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Abstract. In this work we prove the existence of a global attractor for the non

local evolution equation
∂m(r,t)

∂t
= −m(r, t) + tanh (βJ ∗ m(r, t)) in the space of τ -

periodic functions, for τ sufficiently large. We also show the existence of non constant
(unstable) equilibria in these spaces.

1. Introduction. We consider here the non local evolution equation

∂m(r, t)
∂t

= −m(r, t) + tanh (βJ ∗ m(r, t)) (1.1)

where m(r, t) is a real function on R × R+; β > 1, J ∈ C1(R) is a non negative
even function with integral equal to 1, and whose support is the interval [−1, 1].
The ∗ product denotes convolution, namely:

(J ∗ m) (x) =
∫
R

J(x − y)m(y) d y .

This equation arises as a continuum limit of one-dimensional Ising spin systems
with Glauber dynamics and Kac potentials [6]; m represents then a magnetization
density and β−1 the temperature of the system.

Equation (1.1) clearly has the spatially homogeneous equilibria 0 and ±mβ ; mβ

being the positive solution of the equation

mβ = tanhβmβ . (1.2)

It also has been proved in [5] that, in the space of continuous bounded functions
in R, there exists a exponentially stable stationary solution whose asymptotic values
at ±∞ are ±mβ (the instanton).

We consider here the same equation restricted to the subspace P2τ of functions
periodic in space with a given period 2τ , τ > 1. As we will see below this leads
naturally to the consideration of a flow in L2(S1), where S1 denotes the one di-
mensional unit sphere. In this space, one can show existence of a global compact
attractor and the existence of stationary solutions in addition to the ones mentioned
above (see [7] for a similar approach in the case of a semilinear parabolic equation).
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2. The flow in L2(S1). We start by observing that, using uniqueness of solutions,
it is easy to show that P2τ is invariant under the flow defined by (1.1). Now, if
τ > 1 is a given positive number, we define Jτ as the 2τ periodic extension of the
restriction of J to [−τ, τ ].

Lemma 2.1. If u ∈ P2τ , then

(J ∗ u)(x) =
∫ τ

−τ

Jτ (x − y)u(y) d y.

Proof: If u ∈ P2τ , then

(J ∗ u)(x) =
∫
R

J(x − y)u(y) d y

=
∫ x+τ

x−τ

J(x − y)u(y) d y

=
∫ x+τ

x−τ

Jτ (x − y)u(y) d y

=
∫ τ

−τ

Jτ (x − y)u(y) d y.

In view of this lemma, the problem (1.1), restricted to P2τ , with τ > 1, can be
written as

∂m(x, t)
∂t

= −m(x, t) + tanh
(

β

∫ τ

−τ

Jτ (x − y)m(y) d y

)

Now, define ϕ : [−τ, τ ] → S1 (the exponential map), by

ϕ(x) = ei π
τ x

and, for any u ∈ P2τ , v : S1 → R by

v(ϕ(x)) = u(x).

In particular, we write J̃(ϕ(x)) = Jτ (x). Then, a simple computation shows that
u = u(x, t) is a 2τ -periodic solution of (1.1) if and only if v(w, t) = u(ϕ−1(w), t) is
a solution of

∂m(w, t)
∂t

= −m(w, t) + tanh
(
βJ̃ ∗ m(w, t)

)
(2.1)

where now ∗ denotes convolution in S1, that is
(
J̃ ∗ m

)
(w) =

∫
S1

J̃(w · z−1)m(z) d z

and d z = τ
π d θ where d θ denotes integration with respect to arclength. This will

be the measure adopted in S1 in the sequel. From now on, we drop the˜sign in J
for simplicity.

Equation (2.1) generates a C1 flow T (t) in X = L2(S1) since its right-hand side
is a Lipschitz continuous function in this space.
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3. Existence of the global attractor. In this section we prove the existence of
a global maximal invariant compact set A ⊂ X for the flow T , which attracts the
bounded sets of X (the global attractor) (see [1] or [8]).

We recall that a set B ⊂ X is an absorbing set for the flow T if, for any bounded
set C in X, there is a t1 > 0 such that T (t)C ⊂ B for any t ≥ t1 (see [8]).

Lemma 3.1. For any ε > 0, the ball of radius
√

2τ
1−ε is an absorbing set for the flow

T (t).

Proof: For u ∈ X, we denote the norm of u by ||u||. Let u(t) = T (t)u. Then,
while ||u|| ≥

√
2τ

1−ε , we have

d

d t

∫
S1

|u|2 d z = −2
(∫

S1
u2 d z −

∫
S1

u tanh(βJ ∗ u) d z

)

≤ −2
∫

S1
u2 d z + 2

(∫
S1

u2 d z

) 1
2

(∫
S1

(tanh(βJ ∗ u))2 d z

) 1
2

≤ −2
∫

S1
u2 d z + 2

√
2τ

(∫
S1

u2 d z

) 1
2

≤ −2(||u||2 −
√

2τ ||u||)

≤ −2||u||2(1 −
√

2τ

||u|| )

≤ −2ε||u||2

Therefore, while ||u|| ≥
√

2τ
1−ε , we have

d

d t
||u(t)||2 ≤ −2ε||u||2

Thus

||u(t)|| ≤ e−ε(t−t0)||u(t0)||. (3.1)

and the result follows immediately.

Remark 3.2. The estimate (3.1) above actually shows uniform exponential decay
with rate ε to the ball of radius

√
2τ

1−ε .

Theorem 3.3. There exists a global attractor A for the flow T (t) generated by 2.1
in X, which is contained in the ball of radius

√
2τ .

Proof: If u(w, t) is a solution of (2.1), we have by the variation of constants
formula

u(w, t) = e−tu(w, 0) +
∫ t

0

es−t tanh {β(J ∗ u)(w, s)} d s . (3.2)

Write T1(t)u(w) = e−tu(w, 0), T2(t)u(w) =
∫ t

0
es−t tanh {β(J ∗ u)(w, s)} d s and

suppose u(·, 0) ∈ C, where C is a bounded set in X contained, say, in a ball of
radius R. Then ||T1(t)u|| → 0 as t → ∞, uniformly in u. Also, using estimate (3.1)
we can see that ||u(t)|| ≤ K, for t ≥ 0 where K = max{R,

√
2τ

1−ε }.
Therefore, for t ≥ 0
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∂

∂w
T2u(w) =

∫ t

0

es−t ∂

∂w
tanh {β(J ∗ u)(w, s)} d s

= β

∫ t

0

es−tsech2(βJ ∗ u(w, s)) · (J ′ ∗ u)(w, s) d s.

Thus, we obtain

| ∂

∂w
T2u(w)| ≤ β

∫ t

0

es−t|J ′ ∗ u(w, s)|d s

≤ β

∫ t

0

es−t

∫
S1

|J ′(w · z−1)u(z, s)| d z d s

≤ β

∫ t

0

es−t||J ′|| ||u(·, s)|| d s

≤ Kβ||J ′||
∫ t

0

es−t d s

≤ Kβ||J ′||
It follows that, for t ≥ 0 and any u ∈ C the value of || ∂

∂wT2u|| is bounded by a
constant (independent of t and u). Thus

⋃
t≥0

T2(t)C is relatively compact in X by

Sobolev’s imbedding theorem.
The existence of the attractor follows immediately from Theorem 1.1 of [8]. The

estimate on its size is an easy consequence of Lemma (3.1).

Now, once estimates in L2 for solutions in the global attractor have been proved,
one can use a bootstrap argument to obtain more regularity for them.

Theorem 3.4. The global attractor A is bounded in Ck, for any integer k ≥ 0.

Proof: If u(w, t) is a solution of (1.1) in A, we have by the variation of constants
formula

u(w, t) = e−(t−t0)u(x, t0) +
∫ t

t0

es−t tanh {β(J ∗ u)(w, s)} d s (3.3)

Since u(w, t0) is bounded by
√

2τ for any choice of t0, letting t0 → −∞, we
obtain

u(w, t) =
∫ t

−∞
es−t tanh {β(J ∗ u)(w, s)} d s (3.4)

(equality in L2)
From this formula we obtain

|u(w, t)| ≤ |
∫ t

−∞
es−t tanh {β(J ∗ u)(w, s)} d s|

|u(w, t)| <

∫ t

−∞
es−t d s

|u(w, t)| < 1 (3.5)
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Now, proceeding as in the proof of Theorem 3.3, and using the bound of the at-
tractor obtained there, we get

| ∂

∂w
u(w, t)| ≤ |

∫ t

−∞
es−t ∂

∂w
tanh {β(J ∗ u)(w, s)} d s|

≤
√

2τβ

∫ t

−∞
es−t||J ′|| d s

≤
√

2τβ||J ′||
Differentiating once more, we obtain

∂2

∂w2 u(w, t) =

∫ t

−∞ es−t
{
2β2sech(βJ ∗ u(w, s)) · sech tanh(βJ ∗ u(w, s)) · (J ′ ∗ u(w, s))2+

βsech2(βJ ∗ u(w, s))(J ′ ∗ u′(w, s))
}

d s

and so

| ∂2

∂w2
u(w, t)| ≤ β

∫ t

−∞
es−t2β(J ′ ∗ u(w, s))2 + J ′ ∗ u′(w, s) d s

≤ β

∫ t

−∞
es−t2β||J ′||2||u(·, s)||2 + ||J ′||||u′(·, s)|| d s

≤ β22τ ||J ′||2 + β
√

2τ ||J ′||
In the same way, we can obtain bounds for the derivatives of u of any order, in

terms of J, J ′ and derivatives of lower order of u, concluding the proof.

4. Stationary solutions. The following functional F(m) is used in [5] to prove
the existence of the instanton.

F(m) =
∫

[f(m(x)) − f(mβ)] d x +
1
4

∫ ∫
J(x − y)[m(x) − m(y)]2 d x d y

where f(m) (the free energy density) is given by

f(m) = −1
2
m2 − β−1i(m)

and i(m) is the entropy density

i(m) = −1 + m

2
log{1 + m

2
} − 1 − m

2
log{1 − m

2
}

A difficulty encountered with this functional in the space of continuous bounded
functions in R is that F is not defined in the whole space. In fact, F(m) < ∞
if, and only if m(x) is close -in a certain sense- to ±mβ in a neighborhood of the
infinity (see [5] for details).

In our setting, however, we have a similar functional defined in the whole phase
space, as follows

F(u) =
∫

S1
[f(u(w)) − f(mβ)] dw +

1
4

∫
S1

∫
S1

J(w · z−1)[u(w) − u(z)]2 dw d z .

We also define, for any u ∈ X
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Ḟ(u) = lim sup
t→0

1
t
{F(T (t)u) −F(u)}

The following result is an adaptation of proposition 2.8 of [5] to our context.

Lemma 4.1. Let u(·, t) be a solution of (2.1 ) with u(·, 0) ≤ 1. Then (F(u(., t)) is
well defined for all t ≥ 0, it is differentiable with respect to t for t > 0 and

Ḟ(u(t)) =
d

d t
F(u(·, t)) = −I(u(·, t)) ≤ 0

where, for any h ∈ L2(S1) with ||h||∞ ≤ 1,

I(h(·)) =
∫

S1
[(J ∗ h)(w) − β−1arctanh(h(w))][tanhβ(J ∗ h)(w) − h(w)] dw

We are now ready to establish the existence of non trivial periodic equilibria for
equation (1.1). For any n ∈ N∗, we define the subspace An of X by

An =
{

v ∈ X|v(ϕ(
τ

n
+ y)) = −v(ϕ(y))

}

It is easy to show, using uniqueness, that these subspaces are invariant under T (t).
Our result is given by

Theorem 4.2. For any n0 ∈ N, there is a τ(n0) such that, if τ ≥ τ(n0), there
exists a nontrivial stationary solution of (2.1) in An, for any n ≤ n0.

Proof: Consider the function in An defined by l(ϕ(x)) = mβ for 0 ≤ x < τ
n , and

l(x, t) the solution of (1.1), with initial condition l(·, 0) = l. We then have, if τ > n

F(l) =
1
4

∫ τ

−τ

∫ τ

−τ

Jτ (x − y)(l(x) − l(y))2 d y d x

=
1
4

n−1∑
j=−n

∫ j τ
n +1

j τ
n

∫ j τ
n

x−1

Jτ (x − y)4m2
β d y d x

+
1
4

n∑
j=−(n−1)

∫ j τ
n

j τ
n−1

∫ x+1

j τ
n

Jτ (x − y)4m2
β d y d x .

In Figure 1 we show the triangular regions (in the (x, y)-plane) where we have
non-zero contributions to the above double integral. These are the regions which
lie inside the support of Jτ (x − y) and where l(x) and l(y) are different. The first
sum in the formula above corresponds to the triangles just bellow the diagonal,
the second one to the triangles just above the diagonal. The single triangles in the
corners are due to the periodicity of l(y) and of Jτ , they lead to the first term in
the first summation and to the last term in the second. Using the decomposition
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above we get:

F(l) = 2nm2
β

∫ 1

0

∫ 0

x−1

Jτ (x − y) d y d x + 2nm2
β

∫ 0

−1

∫ x+1

0

Jτ (x − y) d y d x

≤ 4nm2
β

∫ 1

0

∫ x

x−1

Jτ (x − y) d y d x

= 4nm2
β

∫ 1

0

∫ 0

−1

Jτ (z) d z d x

= 2nm2
β

 x

y

y=x-1

y=x+1

τ−τ

−τ

τ

/ n

τ / n

+ - + -

+

-

+

-

-

+

-

+

-+ -+

−τ

Figure 1. Triangular regions which give non zero contributions to
the double integral in the proof of Theorem (4.2). We have taken
n = 4 in the figure.

On the other hand

F(0) =
∫ τ

−τ

(f(0) − f(mβ)) d x = 2τ(f(0) − f(mβ)).

Therefore, if τ
n >

m2
β

(f(0)−f(mβ)) , F(0) > F(l) and the ω-limit of l does not contain
the null stationary solution.

Now, the existence of a global compact attractor implies precompacity of the
orbits of T (t). It follows then by La Salle’s invariance principle (see [2]) that
l(x, t) → M , where M is the maximal invariant subset of E = {u ∈ L2(S1)|Ḟ(u) =
0}. Observe now that, if Ḟ(u) = 0, then

1
β

[β(J ∗ u)(w) − arctanh(u(w))][tanh β(J ∗ u)(w) − u(w)] ≡ 0.
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Since arctanh is an increasing function, we must have

tanh β(J ∗ u)(w) − u(w) ≡ 0.

that is, u is a stationary point. Since any point in E is a stationary point of (2.1),
the result follows immediately.

Remark 4.3. Since mβ → 0 as β → 1 and F(0) = τ(1 − 1
β )m2

β + O(m3
β) as

mβ → 0, it follows that F(0) < F(l) if β is close to 1. Therefore, for any n ≥ 1
and τ fixed the argument above cannot be used to show existence of solutio ns in
An.

We now want to show that the solutions in An are unstable. To achieve this goal
we first need some preliminary definitions and auxiliary results from the theory of
positive operators which were taken mainly from [4] and [3].

Let E be a Banach space. A closed convex subset K ⊂ E is called a cone if
t·K ⊂ K for every t ≥ 0 and K

⋂
(−K) = {0}. We say that a cone K is reproducing

if any x ∈ E can be written as x = u − v with u, v ∈ K.
If a cone exists in E, we can define an ordering in it by x ≤ y iff y − x ∈ K. A

linear operator A on E is positive if AK ⊂ K. A is strongly positive if it is positive
and, for every x ∈ K − {0} there is an integer m ≥ 1 such that Am(x) ∈ IntK. If
e ∈ K − {0}, A is e-positive if A is positive and, for every x ∈ K − {0}, there is an
integer m ≥ 1 and positive numbers α, β such that

αe ≤ Amx ≤ βe.

If A is a strongly positive operator, it can be proved (see for example [3, p. 59])
that A is also e-positive for any e ∈ IntK.

The result stated below is one version of Krein-Rutman’s Theorem. A proof can
be found in [4, Theorem 6.1] and [3, Theorem 2.10].

Theorem 4.4. Let E be a Banach space, K a reproducing cone in E, and A a
positive compact operator in E with a point of its spectrum different from 0. Then A
has a positive eigenvalue ρ, not less in modulus than any other eigenvalue associated
to an eigenvector in K. If A is e-positive, then ρ is also simple.

We will apply Krein-Rutman’s theorem to show the instability of solutions in An.
For this, we need the following result:

Proposition 4.5. Let E = C(S1) be the space of real-valued continuous functions
on S1 with the sup-norm, K the cone of positive functions and T the operator in
E defined by

T (u)(w) = θ(w)
∫

S1
J(w · z−1)u(z) d z,

where θ is a strictly positive continuous function on S1. Then, T is strictly positive.

Proof: We first observe that the support of J in S1 is contained in an arc around
1 = ei0 with length 2π

τ , that is

supp J ⊂ {ei π
τ θ | − 1 ≤ θ ≤ 1 }

Now, for u ∈ K − {0} we define

Mj = {w ∈ S1 |T ju(w) > 0 }, for 0, 1, 2, ·,
Note that M0 
= ∅. For all w ∈ S1 such that w · z−1 ∈ supp J for some z ∈ M0

(that is, if w is in some arc of length 2π
τ centered around some point of M0) then
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T (u)(w) > 0, since the integrand is a non vanishing positive continuous function.
It follows that M1 contains an arc of length 2π

τ . If now, w is an end point of this
arc and wz−1 is in suppJ we conclude in the same way that T 2u(w) = T (T (w) > 0
and, therefore M2 contains an arc with length 4π

τ , if 4π
τ ≤ 2π.

Proceeding inductively, we conclude that Mn = S1 if n
τ > 1 and, thus Tn > 0,

which means that T is strictly positive.

We are now ready to prove instability of solutions in An.

Theorem 4.6. The solutions in An, obtained in Theorem (4.2), are all unstable.

Proof: Let m̄(x) be a nontrivial equilibrium in An. The linearization of the
evolution equation (2.1) around m̄ is

∂tv = −v + (1 − m̄2)βJ ∗ v ≡ Lv

Since (by (3.5)), (1−m̄2) > 0 , it follows from Proposition (4.5) that the operator
Tv = (1− m̄2)βJ ∗ v is strictly positive as an operator in C(S1). It is also compact
by Arzela-Ascoli’s theorem. Now, since L(m̄′) = 0, it follows that T (m̄′) = m̄′ and
therefore T has a continuous eigenfunction associated to the eigenvalue 1. It follows
from Krein-Rutman’s Theorem (theorem (4.4)) that T must have an eigenfunction
in the positive cone associated with a positive eigenvalue ρ > 1

Therefore L = −I + T has a positive eigenvalue and m̄ is unstable.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1

’J_function’

Figure 2. Graphic of the spline function J(x) used in the nu-
merical experiments. It is symmetric and assumes the values
J(x) = 4/3 − 8x2(1 − x) in [0, 0.5] and J(x) = 8(1 − x)3/3 in
[0.5, 1].

5. Numerical Simulations. We have implemented a numerical scheme for solv-
ing equation (1.1) for 2τ -periodic solutions, based on a second order predictor-
corrector method for the discretization of the differential equation. The convolu-
tion is computed through a multiple Simpson-rule, while the J function (shown in
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Figure 3. Stationary solution: τ = 2 and n = 1
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’tau=8_n=2’
’tau=8_n=4’

Figure 4. Stationary solutions: τ = 8 and n = 4, n = 2, n = 1.

Figure 2) is chosen as a cubic spline, giving it the further property of being twice
differentiable.

Numerical simulations helped on gathering evidence of the existence of the sta-
tionary solutions that we proved to exist. On the other hand, numerical experiments
also provide means for illustrating the behaviour of the solutions in certain cases.
In Figure 3 we plot the stationary solution obtained as in Theorem 4.2 with τ = 2
and n = 1, after the temporal evolution of the initial state. We used the value
β = 2 in the simulations.
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’stationary_solution’
’time_t0’
’time_t1’
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’m_beta’

Figure 5. Unstable behaviour of perturbed stationary solution:
τ = 2 and n = 1. The solution departs from a small perturbation
of the stationary solution of Figure 3 (time t0), until it gets to the
constant stationary state equal to mβ .

In Figure 4 we display how the shape of these stationary solutions vary with n,
for a fixed value of τ . In this case we employ τ = 8 and show in the same graph the
cases n = 4, n = 2 and n = 1. We point out that the stationary function for τ = 8
and n = 4 is actually the same (up to translation invariance) as the one for τ = 2
and n = 1, presented in Figure 3 (they are both 4-periodic). All these stationary
solutions present a similar shape, having almost flat parts close to +mβ or −mβ

and transition zones between them. We also observed in the experiments that for
n = 8 (in the case τ = 8) we don’t obtain a new stationary solution (the conditions
of Theorem 4.2 are not satisfied in this case).

In Figure 5 we present results of the use of the numerical method as an illustration
of the unstable behaviour of the stationary solutions. In order to observe the
instability, we perturbed the stationary solution ( τ = 2, n = 1, β = 2 ) by
one percent of the modulus of its derivative. The choice of this perturbation was
based on the fact that T (v̄) ≥ v̄ (for v̄ = |m̄′|) and this inequality is strict over
an interval. For the perturbed initial state we computed the time evolution. The
solution remains close to the stationary one for a long time, departing slowly from
it, until reaching a point when it converges very fast to the stable stationary point
given by the constant solution equal to mβ . This evolution is shown in Figure 5,
where we plot the solution at several times during integration.
Acknowledgements. The authors would like to thank Profs. O. Lopes and K.
Mischaikow for helpful comments and suggestions.
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