0ð Þ e�a � 1ð Þ þ E0 S t; 0ð Þ½ � e�b � 1
� 

ð28Þ

versus the expected liquidity cost of trading once, E0[S(t,0)][e�(a + b) – 1].

Under the martingale measure [with m ¼ r – (1/2)s2], the discounted stock

price is a martingale with the property

E0 S t; 0ð Þ½ � ¼ E0 s0e�
�2

2 tþ�Wt

� �
¼ s0

er0
¼ S 0; 0ð Þ; ð29Þ

Using this equation, it is seen that

e�a � 1ð Þ þ e�b � 1
� 

< e� aþbð Þ � 1
h i

: ð30Þ

Thus, two trades incur a lower total liquidity cost than one, implying that
more frequent transactions are optimal. Indeed, not trading at the first

available instant leaves the option position unhedged for a period of time.

Consequently, an extra transaction is needed at a later date which increases

the expected total liquidity cost and yields a suboptimal portfolio.

To clarify and interpret the above lemma, we emphasize that the

optimal hedge minimizes liquidity costs with respect to all trading strate-

gies that super-replicate the option. However, the optimal hedge does not

produce the smallest liquidity cost among all possible trading strategies.
Indeed, imagine a trivial strategy that does not trade at all. This strategy

yields a zero liquidity cost but does not attempt to control the approx-

imation error. Furthermore, the intuition why more frequent trading

reduces liquidity costs may be drawn from Subsection 1.1 where it is

seen that a continuous strategy of finite variation eliminates the liquidity

cost, with an example provided in Equation (10). In our discrete time

context, more frequent hedging offers a better approximation to a con-

tinuous hedge strategy of finite variation.
With the previous lemma, we proceed to solve the problem as a con-

strained discrete time dynamic program for a fixed D time step. Notation-

ally, d is reserved for the minimum time between trades of the same

investor. In other words, lower case d is a market-based parameter that

signifies the smallest duration between consecutive market orders executed
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for the same trader. The upper case D represents an input for a binomial

option pricing solution and is simply a computational specification.17

We implement a numerical procedure to solve this problem based on a

binomial approximation to the geometric Brownian motion in Equation

(6). A two-step illustration of this numerical procedure is discussed in the

next subsection. Unlike the transaction costs literature whose limit

implies infinite option prices when trading is continuous, our methodol-

ogy has D!0 being well defined. In particular, we are discretizing a
liquidity framework that allows for dynamic continuous time rebalancing

of the replicating portfolio as illustrated in the smoothed Black Scholes

hedging strategy of Equation (10). In contrast, the traditional super-

replication approach with transaction costs cannot appeal to continuous

trading. Instead, a static hedge strategy for a call option that purchases

one unit of stock at time zero is their result. Overall, we impose an

exogenous constraint on trading strategies to conform with market prac-

tice, not because the underlying mathematics limits our analysis to dis-
crete trading. Consequently, the known convergence of the binomial

process to a geometric Brownian motion justifies our numerical solution

and is consistent with applications to exchange-traded American equity

options.

Note that the super-replication procedure ensures that the approxima-

tion error in Equation (14) is non-negative, even if intermediate stock

price movements between hedge portfolio rebalancings occur. In this

instance, super-replicating the option adds the largest (worst case)
approximation errors to the constrained optimization. Therefore, after

being translated into higher liquidity costs, these positive errors are

interpreted as forcing the investor to confront more illiquidity.

4.3 Implementation

The following offers a brief summary of the steps required to implement

the dynamic programming procedure using a binomial stock price pro-
cess. Additional details regarding its general solution are provided in

Appendix B. Consider a two-period binomial tree with an initial stock

price denoted S. Up and down factors are signified by U and D, respec-

tively, and are identical to those in the standard binomial tree literature.

At time 1 (D ¼ 1), the stock price is either SU or SD, whereas at the

17 Since the liquidity cost for the optimal hedge strategy declines with more frequent trading, in theory, D
would be reduced by an infinitely powerful computer until it reached the lower bound d, while in practice,
the option price converges (to two decimal places) for D > d. To clarify, D may be further divided into DH

and DS, corresponding to the time interval between hedge portfolio rebalancings and stock price move-
ments, respectively. This enables DS!0 (decline below d), producing a geometric Brownian motion as in
our comparative study of non-optimal hedging strategies. However, with regards to our optimal trading
strategy in this section, DH ¼ DS, and there is no distinction.
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option’s maturity, three stock prices are available, SUU, SDU, and SDD.

By construction, SUD ¼ SDU since the binomial tree is recombining.

At time 1, in the up state, our objective is to solve for yU and xU, the

amount in the money market account and stock, respectively. The mini-

mization problem involves two constraints

min ZU
1 ¼ yU þ xU SU þ � xU � x1ð Þ2SU

such that yU þ xU SUU � max SUU � K ; 0ð Þ
yD þ xDSDD � max SDD� K ; 0ð Þ:

ð31Þ

Similarly, in the down node, the quantities yD and xD are obtained as the

solution to

min ZD
1 ¼ yD þ xDSDþ � xD � x1ð Þ2SD

such that yD þ xDSDU � max SDU � K ; 0ð Þ
yD þ xDSDD � max SDD� K ; 0ð Þ:

ð32Þ

Denote these optimal solutions as x�U ; x
�
D; y

�
U and y�D, which appear in the

time 0 constraints. At time 0,

min Z0 ¼ x1S þ y1 þ �x2
1S such that

x1S þ y1 þ x1 SU � Sð Þ ¼ y�U þ x�U SU þ � x�U � x1

� 2
SU

ð33Þ

x1S þ y1 þ x1 SD� Sð Þ ¼ y�D þ x�DSDþ � x�D � x1

� 2
SD ð34Þ

for which the optimal x1 and y1 values are solved. The super-replication

price of the call option thus equals x�1S þ y�1 þ � x�1
� 2

S: Equations (33)

and (34) each pertain to one of the two possible stock price paths from

time 0 to 1. For example, the left side displays the initial portfolio value

plus the gain (or loss) on stock position, whereas the right side is the
optimal value of the replicating portfolio at either the up or the down

node plus the associated liquidity cost of rebalancing.

5. Discrete Hedging Strategies for Comparison

Besides the optimal hedge in the previous section, we also investigate non-

optimal discrete trading strategies that employ the Black Scholeshedge at

fixed time intervals as well as random time points.18 These alternative

hedging strategies are implemented via simulation for the geometric

18 The trading strategy in Equation (10) is not implemented as it is of continuous and finite variation by
design.
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Brownian motion stock price process. These Black Scholes hedging strate-

gies are studied for two reasons. First, these strategies are implemented in

practice (Jarrow and Turnbull, 2004) because of the infeasibility of con-

tinuous hedging. Second, their popularity in practice provides an appro-

priate benchmark for comparison with the optimal hedging strategy.

Empirically, we analyze 10 European call options, each on 100 shares of the

underlying stock. The average implied volatility for call options (from

Bloomberg)19 and the average closing stock price (from TAQ) during the
sample period serve as inputs with their values reported in Table 1. Option

moneyness is adjusted according to $5 intervals. For example, in-the-money

(out-of-the-money) options have a corresponding stock price that is $5

higher (lower) than the strike price. Throughout our analysis, results are

presented for 30-day option prices although the errors are similar for other

maturities. For simplicity, the riskfree rate is set equal to zero as this has a

negligible impact on the 30-day option’s price (average interest rate below

5% during our sample period).
The fixed time trading strategy is represented as xu¼ xt for u 2 [t,t+D] for

a specified D where xt is the Black Scholes delta hedge parameter. Observe

that the amount transacted is random. As alluded to earlier, the dependence

on the random stock price necessitates the simulation to price the options.

We consider hedging frequencies of one and two days along the stochastic

price path.

The second trading strategy hedges at random time points with xu ¼ xt

provided xu � xtj � �j for a given y > 0. In particular, trades only occur
when the previously executed Black Scholes delta hedge differs by more

than y from the replicating portfolio’s current requirement. Thus, trans-

actions are induced by the need to rebalance the hedge portfolio. More-

over, with a transaction executed the instant the y barrier is breached, we

refer to the quantity traded as being fixed. The control width y is chosen

to coincide with transaction sizes of 5 and 10 lots.20

The two non-optimal hedging strategies are evaluated using 10,000

simulations, each over a 30-day period. For the random time strategy,
rebalancing of the hedge portfolio may occur at any of 300 points along

the stock price path once the control width is breached. However, our

results are not sensitive to this figure. Indeed, as many as 5000 potential

hedge time points are examined with similar results.21

19 Bloomberg implied volatilities are computed using closing prices of three options which are closest to
being at-the-money (across possible maturities). Closing prices are the bid (ask) if the last transaction is
below (above) the bid (ask) or the transaction price itself if it lies between the option’s bid-ask spread.

20 Justification for these values follows from plotting the distribution of absolute transactions (unsigned
order flow) although some dependence on the strike price is detected.

21 As a consequence of the numerical grid, a minimum distance between trades is enforced in the random
time non-optimal hedging approach although a Brownian motion process may generate xu – xt values
that exceed y > 0 for u – t < d in theory.
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6. Empirical Results

Our results are contained in Tables 3–5 for 10 options, each on 100

shares. Naturally, larger positions imply greater percentage price impacts

for illiquidity as Equation (16) illustrates that the liquidity cost increases
quadratically with transaction sizes. Our empirical results are reported for

components of the hedging error, liquidity costs, and approximation

errors. For ease of comparison, the absolute value of the average approx-

imation error is reported since super-replication of the option implies only

non-negative errors for the optimal hedge strategy.

Using the optimal trading strategy detailed in Subsection 4.3, Table 3

reports summary statistics for the dollar-denominated liquidity costs22 as

well as their percentage impacts. The dynamic programming procedure
produces an option price x1 S 0; 0ð Þ þ y1 þ �S 0; 0ð Þx2

1 that includes the

initial cost of forming the replicating portfolio. To proxy for the friction-

less option price, we resolve the dynamic program under the constraint

that � ¼ 0 and utilize the output x0
1S 0; 0ð Þ þ y0

1 where the 0 superscript

refers to the constraint on the liquidity parameter. This price serves as the

basis for computing the percentage impact of illiquidity.

The last column of Table 3 (as well as Tables 4 and 5) is concerned with

the approximate liquidity cost as defined in Equation (23). When compared
with the results in earlier columns derived from Equation (12), only minor

discrepancies are reported. Thus, the economic repercussions of stochastic

liquidity appear to be minor.

6.1 Non-optimal hedges

According to Tables 4 and 5, liquidity costs are not sensitive to the rebalan-

cing frequency when compared with the option’s moneyness. Based on the

approach which hedges at fixed time intervals, approximation errors are
reported in Table 4 and experience a significant decrease after reducing D
from two days to one while the liquidity costs are almost identical.23 Con-

sequently, more frequent rebalancing yields smaller hedging errors. As

recorded in Table 5, the random time Black Scholes hedge also produces

similar liquidity costs across the two control bands, equal to 5 and 10 lots. In

contrast, the approximation errors are larger for the wider 10-lot control

band. As a result, a smaller value of y is desirable for reducing the hedging

error.

22 Note that the optimal hedge need not produce lower liquidity costs than the non-optimal strategies which
are not constrained to produce non-negative approximation errors.

23 The slightly smaller liquidity costs for the two-day non-optimal fixed time hedge strategy, versus its one-
day counterpart, result from being able to avoid certain intermediate transactions. For example, an
increase (decrease) in the geometric Brownian motion process followed by a decrease (increase) to a
similar level implies that an intermediate transaction may be ignored (at least reduced) by the non-
optimal strategy with a larger D. This does not contradict Lemma 1 which applies to optimal hedge
strategies that super-replicate the option as discussed after its proof.
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Table 3
Summary of optimal trading strategy for 10 options, each on 100 shares

Option characteristics Individual option Costs associated with replicating portfolio for 10 options

Company
name

Option
moneyness

Option price
with � ¼ 0

Option price
with � S(0,0) x2

1

Liquidity cost
(at t ¼ 0)

Liquidity cost
(after t ¼ 0)

Total
liquidity

cost
Percentage

impact Excess at T

Approximate
(after t ¼ 0)
liquidity cost

GE In 548.91 551.40 19.31 5.77 25.08 0.46 0.00 5.79
At 177.94 180.20 9.59 10.06 19.65 1.10 0.00 10.08
Out 46.94 47.11 0.86 0.82 1.68 0.36 0.00 0.83

IBM In 730.56 731.42 8.61 3.46 12.07 0.17 0.00 3.47
At 362.91 364.04 4.81 4.46 9.27 0.26 0.00 4.48
Out 229.90 230.37 2.44 2.29 4.73 0.21 0.00 2.30

FDX In 562.42 527.99 15.70 4.96 20.66 0.37 0.00 4.98
At 188.42 190.29 8.46 8.09 16.55 0.88 0.00 8.12
Out 56.07 56.25 0.92 0.87 1.79 0.32 0.00 0.88

BKS In 517.87 520.21 23.39 4.52 27.91 0.54 0.00 4.54
At 133.50 135.82 11.07 10.18 21.25 1.59 0.00 10.25
Out 12.25 12.28 0.12 0.11 0.23 0.19 0.00 0.11

RBK In 513.40 515.40 20.02 3.67 23.69 0.46 0.00 3.69
At 129.33 131.29 9.16 8.44 17.60 1.36 0.00 8.49
Out 8.36 8.37 0.05 0.05 0.10 0.12 0.00 0.05

BKS, Barnes & Noble; FDX, Federal Express; GE, General Electric; IBM, International Business Machines; RBK, Reebok.
Option prices in the third and fourth columns are reported for an individual option on 100 shares with the other entries representing quantities for an imbalance of 10 options.
For emphasis, unlike option prices, the liquidity cost is not linear in the number of options (or shares) under consideration and is not re-scaled as a consequence. For at-the-
money options, the strike price equals the initial stock price recorded in Table 1. The stock price is then increased (decreased) by $5 for in-the-money (out-of-the-money) options.
The volatility parameter is also found in Table 1. The first option price x0

1Sð0; 0Þ þ y0
1 utilizes hedge parameters x0

1 and y0
1 that are solved from a dynamic program with � ¼ 0.

This ‘‘frictionless’’ option price proxy serves as the basis for the percentage impact of illiquidity. The second reported option price includes the liquidity cost at time zero of
forming the replicating portfolio, �Sð0; 0Þx2

1 with x1 and y1 computed for an economy with � > 0. Hence, the values x1 versus x0
1 and y1 versus y0

1 are not comparable. After time
zero, we infer an implied liquidity cost using the optimal transactions at each node of the binomial procedure for comparison with the approximate liquidity cost. The last
column is the approximate liquidity cost in Equation (23) for transactions after time zero.
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Table 4
Summary of hedging strategy at fixed time points with random quantities for 10 options, each on 100 shares

Option characteristics Individual option Hedging error (10 options) Approximate liquidity

Company
name

Option
moneyness

Hedging
frequency (days)

Black
Scholes

With
liquidity

Liquidity
cost

Approximation
error Liquidity %

Liquidity
cost Liquidity %

GE In D ¼ 2 546.56 550.29 37.31 38.16 0.68 38.24 0.70
D ¼ 1 546.56 550.34 37.84 24.32 0.69 38.54 0.71

At D ¼ 2 200.78 202.68 18.98 72.92 0.95 20.12 1.00
D ¼ 1 200.78 202.80 20.16 31.94 1.00 20.93 1.04

Out D ¼ 2 38.39 38.84 4.52 44.06 1.18 4.90 1.28
D ¼ 1 38.39 38.92 5.29 23.01 1.38 5.51 1.43

IBM In D ¼ 2 715.01 716.43 14.23 131.00 0.20 14.82 0.21
D ¼ 1 715.01 716.49 14.75 58.14 0.21 15.20 0.21

At D ¼ 2 409.50 410.45 9.47 144.66 0.23 9.98 0.24
D ¼ 1 409.50 410.50 10.04 67.46 0.25 10.44 0.25

Out D ¼ 2 199.20 199.73 5.27 126.35 0.26 5.64 0.28
D ¼ 1 199.20 199.77 5.72 61.76 0.29 5.93 0.30

FDX In D ¼ 2 555.16 558.19 30.34 48.16 0.55 31.15 0.56
D ¼ 1 555.16 558.25 30.89 27.04 0.56 31.53 0.57

At D ¼ 2 212.61 214.19 15.82 68.57 0.74 16.73 0.79
D ¼ 1 212.61 214.28 16.67 34.00 0.78 17.29 0.81

Out D ¼ 2 44.64 45.05 4.11 42.23 0.92 4.45 1.00
D ¼ 1 44.64 45.12 4.76 21.44 1.07 4.92 1.10
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BKS In D ¼ 2 520.96 525.38 44.23 21.11 0.85 45.02 0.86
D ¼ 1 520.96 525.44 44.78 14.67 0.86 45.48 0.87

At D ¼ 2 150.64 152.60 19.62 51.75 1.30 20.74 1.38
D ¼ 1 150.64 152.73 20.85 21.70 1.38 21.61 1.43

Out D ¼ 2 12.04 12.26 2.15 18.58 1.79 2.28 1.90
D ¼ 1 12.04 12.28 2.43 8.66 2.02 2.44 2.03

RBK In D ¼ 2 518.68 522.45 37.70 17.21 0.73 38.33 0.74
D ¼ 1 518.68 522.49 38.09 12.39 0.73 38.65 0.75

At D ¼ 2 145.93 147.59 16.59 48.21 1.14 17.56 1.20
D ¼ 1 145.93 147.68 17.52 24.65 1.20 18.17 1.24

Out D ¼ 2 10.52 10.68 1.64 12.85 1.56 1.74 1.66
D ¼ 1 10.52 10.72 1.95 6.08 1.85 1.96 1.86

BKS, Barnes & Noble; FDX, Federal Express; GE, General Electric; IBM, International Business Machines; RBK, Reebok.
Option prices below are reported for an individual option on 100 shares with the other entries representing quantities for an imbalance of 10 options. For emphasis, unlike option
prices, the liquidity cost is not linear in the number of options (or shares) under consideration. This strategy consists of hedging the options at predetermined discrete time points
using Black Scholes hedge parameters with the stock price evolving as a geometric Brownian motion. The liquidity cost and approximation error are recorded below along with
their percentage impact on the option price. For at-the-money options, the strike price equals the initial stock price recorded in Table 1. The stock price is then increased
(decreased) by $5 for in-the-money (out-of-the-money) options. The volatility parameter is also found in Table 1. The fifth column which states the combined frictionless option
price with its associated liquidity cost is for ease of reference and divides the total liquidity cost across the 10 options. However, as seen in Equation (16), liquidity costs increase
quadratically with the number of options hedged while the price increases at a linear rate. Thus, the figures below are not directly comparable with those in Table 3 but are
provided for illustration.
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Table 5
Summary of hedging strategy at random time points with fixed quantities for 10 options, each on 100 shares

Option characteristics Individual option Hedging error (10 options) Approximate liquidity

Company
name

Option
moneyness

Amount
hedged (lots)

Black
Scholes

With
liquidity

Liquidity
cost

Approximation
error Liquidity %

Liquidity
cost Liquidity %

GE In y ¼ 10 546.56 550.46 38.96 3.14 0.71 39.37 0.72
y ¼ 5 546.56 550.46 39.03 1.72 0.71 39.47 0.72

At y ¼ 10 200.78 202.97 21.91 3.92 1.09 22.16 1.10
y ¼ 5 200.78 202.97 21.88 2.78 1.09 22.11 1.10

Out y ¼ 10 38.39 39.02 6.29 2.46 1.64 6.17 1.61
y ¼ 5 38.39 39.02 6.28 1.74 1.64 6.16 1.60

IBM In y ¼ 10 715.01 716.56 15.51 7.97 0.22 15.77 0.22
y ¼ 5 715.01 716.56 15.46 6.51 0.22 15.71 0.22

At y ¼ 10 409.50 410.59 10.91 6.83 0.27 11.03 0.27
y ¼ 5 409.50 410.59 10.90 3.80 0.27 11.01 0.27

Out y ¼ 10 199.20 199.85 6.51 5.52 0.33 6.46 0.32
y ¼ 5 199.20 199.86 6.55 5.04 0.33 6.52 0.33

FDX In y ¼ 10 555.16 558.35 31.86 3.20 0.57 32.26 0.58
y ¼ 5 555.16 558.35 31.86 0.78 0.57 32.27 0.58

At y ¼ 10 212.61 214.42 18.09 4.05 0.85 18.28 0.86
y ¼ 5 212.61 214.42 18.10 2.60 0.85 18.31 0.86

Out y ¼ 10 44.64 45.20 5.59 1.39 1.25 5.45 1.22
y ¼ 5 44.64 45.20 5.63 0.17 1.26 5.49 1.23

T
h
e

R
eview

o
f

F
in

a
n
cia

l
S

tu
d
ies

/
v

1
9

n
2

2
0
0
6

5
2

0



BKS In y ¼ 10 520.96 525.52 45.61 1.27 0.88 46.14 0.89
y ¼ 5 520.96 525.53 45.66 0.64 0.88 46.21 0.89

At y ¼ 10 150.64 152.90 22.57 2.78 1.50 22.83 1.52
y ¼ 5 150.64 152.91 22.68 2.60 1.51 22.93 1.52

Out y ¼ 10 12.04 12.36 3.15 1.29 2.62 2.92 2.42
y ¼ 5 12.04 12.36 3.17 1.02 2.64 2.92 2.43

RBK In y ¼ 10 518.68 522.56 38.79 0.67 0.75 39.19 0.76
y ¼ 5 518.68 552.55 38.74 0.26 0.75 39.15 0.75

At y ¼ 10 145.93 147.83 19.00 2.65 1.30 19.20 1.32
y ¼ 5 145.93 147.83 19.02 2.63 1.30 19.24 1.32

Out y ¼ 10 10.52 10.76 2.43 1.72 2.31 2.24 2.13
y ¼ 5 10.52 10.76 2.36 1.24 2.24 2.18 2.07

BKS, Barnes & Noble; FDX, Federal Express; GE, General Electric; IBM, International Business Machines; RBK, Reebok.
Option prices below are reported for an individual option on 100 shares with the other entries representing quantities for an imbalance of 10 options. For emphasis, unlike
option prices, the liquidity cost is not linear in the number of options (or shares) under consideration. This strategy consists of hedging the options at random time points using
Black Scholes hedge parameters when needed to rebalance the replicating portfolio. The stock price evolves as a geometric Brownian motion. The liquidity cost and
approximation error are recorded below along with their percentage impact on the option price. For at-the-money options, the strike price equals the initial stock price
recorded in Table 1. The stock price is then increased (decreased) by $5 for in-the-money (out-of-the-money) options. The volatility parameter is also found in Table 1. The fifth
column which states the combined frictionless option price with its associated liquidity cost is for ease of reference and divides the total liquidity cost across the 10 options.
However, as seen in Equation (16), liquidity costs increase quadratically with the number of options hedged while the price increases at a linear rate. Thus, the figures below are
not directly comparable with those in Table 3 but are provided for illustration.
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Overall, for the chosen parameters we study, hedging more frequently

(smaller D or y) reduces the approximation errors although the liquidity costs

are less sensitive to these parameters. However, even for the smaller values of

D and y, the approximation error remains considerable.

Observe that the optimal trading strategy produces similar, and often

lower, liquidity costs relative to the Black Scholes implementations executed

at more frequent intervals. Not surprisingly, for out-of-the-money options,

the safety offered by super-replicating an option occasionally results in higher
liquidity costs as more of the stock is purchased to guard against the possi-

bility of a ‘‘bad’’ scenario coinciding with an increase in the stock price.

As emphasized previously, there are fundamental differences between the

optimal and non-optimal hedge strategies which complicates a direct com-

parison. Specifically, the non-optimal hedges add an associated liquidity cost

to a frictionless option price while illiquidity is intrinsic to the optimal

strategy since the hedging error implications of a transaction are accounted

for in the dynamic program’s constrained minimization. Thus, the liquidity
costs associated with a transaction are manifested in the optimal trading

strategy as inputs. However, in economic terms, imposing the constraint that

the replicating portfolio’s value at maturity is at least as much as the option’s

payoff does not appear to result in significantly higher liquidity costs.

6.2 Summary of empirical results

First, liquidity costs are a significant component of an option’s price.

These costs increase quadratically with the imbalance in the number of
short or long positions being hedged. Second, the optimal hedging strat-

egy provides similar and often reduced liquidity costs relative to the Black

Scholes hedge but has the advantage of avoiding negative approximation

errors. Third, liquidity risk is primarily generated by random transactions

since the cost per transaction [a function of �(t) � S(t,0)] is relatively stable

over time. In other words, conditional on a specified transaction size,

stochastic liquidity is not a serious concern. This property is a conse-

quence of �(t) and S(t,0) exhibiting inverse fluctuations over time.
Finally, our fourth result finds that employing the Black Scholes hedge

induces a relationship between an option’s moneyness and the percentage

impact of illiquidity. Specifically, in-the-money options are subject to the

lowest percentage impact from illiquidity despite having the largest dollar-

denominated liquidity costs. This large dollar-denominated liquidity cost

is partially attributed to the high initial cost of forming the replicating

portfolio as the option trader is assumed to start with zero shares of the

underlying stock. With in-the-money options, most of hedge portfolio
rebalancing occurs when the stock price decreases. Conversely, with the

initial cost of the option being relatively large, a correspondingly small

percentage price increase is incurred. However, for out-of-the-money

options with low initial prices, the impact of illiquidity is very significant
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despite a small dollar-denominated liquidity cost. As expected, at-the-

money options lie between these extremes.

Since the impact of illiquidity is related to an option’s moneyness, assuming

a frictionless market yields biased implied Black Scholes volatilities when its

associated hedging strategy is implemented. In other words, conditional on an

observed option price, ignoring liquidity costs is tantamount to overestimating

option prices, which implies that implied volatilities are overestimated as a

consequence. The extent of this bias depends on the strike price.
Table 6 reports implied volatilities for the two non-optimal Black

Scholes hedge strategies, whereas Figure 5 plots a ‘‘smile’’ over five different

strike prices and two maturity dates (30 and 90 days). In Figure 5, s and �
are chosen to be 30% and 1.25 
 10�4, respectively, as these are represen-

tative parameter values. Furthermore, Figure 5 considers the replication of

25 options using a discrete Black Scholes strategy implemented every two

days (with nearly identical results for its random time counterpart). With

the Black Scholes implied volatilities computed under the assumption of a
perfectly liquid market (� ¼ 0) for the underlying asset while option prices

are increased by the liquidity cost associated with their replication, an

upward bias in implied volatilities is detected. Moreover, the only source

of this upward bias is the liquidity cost of replicating the option. Both

Table 6
Implied volatility of options under the non-optimal Black Scholes trading strategies

Option characteristics Implied Black Scholes volatility

Company
name

Option
moneyness

True
volatility (%)

Black Scholes
fixed time D ¼ 2 days

Black Scholes
random time y ¼ 10 lots

GE In 23.25 23.91 23.94
At 23.25 23.47 23.50
Out 23.25 23.34 23.38

IBM In 30.93 31.05 31.06
At 30.93 31.00 31.01
Out 30.93 30.98 30.99

FDX In 28.41 29.00 29.02
At 28.41 28.62 28.65
Out 28.41 28.50 28.54

BKS In 37.39 39.51 39.57
At 37.39 37.88 37.95
Out 37.39 37.57 37.63

RBK In 36.22 38.10 38.17
At 36.22 36.63 36.69
Out 36.22 36.38 36.41

BKS, Barnes & Noble; FDX, Federal Express; GE, General Electric; IBM, International Business
Machines; RBK, Reebok.
The Black Scholes-implied volatilities derived from option prices which account for the impact of
illiquidity in the fifth column of Tables 4 and 5 are reported below. In addition, the true underlying
volatility from Table 1 utilized in generating the option prices is given for the ease of reference. Results for
D ¼ 1 day and y ¼ 5 lots are nearly identical to those of 2 days and 10 lots reported below, respectively.
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Table 6 and Figure 5 indicate that illiquidity causes the implied volatility of
in-the-money options to have the largest upward bias.24

However, it is important to emphasize that illiquidity is not the exclusive

catalyst for having implied volatilities depend on strike prices. Other alter-

natives include jumps and stochastic volatility as well as feedback effects from

a trader with a large stock or option position. Nonetheless, unless our

optimal hedging strategy is implemented, liquidity costs may be partially
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Figure 5
Plots of the implied volatility across five different strike prices and two distinct maturities when 25 options
(each on 100 shares) are replicated. The plots above correspond to a representative stock with a current
price of $50 whose underlying volatility is 30% per annum. In $5 increments, the strike price ranges from
$40 to $60 (in-the-money to out-of-the-money) while maturities of 30 and 90 days are considered. The �
parameter is 1.25 
 10�4 per lot transacted while the trading strategy consists of implementing the Black
Scholes hedge parameters at fixed time intervals of D ¼ 2 days. The disparity between the 30% volatility
and those implied from option prices is the result of illiquidity. Specifically, the Black Scholes-implied
volatilities are computed under the assumption of a perfectly liquid market (� ¼ 0) for the underlying
asset while option prices are increased by the liquidity cost of their replication. Consequently, higher
option prices induced by illiquidity generate an upward bias in their implied volatilities.

24 It is inappropriate to infer implied volatilities for the optimal trading strategy using the Black Scholes
formula. Indeed, if the marketplace was aware of the optimal strategy, then the Black Scholes formula
would not be utilized to compute prices or infer implied volatilities. Instead, obtaining an implied
volatility for the optimal strategy requires an iterative procedure that involves the dynamic program.
In addition, the binomial structure underlying the dynamic program requires smaller time intervals to
ensure that the corresponding option prices have converged. Otherwise, their values may be below those
computed using the Black Scholes model as a result of the numerical approximation.
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responsible for generating the implied volatility ‘‘smile’’ documented by

Rubinstein (1985).

7. Conclusion

This article represents the first attempt to consider the impact of illi-

quidity in the underlying asset market on option pricing. Consequently,

this article serves to link the market microstructure and option pricing

literatures.

An extended Black Scholes economy is utilized to illustrate the theory

and provide initial estimates for the impact of illiquidity on option prices.

Liquidity costs are modeled as a stochastic supply curve with the under-

lying asset price depending on order flow. Consistent with the market
microstructure literature, purchases are executed at higher prices while

sales are executed at lower prices.

In addition, optimal hedging strategies that super-replicate an option are

derived by solving a dynamic program. For comparative purposes, two

non-optimal but intuitive discrete hedging strategies are also implemented.

Empirical results document the importance of illiquidity to option

pricing. In particular, first, liquidity costs are a significant component

of the option’s price and increase quadratically in the number of options
being hedged. Second, the standard Black Scholes hedging strategies

often have higher liquidity costs than the optimal hedging strategy and

admit the possibility that the replicating portfolio is worth less than the

option’s liability at maturity. Third, non-optimal Black Scholes hedges

cause the impact of illiquidity to depend on the option’s moneyness,

offering another explanation for the implied volatility smile.

Appendix A: Liquidity Cost of Black Scholes Hedge

The liquidity cost of the Black Scholes hedge is

LT ¼ X0 S 0;X0ð Þ � S 0; 0ð Þð Þ þ
ðT
0

�sud N hð Þ;N hð Þ½ �cu

¼ X0 S 0;X0ð Þ � S 0; 0ð Þð Þ þ
ðT
0

�su N 0 huð Þð Þ2d h; h½ �cu

¼ X0 S 0;X0ð Þ � S 0; 0ð Þð Þ þ
ðT
0

�su N 0 huð Þð Þ2 1

s2
u�

2 T � uð Þ d s; s½ �u ðA1Þ

¼ X0 S 0;X0ð Þ � S 0; 0ð Þð Þ þ
ðT
0

� N 0 huð Þð Þ2

�2su T � uð Þ�
2s2

udu

¼ X0 S 0;X0ð Þ � S 0; 0ð Þð Þ þ
ðT
0

� N 0 huð Þð Þ2su

T � u
du
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Appendix B: Dynamic Programming Details

The dynamic programming technique is a two-stage process. First, self-financing trading

strategies that minimize the terminal deficit as in Equation (B1) below are found. The second

step then selects the hedge with the lowest initial cost from the previous set of strategies. A

recursive technique is introduced to solve the super-replication problem. Let

J x; yð Þ ¼ min
X2X x;yð Þ

E max CT � ZT ; 0ð Þ½ �; ðB1Þ

where X(x,y) is the set of SFTS, whose initial value are X0¼ x and Y0¼ y. Thus, J(x,y) is the

minimum expected terminal deficit starting with an initial position (x,y). Clearly, J(x,y) ¼ 0

for sufficiently large value of x and y since such initial positions ensure that the contingent

claim is hedged. Thus, the following expression is well defined as25

z� ¼ min yþ xS 0; 0ð Þ : J x; yð Þ ¼ 0ð Þ: ðB2Þ

The above is the minimal super-replication price for hedging the contingent claim. Thus,

finding the minimal super-replication price is a two-step procedure. First, J(x,y) is calculated

for all x,y. Then, the price y þ xS(0,0) is minimized over all x,y such that J(x,y) ¼ 0. Note

that the expected terminal deficit of a SFTS is zero if and only if the strategy super-replicates

the claim. In addition, to uniquely identify (x,y) from the minimization procedure, the self-

financing condition is required.

For notational simplicity, let T ¼ DM for some M > 0 representing the total number of

trades. To apply the recursive algorithm, define for t 2 [n � D:n 2 [0,...M]],

Jt x; y;S t; 0ð Þð Þ ¼ min
X2Xt x;yð Þ

Et max CT � ZT ; 0ð Þ½ �; ðB3Þ

where Xt(x,y) is the set of SFTS with Xt ¼ x and Yt ¼ y. For simplicity, T – n represents

t ¼ D � (M – n) throughout the remainder of this appendix. Consider the boundary

condition,

JT x; y;S T ; 0ð Þð Þ ¼ max CT � y� xS T ; 0ð Þ; 0½ �; ðB4Þ

at time T, where x and y are the positions in the stock and money market at T as defined

after Equation (B3). The following is the recursive relation between time t and t þ 1:

Jt x; y;S t; 0ð Þð Þ ¼ min
Dx

Et Jtþ1 xþ Dx; y� DxS t;Dxð Þ;S tþ 1; 0ð Þ½ �f g: ðB5Þ

Intuitively, having x shares in the stock and y shares in the money market account at time t is

equivalent to having x + Dx and y – DxS(t,Dx) shares in the money market (implied by the

self-financing condition) at time t + 1 for an arbitrary transaction size Dx.

The first order condition for the minimization problem in Equation (B5) is given by

Et

@Jtþ1

@x
xþ Dx; y� DxS t;Dxð Þ;S tþ 1; 0ð Þ½ �

� �

¼ Et

@Jtþ1

@y
xþ Dx; y� DxS t;Dxð Þ;S tþ 1; 0ð Þ½ � d

dDx
DxS t;Dxð Þ½ �

� �� �
:

ðB6Þ

Equation (B6) states that the change in the value of the stock position equals, on average, the

marginal cost of executing the transaction scaled by the sensitivity of the value function to

movements in the money market account. The marginal cost of executing the transaction is (d/

dDx)[DxS(t,Dx)] while the scaling factor equals @Jtþ1=@yð Þ xþ Dx; y�½ DxS t;Dxð Þ;S tþ 1; 0ð Þ�.

25 To clarify, x and y in Equation (B2) are not equal to x1 and y1, respectively, in Section 4. Instead, they
refer to positions before the initial trade. Thus, y in Equation (B2) equals x1Sð0; 0Þ þ y1 þ aSð0; 0Þx2

1 and
x ¼ 0.
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B.1 Binomial implementation of dynamic program
Recall that the self-financing condition at time t implies26

yt � yt�1 ¼ � xt � xt�1ð ÞS t� 1; xt � xt�1ð Þ
¼ � xt � xt�1ð ÞS t� 1; 0ð Þ � xt � xt�1ð Þ S t� 1; xt � xt�1ð Þ � S t� 1; 0ð Þ½ �:

ðB7Þ

Thus, for each t, we have

Zt�1 ¼ xt�1S t� 1; 0ð Þ þ yt�1 ¼ xtS t� 1; 0ð Þ þ yt xt � sx�1ð Þ S t� 1; xt � xt�1ð Þ � S t� 1; 0ð Þ½ �: ðB8Þ

Recall that xt is Ft�1 measurable along with yt according to the self-financing condition.

Proceeding backwards from time T – 1,

min ZT�1 ¼ yT þ xT S T � 1; 0ð Þ þ xT � xT�1ð Þ S T � 1; xt � xT�1ð Þ � S T � 1; 0ð Þ½ �; ðB9Þ

such that ZT � CT. Observe that liquidity costs are minimized in the above-formulation

subject to the approximation errors being non-negative. Invoking the binomial approxima-

tion with S(T,0) being either S(T – 1,0)U or S(T – 1,0)D, xT and yT should satisfy

yT þ xT S T � 1; 0ð ÞU � S T � 1; 0ð ÞU � K½ �þ ðB10Þ

and

yT þ xT S T � 1; 0ð ÞD � S T � 1; 0ð ÞD� K½ �þ: ðB11Þ

Since U and D are constants, xT and yT are FT � 1 measurable as required. Among all values

of xT and yT satisfying the above inequalities, the optimal values minimize yT + xTS(T – 1,0)þ
(xT – xT – 1)[S(T – 1,xT – xT – 1) –S(T–1,0)]. Denote the optimal solution as

x�T S T � 1; 0ð Þ; xT�1; yT�1½ �: ðB12Þ

At time T – 2, the super-replication problem becomes

min ZT�2 ¼ xT�1S T � 2; 0ð Þ þ yT�1 þ xT�1 � xT�2ð Þ S T � 2; xT�1 � xT�2ð Þ � S T � 2; 0ð Þ½ �;

such that ZT � CT, which is equivalent to

min yT�1 þ xT�1S T � 2; 0ð Þ þ xT�1 � xT�2ð Þ S T � 2;xT�1 � xT�2ð Þ � S T � 2; 0ð Þ½ �
s:t: yT�2 þ xT�2S T � 2; 0ð Þ þ xT�1 � xT�2ð Þ S T � 2;xT�1 � xT�2ð Þ � S T � 2; 0ð Þ½ �

þ xT�1 S T � 1; 0ð Þ � S T � 2; 0ð Þ½ � ¼ y�T þ x�T S T � 1; 0ð Þ
þ x�T � xT�1

� 
S T � 1; x�T � xT�1

� 
� S T � 1; 0ð Þ

	 

:

ðB13Þ

In the above, dependency of x�T and y�T on S(T – 1,0), xT – 1 and yT � 1 is implicit. Thus, we

begin at time T – 2 to end at T – 1 with the optimal allocation in the stock and bond which

are capable of super-replicating the claim at time T. The expression in equation (B13) equals

yT – 1 + xT – 1S(T – 2,0). Thus, the minimization problem becomes

min yT�1 þ xT�1S T � 2; 0ð Þ þ xT�1 � xT�2ð Þ S T � 2; xT�1 � xT�2ð Þ � S T � 2; 0ð Þ½ �
s:t: yT�1 þ xT�1S T � 2; 0ð Þ þ xT�1 S T � 1; 0ð Þ � S T � 2; 0ð Þ½ � ¼ y�T þ x�T S T � 1; 0ð Þ

þ x�T � xT�1

� 
S T � 1; x�T � xT�1

� 
� S T � 1; 0ð Þ

	 

:

ðB14Þ

The method continues until time 0. For any t < T, super-replication requires finding xt and

yt that minimize

26 The only change in the portfolio holdings during the interval (t – 1,t] occurs right after time t – 1.
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yt þ xtS t� 1; 0ð Þ þ xt � xt�1ð Þ S t� 1; xt � xt�1ð Þ � S t� 1; 0ð Þ½ �; ðB15Þ

subject to the constraint

yt þ xtS t� 1; 0ð Þ þ xt S t; 0ð Þ � S t� 1; 0ð Þ½ � ¼ y�tþ1 þ x�tþ1S t; 0ð Þ
þ x�tþ1 � xt

� 
S t;x�tþ1 � xt

� 
� S t; 0ð Þ

	 

;

ðB16Þ

given x�tþ1 from the previous solution.
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