
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.5 MAY 2006
1215

PAPER Special Section on Discrete Mathematics and Its Applications

Dynamic Programming and Clique Based Approaches for Protein
Threading with Profiles and Constraints∗

Tatsuya AKUTSU†a), Morihiro HAYASHIDA†, Members, Dukka BAHADUR K.C.†, Nonmember,
Etsuji TOMITA††, Fellow, Jun’ichi SUZUKI††, and Katsuhisa HORIMOTO†††, Nonmembers

SUMMARY The protein threading problem with profiles is known
to be efficiently solvable using dynamic programming. In this paper,
we consider a variant of the protein threading problem with profiles in
which constraints on distances between residues are given. We prove
that protein threading with profiles and constraints is NP-hard. More-
over, we show a strong hardness result on the approximation of an opti-
mal threading satisfying all the constraints. On the other hand, we de-
velop two practical algorithms: CLIQUETHREAD and BBDPTHREAD.
CLIQUETHREAD reduces the threading problem to the maximum edge-
weight clique problem, whereas BBDPTHREAD combines dynamic pro-
gramming and branch-and-bound techniques. We perform computational
experiments using protein structure data in PDB (Protein Data Bank) us-
ing simulated distance constraints. The results show that constraints are
useful to improve the alignment accuracy of the target sequence and the
template structure. Moreover, these results also show that BBDPTHREAD
is in general faster than CLIQUETHREAD for larger size proteins whereas
CLIQUETHREAD is useful if there does not exist a feasible threading.
key words: maximum edge weight clique, dynamic programming, protein
threading, profiles, distance constraints

1. Introduction

Prediction of protein structures using computational tools
is one of the important problems in computational biology.
Recently, some advances have been achieved by the sig-
nificant utilization of distance restraints. Xu et al. showed
that (partial) information obtained from NMR experiments
is useful to improve the accuracy of the protein threading
method [1], where protein threading is one of the power-
ful computational approaches to protein structure predic-
tion. Young et al. recently developed a novel experimental
method to aid in construction of a homology model by using
chemical cross-linking and time-of-flight (TOF) mass spec-
trometry to identify LYS-LYS cross-links [5]. Instead of
X-ray crystallography and NMR that require much amount

Manuscript received August 13, 2005.
Manuscript revised November 2, 2005.
Final manuscript received December 15, 2005.
†The authors are with the Bioinformatics Center, Institute for

Chemical Research, Kyoto University, Uji-shi, 611-0011 Japan.
††The authors are with the Graduate School of Electro-

communications, The University of Electro-Communications,
Chofu-shi, 182-8585 Japan.
†††The author is with the Human Genome Center, Institute

of Medical Science, The University of Tokyo, Tokyo, 108-8639
Japan.

∗A preliminary version of the paper was presented at IEEE 4th
Symp. Bioinformatics and Bioengineering (BIBE2004).

a) E-mail: takutsu@kuicr.kyoto-u.ac.jp
DOI: 10.1093/ietfec/e89–a.5.1215

of pure analyte and much time for experiments, the dis-
tance restraints obtained by the intramolecular cross-links
and mass spectrometry were useful to improve the accu-
racy. Therefore, development of algorithms in which dis-
tance constraints can be taken into account is important.

Xu et al. modified the PROSPECT algorithm for pro-
tein threading with pairwise contact energy and constraints
[1]. Another algorithm was also proposed for the improve-
ment in the fold recognition of the protein threading [2].
An algorithm using unassigned NMR data that relies on
ROSETTA and a Monte Carlo procedure for the generation
of low resolution protein structures has been developed [3].
Moreover, methods like TOUCHSTONEX [4] have been
proposed that incorporates a limited number of distance re-
straints into the force field as NOE-specific pairwise interac-
tion to predict protein structures at low-medium resolution.
However, all of these algorithms use complicating sampling
schemes and/or scoring functions.

On the other hand, threading with profiles (or thread-
ing with position specific score matrices) is also known as a
powerful method for structure prediction. In particular, PSI-
BLAST is widely used both for homology search and struc-
ture prediction [6]. Thus, it is reasonable to try to develop al-
gorithms for protein threading with profiles and constraints,
which may be useful to improve the prediction accuracy by
PSI-BLAST. In this paper, we therefore study threading with
profiles and constrains in terms of both theoretical and prac-
tical aspects.

At first, we show that finding a feasible threading (i.e.,
a threading that satisfies all the constraints derived from ex-
periments) is NP-hard. Moreover, we show a strong hard-
ness result on the approximation of an optimal feasible
threading. It should be noted that protein threading with pair
score functions is NP-hard [7], [8], whereas protein thread-
ing with profiles can be solved efficiently using dynamic
programming as in sequence alignment. Our results show
that adding constraints makes the problem much harder.

Furthermore, we develop two practical exact al-
gorithms for protein threading with profiles and con-
straints: CLIQUETHREAD and BBDPTHREAD. CLI-
QUETHREAD reduces constrained threading to the maxi-
mum edge weight clique problem. Though the maximum
clique is NP-hard, several practically efficient algorithms
have been developed [9], [10]. BBDPTHREAD combines
a DP (dynamic programming) algorithm and a branch-and-
bound procedure, where the DP algorithm is developed

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers

1216
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.5 MAY 2006

based on our previous work [7]. We perform computational
experiments on both algorithms using PDB (Protein Data
Bank) data [11]. The results suggest that constraints are
useful to improve the prediction accuracy of protein thread-
ing. That is, constraints are useful to improve the quality of
alignments between sequences and structures.

From a theoretical viewpoint, there exist several related
works. The authors previously studied approximation al-
gorithms for protein threading with pairwise contact energy
[7]. As discussed in Sect. 6, threading with profiles and con-
straints is very similar to that problem. Goldman et al. stud-
ied theoretical aspect of protein structure alignment [12].
Recently, the longest common subsequence problem with
arc annotations is extensively studied [13]–[16]. Though
these studies have been done independently, similar results
were obtained. However, it should be pointed out that our
previous work [7] is one of the earliest work.

Although, the authors have already presented the im-
proved version of the clique based algorithm for pro-
tein threading with profiles and constraints [17], [18], only
this paper deals with the theoretical analysis of the prob-
lem, and the dynamic programming based algorithm, BB-
DPTHREAD. Furthermore, the clique based algorithm is
also initially presented in the preliminary version of this pa-
per. It is also to be noted that the preliminary version of this
paper appeared much before the improved version of the
clique based algorithm [17], [18]. Hence, this paper origi-
nally presents the theoretical analysis of the protein thread-
ing with the clique based algorithm CLIQUETHREAD and
the DP based algorithm BBDPTHREAD.

From a practical viewpoint, it seems that most exact al-
gorithms for protein threading with pairwise contact energy
[1], [19], [20] can be modified for threading with constraints
as in [1]. However, gaps in core regions are not allowed
in these algorithms whereas gaps are allowed in our algo-
rithms. At least, our algorithms are simpler than existing
algorithms and easy to implement and modify.

The organization of the paper is as follows. We be-
gin with the formal definitions of the problems. Next, we
give hardness results. Then, we present two practical al-
gorithms and describe the results of computational experi-
ments on these algorithms. Finally, we conclude with future
work.

2. Definitions

In this section, we formally define the problems. It should
be noted that the same definitions are also given in our re-
lated paper [18]. First we define a threading, where a thread-
ing (without constraint) is almost the same as a pairwise
alignment here. Let s = s1 . . . sm be a protein sequence,
over an alphabet Σ, where Σ is the set of amino acids (i.e.,
|Σ| = 20). We also use si to denote the position of si in
s. Let t = t1 . . . tn be a template protein structure, where ti
is a residue (or the position of ti) in t. t can be considered
as a sequence of Cα (or Cβ) atoms of the protein structure.
A threading between s and t is obtained by inserting gap

symbols (‘−’) into or at either end of s and t such that the
resulting sequences s′ and t′ are of the same length l, where
it is not allowed for each i ≤ l that both s′i and t′i are gap
symbols.

For each template structure t, a profile PFt is assigned,
where PFt is a function from (Σ ∪ {−}) × {t1, . . . , tn,−} to
the set of real numbers R. Though affine gap costs are not
represented by this notation, affine gap costs are also taken
into account in the algorithms in this paper. The score of a
threading (s′, t′) is defined by

∑l
i=1 PFt(s′i , t

′
i).

Problem 1 (Profile Threading without Constraint): Given s,
t and PFt, find a threading (s′, t′) with the maximum score.

Next, we define constraints. We write ψ(si) = t j if si

and t j are aligned into the same column in a threading (s′, t′).
If si is aligned with the gap symbol, we define ψ(si) =‘−.’
For a target sequence s, an arc set As is associated, which
is a set of pairs of positions of s and each pair (si, si′) ∈ As

must satisfy 1 ≤ i < i′ ≤ m. Similarly, At denotes an arc set
for a template structure t. In this paper, si appearing in As

must not be aligned with a gap symbol at the same column.
For each pairs (si, si′) and (t j, t j′), IC(si, si′ , t j, t j′) = 0

if these pairs satisfy a constraint on (si, si′). If (si, si′) �
As, IC(si, si′ , t j, t j′) = 0, otherwise (i.e., the pairs do not
satisfy a constraint, or (si, si′) ∈ As but (t j, t j′) � At),
IC(si, si′ , t j, t j′) = 1. It should be noted that IC means incon-
sistency. Though IC is defined in a general way as above, we
employ the following definition in the practical algorithms:
IC(si, si′ , t j, t j′) = 0 if |dist(si, si′)− dist(t j, t j′)| is less than a
thresholdΘ, where dist(si, si′) (resp. dist(t j, t j′)) denotes the
distance between positions of Cα (or Cβ) atoms associated
with si and si′ (resp. t j and t j′), and As and At correspond to
the sets of known distances. As showin in Sect. 5, this type
of constraint is useful to improve the prediction accuracy of
protein threading.

We consider two types of constrained threading prob-
lems.

Problem 2 (Profile Threading with Strict Constraints. See
Fig. 1): Given (s, As), (t, At), PFt, and IC, find a thread-
ing (s′, t′) with the maximum score under the condition that
IC(si, si′ , ψ(si), ψ(si′)) = 0 for all (si, si′) ∈ As.

Problem 3 (Profile Threading with Non-strict Con-
straints): Given (s, As), (t, At), PFt, and IC, find a thread-
ing (s′, t′) with the maximum score under the condition that

Fig. 1 Protein threading with constraints. For each arc in s, there must
exist a corresponding arc in t which satisfies some constraints.

AKUTSU et al.: DYNAMIC PROGRAMMING AND CLIQUE BASED APPROACHES FOR PROTEIN THREADING
1217

∑
(si,si′)∈As

IC(si, si′ , ψ(si), ψ(si′)) is the minimum.

It is worthy to notice that all the constraints must be
satisfied in the former problem, whereas the latter problem
tries to minimize the number of unsatisfied constraints.

3. Hardness Results

It is well-known that pairwise sequence alignment can be
done in O(mn) time using a simple dynamic programming
algorithm [22]. It is also known that profile threading (Prob-
lem 1) can be done in O(mn) time using a similar algorithm
[22]. However, we show in this section that finding a feasi-
ble threading (i.e., a threading satisfying all the constraints)
is NP-hard. Moreover, we show a strong hardness result on
the approximation of an optimal feasible threading.

In this section, we only consider very simple con-
straints defined as: IC(si, si′ , t j, t j′) = 1 iff. (si, si′) ∈
As and (t j, t j′) � At. It should be noted that IC is uniquely
determined from As and At. Similar constraints are used in
the longest common subsequence problems with arc anno-
tations [14]–[16].

Proposition 1: Both Problem 2 and Problem 3 are NP-
hard.

Proof: We reduce the decision version of maximum clique,
where maximum clique is a well-known NP-hard problem
[23], [24]. Let G(V, E) be an undirected graph where V =
{v1, . . . , vn}, and suppose that we are asked whether or not
there exists a clique (i.e., a complete subgraph) V ′ ⊆ V of
size K.

From that instance, we construct a target sequence
s = s1 . . . sK and a template structure t = t1 . . . tn, where
each si can be any amino acid. We define As, At by
As = {(si, si′)| 1 ≤ i < i′ ≤ K} and At = {(t j, t j′)| 1 ≤
j < j′ ≤ n and {v j, v j′ } ∈ E}, respectively. Then, it is easy to
see that there exists a feasible threading if and only if there
exists a clique of size K. �

In the above reduction, each si is connected with all other
si′ ’s. Considering such protein structures is not realistic.
However, we can still prove NP-hardness even if each si is
connected with at most one residue (see Fig. 2).

Proposition 2: Both Problem 2 and Problem 3 are NP-
hard even if each si appears at most once in As.

Fig. 2 Example of a reduction used in the proof of Proposition 2.

Proof: We modify the reduction used in the proof of Propo-
sition 1 using a technique proposed in [7] and [13]. Let
G(V, E) be an instance of the maximum clique problem. We
construct s = s1s2 . . . sK(n+2) and t = t1t2 . . . tn(n+2), where
n = |V |, s(h−1)(K+2)+1s(h−1)(K+2)+2 . . . sh(K+2)) corresponds to a
vertex in a clique, and t(k−1)(n+2)+1t(k−1)(n+2)+2 . . . tk(n+2)) cor-
responds to vk. We define As and At by

As = {(s(h−1)(K+2)+1, sh(K+2))| h = 1, . . . ,K} ∪
{(s(h−1)(K+2)+1+k, s(k−1)(K+2)+1+h)|

1 ≤ h < k ≤ K },
At = {(t(h−1)(n+2)+1, th(n+2))| h = 1, . . . ,K} ∪

{(t(h−1)(n+2)+1+k, t(k−1)(n+2)+1+h)|
h < k, {vh, vk} ∈ E}.

Then, it is easy to see that there exists a feasible threading if
and only if there exists a clique of size K. �

Next we study approximation hardness of Problem 2 (see
[25] for terminologies on approximation algorithms). For
that purpose, we assume that PFt takes non-negative values.
We also need the following lemma.

Lemma 1: Let G(V, E) be an undirected graph where each
vertex vi has non-negative weight w(vi). The weight of a sub-
graph of G is defined to be the total weight of vertices in the
subgraph. Let K be an integer. Then, the maximum weight
K-clique of G can not be approximated within a factor of
O(|V |1−ε) for any ε > 0 unless NP=ZPP.

Proof: We show a gap preserving reduction [25] from the
maximum clique problem to the maximum weight K-clique
problem. Let G′(V ′, E′) be an instance of the maximum
clique problem, where n = |V ′|. We construct an instance
of the maximum weight K-clique problem from G′(V ′, E′).

Let G′′(V ′′, E′′) be a clique with n vertices. We con-
struct G(V, E) by V = V ′∪V ′′ and E = E′∪E′′∪{ {vi, v j} | vi ∈
V ′, v j ∈ V ′′}, where w(vi) = 0 if vi ∈ V ′′, otherwise w(vi) = 1.

Now we show that this is a gap preserving reduction.
Suppose that Q ⊆ V is an n-clique of G(V, E) with weight
W, where K = n in this case. Then, Q − V ′′ will form a
clique of G′(V ′, E′) with W vertices. On the other hand,
suppose that Q′ ⊆ V ′ is a clique with W vertices. Then, we
can obtain an n-clique of G(V, E) with weight W by adding
arbitrary n −W vertices of V ′′ to Q′.

Since |V | = 2n and maximum clique can not be ap-
proximated within a factor of O(n1−ε) for any ε > 0 unless
NP=ZPP [24], the lemma holds. �

Theorem 1: Problem 2 can not be approximated within a
factor of O(n1/2−ε) for any ε > 0 unless NP=ZPP.

Proof: We show a gap preserving reduction from the maxi-
mum weight K-clique problem.

Let G(V, E) be an instance of the maximum weight K-
clique problem constructed as in the proof of Lemma 1.
From this graph and K, we construct an instance of Problem
2 as in the proof of Proposition 2. Moreover, we define PFt

by: PFt(si, t(j−1)(|V |+2)+1) = 1 for any si if v j ∈ V ′, otherwise

1218
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.5 MAY 2006

PFt(si, t j′) = 0.
Then, the score of an optimal feasible threading is

equal to the weight of the maximum weight K-clique. More-
over, we can obtain a K-clique of weight W from a feasi-
ble threading with score W. Therefore, the theorem follows
from [24] and |t| = O(|V |2). �

It should be noted that a simple score matrix between
|Σ| × |Σ| (even for |Σ| = 2) can be used as PFt in the above
proof. It is also worthy to mention that Theorem 1 holds
for Problem 3 if only a constant number of constraints are
allowed to be violated.

4. Algorithms

4.1 CLIQUETHREAD

Although we used the maximum clique problem to show
hardness results, it can also be used for solving protein
threading with constraints. CLIQUETHREAD reduces the
constrained threading problem to the maximum edge weight
clique problem, in which the total weight for edges in the
clique is maximized under the condition that the number of
vertices of the clique is maximum. Though clique-based
approach was also studied for structure alignment [26], ex-
isting methods can not be directly applied to our problem
because affine gap costs and profiles are considered in this
paper whereas they solved the structure alignment problem
in discrete settings. Though an improved version of CLI-
QUETHREAD was developed in the companion paper [18],
we show here the original version of CLIQUETHREAD.

We construct an instance G(V, E) of the clique problem
in the following way. Let si1 , si2 , . . . , siH be residues in s
appearing in As, where i1 < i2 < . . . < iH . We construct an
undirected graph G(V, E) defined by

V = {(sih , t j)|1 ≤ h ≤ H, 1 ≤ j ≤ n} ∪ {v0, ve},
E = {{(sih , t j), (sih′ , t j′)} | 1 ≤ h < h′ ≤ H,

1 ≤ j < j′ < n} ∪
{{v0, (sih , t j)} | 1 ≤ h ≤ H, 1 ≤ j ≤ n} ∪
{{(sih , t j), ve} | 1 ≤ h ≤ H, 1 ≤ j ≤ n}.

Then, the weight of each edge is given by equations as in
Sect. 3.2 of [18]. The only difference is that if the distance
constraints are satisfied then irrespective of the score of the
alignment, the corresponding weight is assigned to the edge
here, whereas in Sect. 3.2 of [18], even if the distance con-
straints are satisfied, the weight assigned is 0 if the score of
the alignment is less than some threshold value.

For this graph, the size of the maximum cardinality
clique is H + 2 if there exists a feasible threading. More-
over, the maximum cardinality clique consists of vertices of
the form:

v0, (si1 , t j1), (si2 , t j2), . . . , (siH , t jH), ve.

Each of the maximum cardinality cliques corresponds to a
threading in which ψ(sih) = t jh holds for all h = 1, 2, . . . ,H.

Then, the score of an optimal feasible threading is given by
W − α(H + 2)(H + 1)/2, where W is the total weight of the
maximum edge weight clique, and we assume that a con-
stant α (see [18] for detals) is much larger than the possible
threading scores.

Therefore, we can obtain a solution for Problem 2 by
solving the maximum edge weight clique problem. Even if
all the constraints are not satisfied, CLIQUETHREAD tries
to minimize the number of sik ’s violating constraints though
there is no theoretical guarantee on the scores of computed
threadings.

Now we analyze the time complexity of the reduction
procedure. The number of vertices of G(V, E) is clearly
nH+2. The number of edges is O((nH)2). For O(H ·n2) pairs
of substrings (sik , . . . , sik+1 , t j . . . t′j), we compute the score
of an optimal threading without constraint. It would take
O(Hmn3) time in total. However, we can use the same DP
matrix for computing the scores for (sik , . . . , sik+1 , t j . . . t j+1),
(sik . . . sik+1 , t j . . . t j+2), (sik . . . sik+1 , t j . . . t j+3), · · ·. Moreover,∑

ik |sik . . . sik+1 | = O(m). Thus, the total time for comput-
ing the scores of optimal threadings for substring pairs is
O(mn2). Therefore, we have:

Theorem 2: Problem 2 can be reduced to the maximum
edge weight clique problem with |V | = nH + 2 in O((H2 +

m)n2) time.

Here, we briefly discuss about practical computation
time. Usually, n is at most a few thousands and H is at most
a few tens. If we use the experimental method proposed by
[5], we can only measure distances between Lys residues.
In such a case, H ≈ m/20. Thus, the time for reduction
is not so crucial. Furthermore, the number of vertices of
G(V, E) is usually at most several thousands. Experimen-
tal results shown in [9], [10] suggest that the fastest (max-
imum edge weight) clique algorithms can solve instances
of size (|V |) 1000 ∼ 10000. Thus, the proposed method
is practical for non-large proteins (for proteins with less
than 200 residues in our experiments). Furthermore, CLI-
QUETHREAD has another potential merit: all practical in-
stances may be solved if a much faster clique algorithm is
developed in the future.

4.2 BBDPTHREAD

We showed in our previous work [7] that protein threading
with pairwise energy function can be solved exactly in poly-
nomial time using a DP algorithm if the graph representing
interactions between core regions has a tree-like (nested)
structure. Jiang et al. developed similar algorithms for spe-
cial cases of the longest common subsequence problem for
arc annotated sequences [14], [15]. In this section, we de-
velop a similar DP algorithm for a special case of Problem 2
and then combine it with a branch-and-bound procedure for
a general case.

We consider a special case in which any two pairs in
As do not cross (i.e., there are no pairs (si, si′), (sk, sk′) in As

with i < k < i′ < k′ or k < i < k′ < i′). In that case, we have

AKUTSU et al.: DYNAMIC PROGRAMMING AND CLIQUE BASED APPROACHES FOR PROTEIN THREADING
1219

Fig. 3 Example of a tree structure used in BBDPTHREAD.

a tree structure in the following way.
For each pair (sik , sik′) such that (sik , sik′) ∈ As,

(sih , sih′) ∈ As is called an ancestor if either ih ≤ ik < ik′ < ih′
or ih < ik < ik′ ≤ ih′ . Moreover, (sih , sih′) is called a par-
ent of (sik , sik′) if there exists no (sig , sig′) such that (sig , sig′)
is an ancestor of (sik , sik′) and (sih , sih′) is an ancestor of
(sig , sig′). Then, a tree structure is induced by this relation-
ship (see Fig. 3). We assume without loss of generality that
(s1, sm) ∈ As, IC(s1, sm, t1, tn) = 0 and (sik , sik+1) ∈ As for all
ik.

We compute score S (sik , sik′ , t j, t j′) using DP, where
S (sik , sik′ , t j, t j′) denotes the maximum score of all feasi-
ble threadings between sik . . . sik′ −1 and t j . . . t j′−1 under the
condition that ψ(sik) = t j and ψ(sik′) = t j′ . If there is
no feasible threading or IC(sik , sik′ −1, t j, t j′−1) = 1, we let
S (sik , si′k , t j, t j′) = −∞. Clearly, S (s1, sm, t1, tn) denotes the
score of an optimal feasible threading between s and t. If
there is no feasible threading, S (s1, sm, t1, tn) = −∞.

We compute S (sik , si′k , t j, t j′) in a bottom up manner
(i.e., from leaves to the root). For each leaf (sik , sik+1), we
compute the score by

S (sik , sik+1 , t j, t j′)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ if IC(sik , sik+1 , t j, t j′) = 1,
score(sik+1 . . . sik+1−1, t j+1 . . . t j′−1) +

PFt(sik , t j) otherwise,

where score(s′′, t′′) denotes the score of an optimal
threading without constraints (i.e., an optimal solution
for Problem 1) between substrings s′′ and t′′, and
the expression in the last line should be replaced by
score(sik+1sik+2 . . . sik+1−1, t j+1t j+2 . . . t j′−1) +
PFt(sik , t j) + PFt(sik+1 , t j′) in the case of ik+1 = n.

For each non-leaf node (sik , sik′), let (sik =

sr1 , sr2 , . . . , srp = sik′) be a sequence of residues in s such
that (sik , sik′) is a parent of (srq , srq+1), where r1 < r2 <
· · · < rp. For example, (s1, s3, s6, s8) is such a sequence
for (s1, s8) in Fig. 3. Here, we can assume that values of
S (srq , srq+1 , th, th′)’s are already computed before computing

S (sik , sik+1 , t j, t j′). Then, we compute S ′(rq, j, j′) by the fol-
lowing dynamic programming procedure:

S ′(r2, j, j′) = S (sr1 , sr2 , t j, t j′),

S ′(rq+1, j, j′)
= max

j< j′′< j′
{S ′(rq, j, j′′) + S (srq , srq+1 , t j′′ , t j′)}.

Then, we let

S (sik , sik+1 , t j, t j′)

=

{ −∞ if IC(sik , sik+1 , t j, t j′) = 1,
S ′(ik+1, j, j′) otherwise.

Finally, S (s1, sm, t1, tn) gives the score of an optimal
feasible threading. Here we briefly analyze the time com-
plexity. In the dynamic programming procedure, it takes
O(n) time per S ′(rq+1, j, j′). Since there exist O(H ·n2) com-
binations of S ′(rq+1, j, j′), it takes O(Hn3) time in total. As
in CLIQUETHREAD, the total time required for computing
the scores of optimal threadings for substrings is O(mn2).

Theorem 3: If any two pairs in As do not cross, Problem 2
can be solved in O(Hn3 + mn2) time.

In most practical cases, the above condition is not sat-
isfied. However, the condition is satisfied in many practical
cases if we remove several si’s from As. This fact leads to a
combination of exhaustive search and the DP algorithm.

Suppose that A′s is obtained by removing the minimum
number of residues (su1 , . . . , suD) from As so that the condi-
tion of Theorem 3 is satisfied for A′s. For all combinations
of tb1 , . . . , tbD (which are candidates of ψ(su1), . . . , ψ(suD)),
we apply a modified DP procedure for A′s without remov-
ing su1 , . . . , suD from si1 , . . . , siH . In the modified DP pro-
cedure, we check if the constraints relevant to su1 , . . . , suD

are satisfied. For that purpose, we compute a table ICsik for
each sik . ICsik (j) = 1 if and only if IC(sik , suh , t j, tbh) = 1
or IC(suh , sik , tbh , t j) = 1 holds for some suh . Then, we can
check constraints relevant to A′s at the computation of the
score for each leaf in constant time. If the condition is not
satisfied, we let the score for the leaf to be −∞. Clearly, this
exhaustive procedure takes O(nD · (Hn3 + mn2)) time.

BBDPTHREAD uses a simple branch-and-bound pro-
cedure in order to reduce the practical computation time.
The pseudocode of BBDPTHREAD is given below, where
L corresponds to tb1 , . . . , tbd , and L · x means that x is ap-
pended to L.

Procedure BBDPT HREAD(su1 , . . . , suD)
for all sud do

for all j do Td(j)← the score of an optimal
threading under the constraints relevant
to A′s and ψ(sud) = j

sort Td in the decreasing order
S max ← −∞; BBDP({})

Procedure BBDP(L)
if (|L| = D) then

1220
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.5 MAY 2006

compute the score S L of an optimal threading
for L

if S L > S max then S max ← S L

return
if (|L| > 0) then

compute the score S L of an optimal threading
for L

if S L < S max then return
for all j in decreasing order of T|L|+1(j) do

if T|L|+1(j) < S max then return
BBDP(L · t j)

In the practical version, we execute BBDP({}) for sev-
eral appropriate initial values of S max instead of S max = −∞.

We currently use exhaustive search for selecting
su1 , . . . , suD since BBDPTHREAD does not work if D is
large (e.g., ≥ 10). Instead, we may use the following greedy
procedure: select sui with the maximum crossing edges at
i-th greedy step.

5. Computational Experiments

We performed computational experiments on CLIQUETH-
READ and BBDPTHREAD in order to evaluate practical
computation time and usefulness for improving the accu-
racy of profile threading. As target and template protein
pairs, we tested structure data of 9 protein pairs in PDB
[11], which belong to major fold classes of all α proteins,
all β proteins and α-and-β proteins. We used a PC cluster
with Intel Xeon 2.8 GHz CPUs, where it was working under
the LINUX operating system. Though we used a PC cluster,
each algorithm was executed using only one CPU. All algo-
rithms were implemented using C language. The distance
constraints and the parameters used are same as those used
in our related work [18].

For CLIQUETHREAD, we employed the maximum
edge-weight clique algorithm developed by the authors,
which was shown to be one of the fastest clique algorithms
using DIMACS benchmark data [9], [10].

For the comparison of CPU times of CLIQUETH-
READ and BBDPTHREAD, please refer to Table 1 of the
companion paper [18]. The table shows that in the case
of protein pairs 1bbn/1cnt1, 1xyzA/8timA and 1atnA/1atr,
the time taken by CLIQUETHREAD/BBDPTHREAD are
1.5 s/8.3 s, 3279 s/59.9 s and NA/1101 s respectively. NA
means the execution did not finish with in 10 hours.

From this result, it can be observed that CLI-
QUETHREAD is faster than BBDPTHREAD for smaller
proteins, while BBDPTHREAD shows better performance
than CLIQUETHREAD for large proteins (e.g., up to pro-
teins with 300-400 residues). However, CLIQUETHREAD
has some merits: (i) CLIQUETHREAD is faster when dis-
tances between all Lys-Lys pairs are given (because the
clique algorithm works efficiently in this case), (ii) CLI-
QUETHREAD can output a reasonable alignment even
if there does not exist a feasible threading. For exam-
ple, we examined the case of 1atnA/1atr pair in which all

Table 1 Comparison of threading results. The second column shows the
results without using constraints, the third column shows the results with
constraints and the fourth column shows the results of STRALIGN. In each
column, the RMSD and the number of aligned residue pairs are shown in
the form of x/y where x denotes the RMSD and y denotes the number of
aligned residues.

Target/ No With Structure
Template Constraints Constraints Alignment
1bbn/1cnt1 10.35 / 119 8.97 / 127 2.09 / 96
1vltA/1nfn 16.37 / 119 11.43 / 103 2.02 / 102
3sdhA/1dlw 9.10 / 112 6.19 / 106 2.17 / 102
1ten/1ac6A 14.52 / 81 14.04 / 80 2.20 / 70
1bla/1hce 15.06 / 106 4.12 / 118 1.93 / 108
1a3k/1f5f 14.73 / 130 9.14 / 130 2.18 / 106
1bow/1d5yA2 15.39 / 137 14.17 / 135 2.03 / 104
1xyzA/8timA 16.68 / 214 13.15 / 197 2.65 / 130
1atnA/1atr 14.41 / 314 9.01 / 299 1.97 / 260

Lys-Lys distances (i.e., including distances > 24 Å) were
used as constraints. In this case, there did not exist a
feasible threading and thus BBDPTHREAD failed to out-
put an alignment. However, CLIQUETHREAD output a
threading within 31 seconds, in which 300 residue pairs
are superimposed with RMSD= 11.14 Å (recall that CLI-
QUETHREAD took more than 10 hours when Lys-Lys pairs
of distances at most 24 Å were used as constraints). There-
fore, CLIQUETHREAD might be useful when Lys-Lys dis-
tances more than 24 Å are given and/or there does not exist
a feasible threading.

The performance comparison of our constrained
threading algorithm is assessed by comparing our algorithm
with the unconstrained threading using the same scoring
function (sequence-profile score). This is done because
there does not exist any constrained threading method that
directly uses the profiles of PSI-BLAST.

The accuracies of obtained threadings are summarized
in Table 1, where RMSD (Root Mean Square Deviation,
Å) between the superimposed Cα atoms and the number of
superimposed residues (i.e., the number of aligned residue
pairs) are shown for each case. RMSD is the scoring func-
tion to indicated how closely fit are the two aligned struc-
tures.

Let us consider xi and yi be the corresponding Cα atoms
of two structures whose RMSD has to be calculated and
N be the number of Cα residues then the RMSD is given

by

√√√
1
N

N∑
i=1

(xi − yi)2. The lesser is the RMSD, the better

the similarity between the two compared structures. We
also listed the results of structural alignment for the eval-
uation. We employed STRALIGN (http://www.hgc.ims.u-
tokyo.ac.jp/service/tooldoc/stralign) [27] for structure align-
ment, where it was developed by the authors and its per-
formance was considered to be comparable to other struc-
ture alignment algorithms. It should be noted that complete
structural data of two input proteins are given in structure
alignment, while structural data of one input protein is given
in protein threading. The results of structure alignment can
be considered as almost the correct answers.

AKUTSU et al.: DYNAMIC PROGRAMMING AND CLIQUE BASED APPROACHES FOR PROTEIN THREADING
1221

As seen from Table 1, it can be concluded that the ac-
curacies obtained by constrained threading are in general
better than those by unconstrained threading which justifies
that constraints help in obtaining better results. Moreover,
it should be noted that much better results were obtained
by constrained threading for 1bla/1hce and 1atnA/1atr pairs
and hence it can be observed that the constraints are useful in
increasing the efficiency of the prediction. Compared with
the results of structural alignment, the results of constrained
threading were not good for 1ten/1ac6A, 1bow/1d5yA2 and
1xyzA/8timA pairs. However, it is reasonable because the
numbers of superimposed residues by structural alignment
are small in these cases, compared with the sizes of input
structures.

6. Concluding Remarks

In this paper, we showed that protein threading with profiles
and constraints is very hard from a theoretical viewpoint.
This result also suggests that protein threading with pairwise
energy and constraints is very hard because threading with
pairwise energy is much harder than threading with profiles
[7].

From a practical viewpoint, it was shown that informa-
tion about Lys-Lys distances is useful to improve the align-
ment accuracy of profile threading. It was also shown that
the proposed algorithms (especially, BBDPTHREAD) are
useful for threading with up to medium size protein struc-
tures. However, these take very long time for large protein
structures. Therefore, improvement of efficiency of the al-
gorithms is important future work. In particular, there is
much room for improvement on BBDPTHREAD because
a simple branch-and-bound procedure is employed in the
current version. More rigorous computational experiments,
especially experiments on fold recognition, are important
future work, too. Though we considered the threading ap-
proach for structure prediction with constraints, the ab-initio
approach should also be studied [28].

It is interesting that Propositions 1 and 2, and the DP
algorithm used in BBDPTHREAD are similar to our pre-
vious results on protein threading with pairwise energy [7]
though the roles of a target sequence and a template struc-
ture were exchanged there: arcs for target sequences were
mainly considered in BBDPTHREAD, while arcs for tem-
plate sequences were considered in [7]. Using this property
and treating each residue in As as a core region, most exact
algorithms for protein threading with pairwise energy [1],
[19], [20] might be modified for protein threading with pro-
files and constraints in which gaps are allowed everywhere
(note that gaps are not allowed in core regions if simple
modifications are done for the existing algorithms). Such
modifications might be useful for developing faster algo-
rithms for protein threading with profiles and constraints.
Conversely, it would also be interesting to apply the tech-
niques used in CLIQUETHREAD and BBDPTHREAD to
other related problems such as RNA structure comparison.

Acknowledgements

This work was supported in part by Grants-in-Aid
#17017019 and #16300092 from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT) of Japan,
and by the Kayamori Foundation of Information Science
Advancement.

References

[1] Y. Xu, D. Xu, O.H. Crawford, and J.R. Einstein, “A computational
method for NMR-constrained protein threading,” J. Comput. Biol.,
vol.7, pp.449–467, 2000.

[2] M. Albrecht, D. Hanisch, R. Zimmer, and T. Lengauer, “Improv-
ing fold recognition of protein threading by experimental distance
constraints,” Insilico Biol., vol.2, no.3, pp.325–337, 2002.

[3] J. Meiler and D. Baker, “Rapid protein fold determination us-
ing unassigned NMR data,” Proc. Natl. Acad. Sci. USA, vol.100,
pp.15404–15409, 2003.

[4] W. Li, Y. Zhang. D. Kihara, Y.J. Huang, D. Zheng, G.T., Montelion,
A. Kolinski, and J. Skolnick, “TOUCHSTONEX: Protein structure
prediction with sparse NMR data,” Proteins: Struct. Funct. Genet.,
vol.53, pp.290–306, 2003.

[5] M.M. Young, N. Tang, J.C. Hempel, C.M. Oshiro, E.W. Taylor,
I.D. Kuntz, B.W. Gibson, and G. Dollinger, “High throughput pro-
tein fold identification by using experimental constraints derived
from intermolecular cross-links and mass spectrometry,” Proc. Natl.
Acad. Sci. USA, vol.97, pp.5802–5806, 2000.

[6] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D.J. Lipman, “Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs,” Nucleic Acids
Res., vol.25, pp.3389–3402, 1997.

[7] T. Akutsu and S. Miyano, “On the approximation of protein thread-
ing,” Theor. Comput. Sci., vol.210, pp.261–275, 1999. (also in Proc.
RECOMB 1997, pp.3–8).

[8] R.H. Lathrop, “The protein threading problem with sequence amino
acid interaction preferences is NP-complete,” Protein Eng., vol.7,
pp.1059–1068, 1994.

[9] J. Suzuki, E. Tomita, and T. Seki, “An algorithm for finding a max-
imum clique with maximum edge-weight and computational exper-
iments,” Technical Report MPS-42-12, pp.45–48, Information Pro-
cessing Society of Japan, 2002.

[10] E. Tomita and T. Seki, “An efficient branch-and-bound algorithm
for finding a maximum clique,” Lect. Notes Comput. Sci., no.2731,
(Proc. DMTCS 2003), pp.278–289, 2003.

[11] H.M. Berman, J.D. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.
Weissig, I.N. Shindyalov, and P.E. Bourne, “The protein data bank,”
Nucleic Acids Res., vol.28, pp.235–242, 2000.

[12] D. Goldman, S. Istrail, and C.H. Papadimitriou, “Algorithmic as-
pects of protein structure similarity,” Proc. 40th IEEE Symp. on
Foundations of Computer Science, pp.512–522, 1999.

[13] P.A. Evans, “Finding common subsequences with arcs and pseu-
doknots,” Lect. Notes Comput. Sci., no.1645 (Proc. CPM 1999),
pp.270–280, 1999.

[14] T. Jiang, G. Lin, B. Ma, and K. Zhang, “The longest common sub-
sequence problem for with arc annotated sequences,” Lect. Notes
Comput. Sci., no.1848 (Proc. CPM 2000), pp.154–165, 2000.

[15] T. Jiang, G. Lin, B. Ma, and K. Zhang, “A general edit distance be-
tween RNA structures,” J. Comput. Biol., vol.9, pp.371–388, 2002.

[16] G. Lin, Z.-Z. Chen, T. Jiang, and J. Wen, “The longest common
subsequence problem for sequences with nested arc annotations,” J.
Comput. Syst. Sci., vol.65, pp.465–480, 2002.

[17] D. Bahadur K.C., E. Tomita, J. Suzuki, K. Horimoto, and T.
Akutsu, “Clique based algorithms for protein threading with profiles

1222
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.5 MAY 2006

and constraints,” Proc. 3rd Asia Pacific Bioinformatics Conference
(APBC2005), pp.51–64, Singapore, 2005.

[18] D. Bahadur K.C., E. Tomita, J. Suzuki, K. Horimoto, and T. Akutsu,
“Protein threading with profiles and distance constraints using clique
based algorithms,” J. Bioinformatics and Computational Biology, in
press.

[19] J. Xu, M. Li, D. Kim, and Y. Xu, “RAPTOR: Optimal protein thread-
ing by linear programming,” J. Bioinformatics and Computational
Biology, vol.1, pp.95–118, 2003.

[20] R.H. Lathrop and T.F. Smith, “Global optimum protein threading
with gapped alignment and empirical pair score functions,” J. Mol.
Biol., vol.255, pp.641–665,1996.

[21] B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A.
Estreicher, E. Gasteiger, M.J. Martin, K. Michoud, C. O’Donovan, I.
Phan, S. Pilbout, and M. Schneider, “The Swiss-Prot protein knowl-
edgebase and its supplement TrEMBL in 2003,” Nucleic Acids Res.,
vol.31, pp.365–370, 2003.

[22] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological Se-
quence Analysis, Probabilistic Models of Proteins and Nucleic
Acids, Cambridge University Press, Cambridge, UK, 1998.

[23] M.R. Garey and D.S. Johnson, Computers and Intractability, Free-
man, New York, 1979.

[24] J. Håstad, “Clique is hard to approximate within n1−ε ,” Proc. 37th
IEEE Symp. on Foundations of Computer Science, pp.627–636,
1996.

[25] V.V. Vazirani, Approximation Algorithms, Springer, Berlin, 2001.
[26] G. Lancia, R. Carr, B. Walenz, and S. Istrail, “101 optimal PDB

structure alignments: A branch-and-cut algorithm for the maximum
contact map overlap problem,” Proc. 5th Int. Conf. Computational
Molecular Biology, pp.193–202, Canada, 2001.

[27] T. Akutsu, “Protein structure alignment using dynamic program-
ming and iterative improvement,” IEICE Trans. Inf. & Syst.,
vol.E79-D, no.12, pp.1629–1636, Dec. 1996.

[28] K. Yue and K.A. Dill, “Block constraint-based assembly of tertiary
protein structures from secondary structure elements,” Protein Sci.,
vol.9, pp.1935–1946, 2000.

Tatsuya Akutsu received his M.Eng de-
gree in Aeronautics in 1996 and a Dr. Eng. de-
gree in Information Engineering in 1989 both
from University of Tokyo, Japan. From 1989 to
1994, he was with Mechanical Engineering Lab-
oratory, Japan. He was an associate professor in
Gunma University from 1994 to 1996 and in Hu-
man Genome Center, University of Tokyo from
1996 to 2001 respectively. He joined Bioinfor-
matics Center, Institute for Chemical Research,
Kyoto University, Japan as a professor in Oct.

2001. His research interests include bioinformatics and discrete algorithms.

Morihiro Hayashida is currently a re-
search associate in the Laboratory of Biological
Information Networks, Bioinformatics Center at
Kyoto University. He received his Masters de-
gree from Graduate School of Information Sci-
ence at The University of Tokyo and Doctors de-
gree from Kyoto University. His research inter-
ests include functional analysis of proteins and
development of computational methods for pro-
tein interaction prediction.

Dukka Bahadur K.C. is currently a Ph.D.
course student in Laboratory of Biological Net-
work analysis, Bioinformatics Center, Kyoto
University. He received his B.Eng. in 2001 and
M.Inf. degree in 2003 both from Kyoto Univer-
sity. His current research interests include de-
velopment of computational methods for protein
structure prediction.

Etsuji Tomita received his B.Eng. and
Dr.Eng. degrees in Electronics Engineering
from Tokyo Institute of Technology, Japan, in
1966 and 1971, respectively. Then he was with
the faculties of Tokyo Tech., and was appointed
Associate Professor at the University of Electro-
Commmunications, Japan. Since 1986, he has
been a Professor at UEC. His research interests
include combinatorial optimization problems,
theory of automata and formal languages, and
algorithmic learning theory. He was awarded

the Funai Information Technology Prize in 2003, and is presently a Fel-
low of IPSJ.

Jun’ichi Suzuki graduated from the
Department of Information and Communica-
tion Engineering, the University of Electro-
Communications, Japan, in March 2003. Since
April 2003, he has been in the Graduate School
of Electro-Communications, the University of
Electro-Communications, Japan. He was given
the IPSJ Yamashita SIG Research Award in July
2003. He has been working in the algorithms for
solving combinatorial optimization problems.

Katsuhisa Horimoto received his M.Sc.
degree in Biophysics from Science Univer-
sity of Tokyo, Japan, and his Ph.D. degree in
Biophysics from Science University of Tokyo,
Japan, in 1991. From April 1991 to March
1997, he was at Science University of Tokyo
as a research associate, and from April 1997 to
September 2001, he was at Saga Medical School
as an associate professor. Since October 2001,
he has been a professor in Institute of Medical
Science, University of Tokyo.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

