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Abstract: A new physical-geometric optics method is developed to compute the single-
scattering properties of faceted particles. It incorporates a general absorption vector to 
accurately account for inhomogeneous wave effects, and subsequently yields the relevant 
analytical formulas effective and computationally efficient for absorptive scattering particles. 
A bundle of rays incident on a certain facet can be traced as a single beam. For a beam 
incident on multiple facets, a systematic beam-splitting technique based on computer graphics 
is used to split the original beam into several sub-beams so that each sub-beam is incident 
only on an individual facet. The new beam-splitting technique significantly reduces the 
computational burden. The present physical-geometric optics method can be generalized to 
arbitrary faceted particles with either convex or concave shapes and with a homogeneous or 
an inhomogeneous (e.g., a particle with a core) composition. The single-scattering properties 
of irregular convex homogeneous and inhomogeneous hexahedra are simulated and compared 
to their counterparts from two other methods including a numerically rigorous method. 
© 2017 Optical Society of America 
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1. Introduction 
The single-scattering properties of dielectric particles are fundamental to the study of 
radiative transfer and remote sensing [1]. The governing equations are Maxwell’s equations 
in conjunction with appropriate boundary conditions [2]. For homogeneous spherical 
particles, solutions can be analytically obtained using the Lorenz-Mie theory (LMT) [3–5]. 
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The generalized Lorenz-Mie theory is given for a case where the incident wave is not a plane-
wave, such as a Gaussian beam or other beam forms [6]. The multiple-scattering T-matrix 
method is given in terms of a synergistic combination of the LMT and addition theorem [7–9] 
when there are multiple spheres [10–13]. As a semi-analytical solution, T-matrix method 
stems from the expansion of vector spherical wave functions. Two effective realizations of 
the T-matrix method are the extended boundary condition method (EBCM) [14–16] and the 
invariant-imbedding T-matrix (IITM) method [17, 18]. Furthermore, the random orientation 
condition for a scattering particle can be analytically implemented in conjunction with the T-
matrix method [19, 20]. In addition to the aforementioned analytical and semi-analytical 
methods, a number of methods that are numerically rigorous, such as the finite-difference 
time-domain (FDTD) [21, 22] and the pseudo-spectral time domain (PSTD) [23] in 
conjunction with the PML conditions [24], the discrete dipole approximation (DDA) [25–27], 
and the multilevel fast multi-pole method [28] are widely used to compute the single-
scattering properties of particles. For these methods, the random-orientation condition for the 
single-scattering properties has to be obtained by averaging the corresponding computational 
results over a finite number of specific orientations [29]. The computational time and the 
computer memory usage associated with the computation of the single-scattering properties 
of non-spherical particles increases exponentially with the size of the scattering particle. 
Correspondingly, the maximum size of applicability of the aforementioned methods is quite 
limited. Thus, the geometric optics method is inevitably required in the case of light scattering 
by moderate and large particles with the size parameters beyond the resonance regime where 
the incident wavelength is comparable to the particle size. 

The conventional geometric optics method (CGOM) uses an enormous number of rays to 
trace the electromagnetic near field using Snell’s law and the Fresnel Formulas but ignores 
the mapping process from the near field to the far field [30, 31]. The ray-by-ray integral 
(RBRI) method not only uses the ray-tracing technique to compute the electromagnetic near 
field but also accurately maps the near field to the far field via the following volume-integral 
equation [32–34]: 
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where the superscript ‘s’ indicates the scattered electric field and 0k  is equal to 2π / λ  with 
λ  being the incident wavelength. Other notations are explained in Table 1. The integral over 
the volume V includes the contributions from all the rays including all order of their sub-
segments. The volume-integral equation includes not only the near field ( )sE r



  but also the 
scattering direction. r ′  Subsequently, for every ray segment, a mapping computation for all 
required scattering directions is necessary. Even though the far-field mapping in the RBRI 
uses the physical optics method, the RBRI is computationally inefficient, particularly in the 
case of particles with random orientations. However, if particles are faceted, all rays incident 
on an individual facet can be analytically expressed and be treated collectively as a single 
beam. Consequently, the near field can be analytically obtained through the beam-tracing 
technique. The number of beams, dependent only on the particle shape, is significantly 
reduced as compared to the original number of rays in the RBRI. The new algorithm using the 
analytical beam-tracing process in the near-filed and the accurate mapping process in the far 
field is named the physical-geometric optics method to distinguish between this approach and 
the RBRI [35, 36]. For the physical-geometric optics method, two substantial aspects 
associated with the analytical near-field achievement are the beam splitting and the process 
associated with absorptive particles. When a beam impinges on multiple facets, a beam 
splitting is necessary to ensure that each sub-beam is incident only on one facet so that the 
analytical formulas can be employed. In addition, if a particle is absorptive, the plane waves 
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become inhomogeneous, that is, the planes of constant phase are not in parallel with those of 
constant amplitude. The constant phase plane is perpendicular to the propagation direction 
while the constant amplitude plane for the order p = 0 is perpendicular to the particle facet 
and has to be traced for the orders p>0 using the boundary conditions [37]. The record of the 
reflection-refraction events is represented by symbol p, where p = 0 indicates the external 
reflection and internal refraction occurrence. Regarding a propagating vector, an absorptive 
vector has to be defined to account for the aforementioned inhomogeneous effect in 
absorptive particles. An algorithm developed by Bi et al. [35], referred to as the physical-
geometric optics hybrid (PGOH) method, uses a simple geometric technique to split the 
original beam into sub-beams. The geometric beam-splitting technique is only applicable to 
homogeneous convex particles; moreover, it may substantially increase the number of sub-
beams for practical application and, thus, can become inefficient in the near-to-far field 
mapping process. Though the PGOH defines an absorptive vector to account for the 
inhomogeneous effect associated with an absorptive particle, the absorptive vector is only 
defined for a homogeneous particle. Furthermore, the variables with respect to the absorptive 
vector in the PGOH may be divergent in extremely strong absorptive cases associated with 
large sizes. 

In this study, a general absorption vector is defined and is applicable to arbitrarily faceted 
particles. Correspondingly, the real parameters, including the refractive index, phase and 
wave vector, are systematically generalized to effective complex parameters when the particle 
is absorptive so that the convergence is ensured in a general case. Most importantly, the 
divide-and-conquer algorithm based on computer graphics [38], including translation, 
projection, and the polygon-clipping algorithm, are employed to split an original beam into 
several sub-beams that are incident on individual facets. The beam-splitting technique ensures 
the most efficient splitting of an original beam. Compared to the PGOH, the method reported 
in the paper, named the physical-geometric optics method (PGOM) to be differentiated from 
the PGOH, significantly reduces the computational time by a factor of 3 to 10, depending on 
particle shape and refractive index. Based on the techniques and the effective parameters, the 
PGOM can be applied to arbitrarily faceted particles. 

This paper is divided into five sections. Sections 2 and 3 present theoretical framework of 
the amplitude scattering matrix in terms of the geometric optics and then the physical optics 
methods, respectively. The assessment the numerical performance of the PGOM in 
comparison with the PGOH and the IITM is given in section 4. The conclusions for the study 
are given in section 5. 

2. Geometric Optics 
If the incident wave is not a plane wave, it can be expanded in terms of the plane waves based 
on the Fourier expansion technique. For this reason, a plane wave incidence is assumed in this 
study. Geometric optics assumes that an incident wave can be replace by a large number of 
localized rays with their respective phases, amplitudes, and cross-sections and that the 
propagation and the reflection/refraction of a localized ray obey the same principle as those of 
the corresponding plane wave [4, 39]. When an incident wave is intercepted by a particle, the 
reflected and refracted waves can be computed using Snell’s law and the Fresnel formulas. 
The same reflection-refraction events are recursively repeated for the following ones. Figure 
1 shows the incident planes for the reflection-refraction events with order p = 0 and p>0. The 
normal to the particle facets in Fig. 1 is such that, ˆ ˆ 0p pn e⋅ < . Media 1 and 2 in the panel (b) 
of Fig. 1 are to represent the multi-layer cases; otherwise, medium 2 is air. All the symbols 
used in the paper are summarized in Table 1. 

Table 1. Symbols used in the formulas in this paper. 

m Complex refractive index (the imaginary part is positive) 
N Effective complex refractive index (the imaginary part is positive) 
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φ Real phase 
ψ Imaginary phase (amplitude attenuation factor) 
φ Complex phase 
Φ Complex phase difference 
k


 Complex wave vector 

κ


 Complex wave vector difference 

r  Position vector in any position, originating from the Laboratory frame origin 
,ω υ
   Position vector in a beam cross-section, originating from the first vertex 

r  Unit vector in scattering direction 

n  Outward normal to a plane 

e  Unit vector normal to the plane of constant phase 

,α β




 

Unit vectors parallel and perpendicular to the incident plane, respectively 

A


 Vector normal to the plane of constant amplitude 
p Reflection-refraction order 
Nv Total vertex number of a beam cross-section 
j Vertex enumeration of a beam cross-section in subscript 
i Imaginary unit in expression; incident quantities in superscript or subscript 

 

Fig. 1. Diagrams showing the reflection-refraction events at order p = 0 and p>0. For p>0, the 
superscripts ‘s’, ‘r’, and ‘t’ represent the scattered, reflected and refracted quantities. 

eβ α× =


   Here, the subscript ‘i’ represents the incident quantities. All other subscripts 
correspond to the reflection-refraction order p. 

2.1 Beam-tracing 

For a faceted particle, a bundle of rays incident on the same facet can be treated as one single 
beam. The beam cross-section on the facet is a polygon. The beam from the p-th order to the 
(p + 1)-th order is a prism whose two ends lay on the corresponding two facets. Figure 2 
illustrates a systematic beam prism assuming that its two ends are pentagons. 
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Fig. 2. A systematic beam prism obtained from the p-th order to the (p + 1)-th order. 

The electric field at the first vertex of the p-th order beam cross-section can be written as 
follows: 
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where pU  indicates the Fresnel coefficients in the previous orders and the corresponding 
rotations; the real and imaginary components of the effective phase ,1pφ  are calculated by the 
following recurrence relations: 

 0,1 0,1 0,1,ˆ 0,ie rϕ ψ⋅ ==
  (4) 

 ,1 1,1 , ,1 1,1 ,p p r p p pr rNϕ ϕ − −−+=
   (5) 

 ,1 1,1 , ,1 1,1 ,p p i p p pN r rψ ψ − −= + −
   (6) 

 , , .p r p i pNN iN= +  (7) 

where pN  is the effective refractive index. The Fresnel formula and the effective refractive 
index are given in Chang et al. [37] and partially discussed by Bi et al [40]. 

The effective wave vector can be defined in terms of a general absorptive vector as 
follows: 
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The absorption vector pA


 depicting the inhomogeneity of absorptive particles is given in 
terms of a recurrence relation. The electric field in any position of the p-th order beam cross-
section is 
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pω
  is a position vector on the p-th order beam cross-section, originating at the first vertex. 

Correspondingly, any position in the beam prism is 
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The energy in the p-th order beam cross-section can be obtained 
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In the above two equations, ,r pN  denotes the light speed ratio in vacuum and the scattering 
medium, the factor ½ is from the average of the parallel and perpendicular components, 

, , 1, 2ij
p i jU =  are the matrix elements of, pU  and pD  stands for the absorption. 

2.1 Beam-splitting 

When a beam in the p-th order is incident on multiple facets, a beam splitting is necessary to 
ensure the split sub-beam is incident only on a single facet. A systematic computer graphics 
method is used to implement the beam splitting procedure [38]. This approach for the beam-
splitting procedure is the so-called divide-and-conquer algorithm [38]. The beam-splitting 
procedure is a complicated three-dimensional problem. Thus, it substantially simplifies the 
computation if we transform the three-dimensional problem into a two-dimensional problem 
in terms of some useful transformations. Specifically, the transformations include translation, 
rotation, and projection. After using an efficient algorithm to solve the two-dimensional 
problem, we use the transformations to transform the two-dimensional results to the three-
dimensional solution. 
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Fig. 3. Translation, rotation, and projection process. 

We use a convex hexahedron shown in Fig. 3 as an example to show the beam-splitting 
technique. We suppose that a plane wave (not illustrated in Fig. 3(a)) is incident on the 
bottom surface. The external reflected wave goes back to the air and no further beam-splitting 
is necessary. However, the refracted beam (the green arrows shown in Fig. 3(a)) is incident 
partially on the top facet and partially on the side facets. Here the incidence on the top surface 
is used as an example to illustrate the standard beam splitting procedure. The incidence on the 
side facets can be accomplished using the following standard process. The red arrows shown 
in Fig. 3(a) are the local frame of reference attached to the bottom surface. Figure 3(b) shows 
the local frame of reference (in red arrows) and the global frame of reference (in blue arrows). 
The first step implements translational and rotational operations to transfer all the quantities 
from the global frame of reference (the blue arrows) to the local frame of reference (the red 
arrows) and to define the bottom surface as the x-o-y plane. The corresponding translational 
and rotational matrices in the affine space are: 

 , , ) ,
1 0 0
0 1 0
0 0 1
0 0 0 1

( L L L
L

L

L

y z
x

x

z

T

y

=  
− 

 −
 

− 
 
 

 (15) 

 
3

,
0

0 1

R
R

=  
 
  

 (16) 

where , ,L L Lx y z  is the origin of the local frame of reference relative to the global frame of 
reference and R3 is the 3-dimensional rotational matrix in vector space. All quantities are 
expressed in the local frame of reference. Fig. 3(c) shows the projection process that all 
vertices on the top facet are projected along the opposite beam propagation direction (the 
green arrows) onto the bottom surface (the x-o-y plane of the local frame of reference) and 
the projection matrix in affine space can be written as: 
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where ( , , )x y ze e e  is the propagation direction (the green arrows in Fig. 3(a)). After these 
transformations, the points from the projection of the top vertices and the points from the 
bottom vertices locate on the x-o-y plane of the local frame of reference. Correspondingly, in 
Fig. 3(c), the green polygon is from the projection of the top facet. The bottom facet is 
actually the cross-section of the original beam. The green polygon is used to clip the bottom 
polygon and the beam with the clipped polygon is definitely incident on the top facet. The 
beam-splitting problem now turns into the polygon-clipping problem. 

For clarity, the polygon of the original beam cross-section (the bottom facet here) and the 
polygon from the projection of the potentially incident facet (the top facet here) are referred 
to as the subject polygon and the clipping polygon, respectively., The polygon clipped off the 
subject polygon by the clipping polygon is referred to as the clipped polygon. An effective 
method, called the Weiler-Atherton algorithm [38], is used to illustrate the polygon-clipping 
procedure. The algorithm is robust and cannot only deal with the case where the subject and 
clipping polygons are both convex, such as polygons shown in the bottom facet of Fig. 3(c), 
but can also deal with the cases where the polygons can even be concave or even have holes 
in them. Figure 4 shows the schematic process of the Weiler-Atherton algorithm, where S, C, 
and I represent subject, clipping vertices, and intersection point, respectively. The new subject 
and clipping polygons are used to better illustrate the Weiler-Atherton algorithm in Fig. 4. 

The upper-left panel in Fig. 4 shows the subject and the clipping polygons and the 
corresponding vertices and intersection points; the upper-right panel is the subject list and the 
lower-right panel is the clipping list; the lower-left lists the vertices of the clipped polygon. 
We first need to find all intersection points between the subject polygon and the clipping 
polygon and divide these points into the entering points (I1, I3, and I5) and leaving points (I2, 
I4, and I6) clockwise along the subject polygon. Then, the vertices from the subject polygon 
and from the clipping polygon and the intersection points can be formed to create the subject 
and clipping cyclic linked lists, respectively. The vertices of the clipped polygon are started 
from one of the entering points (here I1 in the upper-right panel), named as the starting 
entering point, in the subject linked list and followed in a clockwise manner to points after the 
entering point until a leaving point (here I2 in the upper-right panel) is encountered. Then, the 
vertices of the clipped polygon have to switch to the corresponding leaving point (here I2 in 
the lower-right panel) in the clipping list. After the leaving point is selected, the preceding 
procedure needs to be continued with the remaining points (here only I3 in the lower-right 
panel) in a clockwise manner until an entering point is encountered. The process of finding 
the vertices of the clipped polygon is repeated by going back to the entering point in the 
subject list and to the leaving point in the clipping list (here I3 and I4 in the upper-right panel, 
then I4 and I5 in the lower-right panel, then I5, S4, and I6 in the upper-right panel, the I6 and 
I1 in the lower-right panel, and then I1 in the upper-right panel). The process can be stopped 
unless the starting entering point (here I1 in the upper-right panel) is encountered. The 
clipped polygon is obtained by the aforementioned algorithm. If there are still no encountered 
entering points, the same processes are needed to find the next clipped polygon until all the 
entering points are exhausted. Even though there are three entering points in Fig. 4, staring at 
any one of the entering points one can encounter all the entering points so that only one 
clipped polygon is obtained as shown in the lower-left panel. If no intersection is obtained, a 
ray-casting algorithm [38] is employed to determine if the clipping polygon is inside of the 
subject polygon or not so that the clipping polygon is the clipped polygon or not. 
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The clipped polygons are transformed using the reverse rotational and translational 
processes back to the three-dimensional polygons in the global frame of reference. The 
transformed clipped polygons are the required sub-beams, which are definitely incident on 
individual facets. 

 

Fig. 4. The schematic Weiler-Atherton algorithm. 

3. Physical Optics: Mapping from Near Field to Far Field 
3.1 Amplitude Scattering Matrix 

The near electric field in Eq. (1) can be approximately obtained in terms of the beam tracing 
process and the near and far fields can be decomposed into parallel and perpendicular 
components. The Eq. (1) can be represented as a summation over the scattering order p: 
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The matrix pK  illustrates the transformation to different frames of reference and the near 
electric field is given in Eqs. (2), (10), and (11). Substituting Eq. (11) into Eq. (18), a compact 
form can be given by: 
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where the integral in Eq. (18) is included in the integral factor pq : 
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We can write the integral factor pq  in the form of: 
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Consequently, the far-field in Eq. (20) can be analytically expressed as: 
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The amplitude scattering matrix related to the incident and the scattering electric field can be 
given as: 
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Γ  is related to the rotation of the frame of reference. The sign “ 〈 〉  ” means the summation of 
reflected and refracted beams if the refracted beam is not the air. 

3.2 Integrated Scattering Properties 

The extinction and absorption cross sessions can be expressed using the same processes 
described in section 3.1 as follows: 
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In Eq. (34), 11S  and 22S  are the matrix elements of the amplitude scattering matrix given by 
Eq. (32). The extinction cross section is a manifestation of the optical theorem. The 
absorption cross section in Eq. (34) heuristically shows the difference of the incoming and 
outgoing energy for each order p in terms of Eq. (13). The factor ½ stands for the average of 
the perpendicular and parallel components. 

4. Validations 
With no loss in generality, two randomly generated irregular hexahedra are employed to 
compare the phase matrix elements in both homogeneous and inhomogeneous cases. Table 2 
lists the vertices of the two hexahedra, where the radii of its smallest circumscribed sphere are 
unity. Figure 5 shows the two hexahedra used to do the validations. The size given in use is 
scaled according to the shape. All codes used here are parallelized using the Message Passing 
Interface (MPI). 

Table 2. Vertices of two hexahedra. The two shapes are normalized so that the radii of 
their circumscribed spheres are unity. 

 Hexahedron 1 Hexahedron 2 
V1 (−0.145435, −0.108740, 0.255752) (−0.147164, −0.096923, 0.268810) 
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V2 (0.036896, −0.197196, 0.200786) (0.075715, −0.123441, 0.335384) 
V3 (0.032048, 0.211640, 0.442543) (0.178159, 0.212427, 0.456195) 
V4 (−0.106788, 0.206650, 0.441630) (−0.255321, 0.207136, 0.311977) 
V5 (−0.265424, −0.077406, −0.447325) (−0.126923, −0.265593, −0.322892) 
V6 (−0.245286, 0.159181, −0.359473) (−0.300638, 0.190611, −0.421459) 
V7 (0.303837, 0.190634, −0.135239) (0.350472, 0.196127, −0.314243) 
V8 (0.256585, −0.320537, −0.326506) (0.145396, −0.306316, −0.271473) 

 

Fig. 5. Three hexahedra used in the comparisons. The panel (a) is marked as hexahedron 1 and 
the panel (b) is hexahedron 2. The normalized vertices are given in Table 2. The panel (c) is an 
inhomogeneous hexahedron with hexahedron 1 included with hexahedron 2. 

4.1 Compared to PGOH 

The physical-geometric optics hybrid (PGOH) method is developed by Bi et al. in [41] and is 
extensively used in the light scattering by faceted particles (e.g [42].). The PGOH is 
employed to verify the current method on the basis of the physical-geometric optics. The 
computational time of the physical-geometric optics method is highly dependent on the beam 
number. Compared to the PGOH, the current beam-splitting technique using computer 
graphics ensures the most effective splitting of the beams so that the computational time is 
significantly reduced. 

 

Fig. 6. Comparisons of the phase matrix elements of the hexahedron 2 in random orientation 
calculated by the PGOH and the present PGOM. The incident wavelength is 0.658µm and the 
equivalent-volume radius is 8.0µm. The refractive index is 1.12 + i0.0005. 
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Figure 6 shows the comparisons of the phase matrix elements of a single hexahedron, 
calculated by the PGOH and the PGOM under the random orientation condition. The 
hexahedron is shown in Fig. 5(b). The two methods give the same results. However, the 
PGOH is three times faster than the PGOM because of the introduction of the new beam-
splitting technique that leads to the most efficient beam-splitting implementation. 

 

Fig. 7. Comparisons of the phase matrix elements of inhomogeneous hexahedra, calculated by 
the PGOH and the PGOM under the random orientation condition. The incident wavelength is 
0.658 µm. The inner layer is hexahedron 1 and the equivalent-volume radius is 4.68 µm while 
the outer layer is hexahedron 2 and the corresponding radius is 8.0 µm. The refractive indices 
of the hexahedra 1 and 2 are 1.12 + i0.0005 and 1.0 for panel (a) and 1.12 + i0.0005 and 1.12 + 
i0.0005 for panel (b). 

Figure 7 shows the comparisons of the phase matrix elements of the inhomogeneous 
hexahedra, calculated by the PGOH and the PGOM under random orientation condition. The 
PGOH code is only for simulations for the homogeneous cases. Two cases are set up to verify 
the PGOM code and are effectively homogeneous cases. Consequently, the results of Fig. 
7(b) are the same as the ones of Fig. 6. Even if the two cases are equivalent to a homogeneous 
particle, the beam-splitting process in the PGOM is still triggered because this process is only 
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dependent on the shape and not the refractive index. The PGOM agrees perfectly with the 
PGOH. The two cases verify the PGOM in the beam-splitting process and the inhomogeneous 
scenarios. 

4.2 Comparison to highly accurate IITM method 

The invariant-imbedding T-matrix (IITM) method is an accurate semi-analytical method. It 
uses the vector spherical wave functions to expand the incident and the scattered fields. The 
T-matrix that transforms the incident field to the scattered field can be written as a matrix 
Riccati equation or an iterative equation. The equation can be solved in terms of the invariant 
imbedding technique. It was pioneered by Johnson [17] and the state-of-the-art numerical 
implementation of it has been accomplished by Bi et al. [18]. The IITM and the EBCM are 
the two most efficient realizations for obtaining the T-matrix of a scattering particle. The 
EBCM is basically a surface-integral algorithm so that the T-matrix method using the EBCM 
is not stable for large particles or for a particle with a large aspect ratio. The IITM, however, 
is a volume-integral algorithm and the imbedding process for each iteration is within the same 
radius so that the IITM is extremely stable for large particles. For example, the phase matrix 
of a spheroid with size parameters of its semi-major and semi-minor axes around 445 and 390 
can be obtained using the IITM [43]. Furthermore, the IITM can be applied to particles 
without any symmetry and inhomogeneous as well [20]. Due to its stability, the process 
involving T-matrix iteration is parallelized using MPI to terminate the memory limitation for 
T-matrix computation [44]. A significant advantage of the T-matrix method is that the 
random orientation results can be automatically obtained once the T-matrix is given. The 
formulas for particles with rotational symmetry are given by Mishchenko [19] and have been 
generalized to particles without any symmetry by Bi and Yang [20]. In order to obtain the 
single-scattering properties of large particles under random orientation, the random 
orientation process in the IITM is parallelized using MPI by the current authors so that the 
memory limitation toward the IITM is ultimately terminated. The IITM code is used as a 
benchmark in this study to validate the accuracy of the PGOM. 

 

Fig. 8. Comparisons of the phase matrix elements of hexahedron 2, calculated by the PGOM, 
the CGOM and the IITM under random orientation condition. The equivalent-volume radius is 
8.0µm and the incident wavelength is 0.658µm. The refractive index is 1.12 + i0.0005. 

Figure 8 shows the comparisons of phase matrix elements of hexahedron 2, shown in Fig. 
5(b), calculated by the PGOM and the IITM under the random orientation condition. The 
inset of the P11 panel shows the same forward scattering between the PGOM and the IITM 
while the CGOM shows some discrepancies because the phase interference between the 
diffraction and the transmitted rays is automatically taken into consideration by the PGOM. 
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The CGOM and the PGOM show the similar accuracy except the forward scattering because 
the particle size is approaching the geometric regime. Even though the near field for the 
PGOM is obtained using the ray-tracing method, the results calculated by the PGOM still 
agree well with the ones calculated by the IITM. 

 

Fig. 9. Comparisons of the phase matrix elements of a hexagonal column with a unit aspect 
ratio (defined as the height over the diameter of the circumscribed circle of the bottom 
hexagon), calculated by the PGOM and the IITM under the random orientation condition. The 
height of the column is 20.94µm and the incident wavelength is 0.658µm. The refractive index 
is 1.33. 

Figure 9 shows the comparisons of the phase matrix elements of a hexagonal column with 
a unit aspect ratio, calculated by the PGOM and the IITM under the random orientation 
condition. The refractive index for the column is 1.33. The results obtained by the PGOM and 
the IITM are in agreement even for the oscillations of elements P12/P11 and P22/P11. 

 

Fig. 10. Comparisons of the phase matrix elements of the inhomogeneous hexahedron, 
calculated by the PGOM and the IITM under the random orientation condition. The incident 
wavelength is 0.658µm. The equivalent-volume radii of hexahedron 1 and 2 are 4.6 µm and 
8.0 µm. The refractive indices of the inner layer and outer layer are 1.12 + i0.0005 and 1.03 + 
i0.005, respectively. 

Figure 10 shows comparisons of the phase matrix elements of the inhomogeneous 
hexahedron, shown in the Fig. 5(c), calculated by the PGOM and the IITM under the random 
orientation condition. The incident wavelength is 0.658 µm and the radius of the 
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circumscribed sphere of the hexahedron is roughly 14.8µm, that is, its size parameter is 
around 141. The PGOM agrees quite well with the IITM in spite of the fact that the PGOM is 
an approximate method. There are some small discrepancies in the backward directions. Since 
the refractive indices of the inhomogeneous hexahedron are close to unity, the right four 
panels show features similar to those of soft particles. These results validate the accuracy of 
the present physical-geometric optics method. 

The total beam number determines the computational time of the PGOM. Consequently, 
the simulation time is increased with the increase of the number of facets of a particle. 
Moreover, the simulation of an inhomogeneous particle takes longer time than that of a 
homogeneous particle. However, the advantage of the PGOM is that its computational time 
depends only on the particle shape rather than the particle size. As for a particle with non-
facet geometry, the light scattering simulation can be accomplished by approximately faceting 
the geometry. Therefore, the PGOM can be employed for particles with arbitrary geometries. 

5. Conclusion 
The present physical-geometric optics method has focused exclusively on faceted particles. It 
uses a ray-tracing technique to analytically obtain the electromagnetic near field and 
subsequently maps the near field to the far field. All rays incident on a specific facet can be 
simultaneously traced and treated as a single beam. If a beam propagates toward multiple 
facets, a beam-splitting technique is necessary to ensure that each split beam is incident on an 
individual facet. The beam-splitting process is efficiently accomplished by the use of 
computer graphics technique. If the medium is absorptive, the plane wave during propagation 
is inhomogeneous that the planes of constant phase are not in parallel with those of constant 
amplitude. A general absorption vector is defined to account for the absorption of the beams 
for any homogeneous and inhomogeneous particle. A systematic derivation from the 
geometric optics to the physical optics method is given in this study. Parameters, such as 
phase and the refractive index, are generalized to a series of effective counterparts in the 
general formulas, which are then reduced to the corresponding quantities in a non-absorptive 
medium. The application regime of the present method is generalized from a convex 
homogeneous particle to an inhomogeneous convex or concave particle. The assessment of 
the PGOM in comparison with the PGOH is performed in a homogeneous case and two 
inhomogeneous cases. The comparisons between the results obtained with the PGOM and the 
highly accurate method IITM show close agreement. 
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