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Relation Classification via Recurrent Neural Network with Attention
and Tensor Layers

Runyan Zhang, Fanrong Meng�, Yong Zhou, and Bing Liu

Abstract: Relation classification is a crucial component in many Natural Language Processing (NLP) systems. In

this paper, we propose a novel bidirectional recurrent neural network architecture (using Long Short-Term Memory,

LSTM, cells) for relation classification, with an attention layer for organizing the context information on the word

level and a tensor layer for detecting complex connections between two entities. The above two feature extraction

operations are based on the LSTM networks and use their outputs. Our model allows end-to-end learning from the

raw sentences in the dataset, without trimming or reconstructing them. Experiments on the SemEval-2010 Task 8

dataset show that our model outperforms most state-of-the-art methods.

Key words: semantic relation classification; bidirectional Recurrent Neural Network (RNNs); attention mechanism;

neural tensor networks

1 Introduction

A relation classification task identifies the semantic
relationship between two marked entities within a
text. For example, considering the context in the
given sentence, “The he1inewsh/e1i brought about
a he2icommotionh/e2i in the office.”, there is a
relationship between the two marked entity mentions,
e1 (“news”) and e2 (“commotion”), and the sentence
can be expressed as follows: the “news” causes a
“commotion”. This is denoted with label “Cause-
Effect”.

Relation classification is an important component
in Natural Language Processing (NLP) systems, such
as question answering and information extraction.
Accurate relationship classification facilitates precise
understanding of semantic meaning and promotes
targeted analysis of sentences. Thus, relation
classification has attracted substantial attention in
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recent years.
Many traditional models focus on machine learning

and feature design, which usually rely on a full-fledged
NLP pipeline and require extra hand-crafted features
or kernels[1]. In recent years, deep learning methods
have been widely used for relation classification and
provide an effective method for reducing artificial
adjustments. Several neural network models have
been proposed for this task, such as Convolutional
Neural Network (CNN), Recurrent Neural Network
(RNN), and other neural architectures. Some are built
with the shortest dependency paths and dependency
subtrees[2–4], whereas others input the raw sentences
with few or no pre-trained operations to learn implied
features[5–7]. These approaches have been proven
effective but would be inevitably disturbed by irrelevant
parts.

Thus, some attention-based approaches have been
proposed to make the model automatically focus on
the most useful part. For such approaches, it is
sufficient to use raw sentences as input[8–10]. The
attention mechanism performs well in considering the
contribution of each part but performs unsatisfactorily
when contexts are insignificant. For example, for the
sentence, “This 8-day he1imusich/e1i he2iclockh/e2i
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needs winding only once a week,” it is difficult to
detect the relationship between “music” and “clock”
by context. however, it is easier when the meaning of
“music clock” is known.

Features of entities are as important as those of
context and are usually complex. Hence, inspired by
the Recursive Neural Tensor Network (RNTN), which
was proposed by Socher et al.[11], we use a tensor
layer to extract the hidden features between entities.
It is “a more direct, possibly multiplicative, interaction
allowing the model to have greater interactions between
the input vectors”[12]. The key contributions of our
approach are as follows:

(1) Our Bidirectional RNN (which uses Long Short-
Term Memory, LSTM, cells) relies on a word-level
attention mechanism. This allows the model to make
full use of the context, thereby enabling it to learn which
parts are effective for a given classification task.

(2) We use a tensor layer to discover additional
interactions between entities. Then, we consider both
attention features and tensor features for classification.

(3) We evaluate our model on the SemEval 2010 Task
8 dataset and achieve a state-of-the-art result with an
F1-score of 86.3

2 Related Work

Semi-supervised and unsupervised methods for relation
classification have been proven effective and adaptable
in the field of networks[1, 2]. However, in this paper,
we mainly consider supervised methods, which usually
have higher accuracy.

In earlier studies of relationship classification,
researchers focused on carefully selecting features
through a series of NLP tools[1] or elaborately designing
kernels. In addition, the Distant Supervision method
was proposed for problems without a training corpus,
which aligns the knowledgebase with the unstructured
text. SemEval-2010 task 8 was published as a standard
relation classification corpus[13], and many follow-up
studies have utilized it.

Traditional methods have been proven to be effective,
but they strongly depend on the quality of the designed
model. With the recent rise of interest in DNN,
many neural-network-based models have been used
to extract hidden features. The Recursive Matrix-
Vector Model by Socher et al.[14] adds a matrix to
each node in the RNN to enhance the fitting ability
of the entire network. Yu et al.[15] proposed Factor-

based Compositional embedding Models (FCM), which
decompose the sentence into substructures, extract
features independently, and combine them via a sum-
pooling layer. Xu et al.[16] proposed a Deep Recurrent
Neural Network (DRNN) model, which splits the
sentence into two parts by the root word of the parse
tree and inputs the parts into a multi-layer RNN, in
which the neurons consider the information of adjacent
words in the previous layer. In the works described
above, the models are designed according to the parse
tree and achieve good performance. In contrast, some
researchers construct end-to-end models, which use
raw sentences as the input of neural networks and
embed NLP features to describe words. Zeng et al.[7]

proposed a CNN for extracting lexical and sentence-
level features. Vu et al.[5] proposed extended middle
context for CNNs and combined it with bidirectional
RNNs using a simple voting scheme. The end-to-
end model is concise and easy to implement, but
unlike parse-tree-based models, it uses the shortest
dependency subtree; thus, it may be disturbed by
meaningless words.

Over the past three years, some attention-based
models have been proposed, which can automatically
adjust the weights of each word. In NLP, the attention
mechanism was first used by Bahdanau et al.[17]

for text alignment in machine translation. It quickly
attracted attention and was widely used for many
other tasks. Zhou et al.[8] combined the attention
mechanism with bidirectional RNNs. On this basis,
Xiao and Liu[9] split the sentence into two entities and
used two attention-based RNNs hierarchically. Wang
et al.[10] proposed a novel CNN that relies on input-
level attention and pooling-level attention. The inputs
of these attention-based methods are all raw sentences,
with few embedded NLP features, and they achieve
good performance.

In addition to the attention mechanism, this paper
addresses the tensor layer. Like the Neural Tensor
Network (NTN)[12], the tensor layer trains a high-order
tensor as a weight between multiplying inputs and can
use bilinear interaction instead of a traditional linear
combination. Thus, it has a stronger ability to express
the relationships among the inputs. Qiu and Huang[18]

proposed a convolutional neural tensor network for
community-based question answering and used a tensor
layer to model the relations between the question
and its answer. Pei et al.[19] proposed a Max-Margin
Tensor Neural Network (MMTNN), whereby a tensor
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layer was used to extract the hidden combinations of
features. It is obvious that the tensor layer is effective
in modeling relations between the inputs.

3 Model

In this section, we propose our model in detail, termed
the Attention and Tensor based Recurrent Neural
Network (AT-RNN). As shown in Fig. 1, the model first
extracts the hidden features of the sentence through a
two-level LSTM network, of which the first level is
a bidirectional LSTM block and the second level is
a simple LSTM block. Then, the advanced features
are further extracted by two operations: the word-level
attention and the entity-level tensor layer. Finally, the
two kinds of vectors are combined for semantic relation
classification:
� Word-level attention: The model calculates a

weight for every word with respect to the last
output of the LSTM networks and merges the
features from each time step by multiplying them
by the weight vector.
� Entity tensor layer: The model trains a tensor as

a weight to extract additional interactions between
entities. More details can be found in Section 3.4.

3.1 Input representation

Word embeddings, positions, and parts of speech are
the three kinds of features used to transform each word
into a real-valued vector. We also perform a comparison
experiment with only word embeddings and achieve a
slightly worse performance, with an F1-score of 85.2.

Fig. 1 The architecture of our model.

Given a sentence, S D .w1; w2; :::; wn/, we convert
each word into a semantic vector by looking up the
word embedding matrix Wword 2 R

jV j�dw , where dw

is the dimension of the semantic vector and jV j is the
size of the training vocabulary of the word embedding
matrix. After looking up the matrix, every word is
mapped to a row vector wd

i 2 R
dw .

For the polysemy problem, we use the Part Of Speech
(POS) tag to enhance the semantic representation of
words. By looking up the POS embedding matrix, we
map each POS tag to a pre-trained vectorwPOS

i 2 RdPOS ,
where dPOS is a hyper-parameter.

We also use position embedding to describe the
relative distances between two entity mentions and
each word[7, 10]. The two entity mentions are calculated
separately. For example, in the sentence “That
he1imachineh/e1i makes a lot of he2inoiseh/e2i”, the
relative distances of the word “makes” to entity
“machine” and entity “noise” are 1 and �4. Thus, we
will obtain two vectors wp

i1; w
p
i2 2 R

dp for the position
feature, where dp is a hyper-parameter.

Finally, we combine the three kinds of features
for each word to construct the input wf

i D Œw
d
i ;

wPOS
i ; w

p
i1; w

p
i2�.

3.2 Multi-level rnns

RNNs have been widely used in many NLP tasks.
They can extract hidden features by considering the
entire sequence. However, for deep iterations, RNNs
may suffer from the problem of exploding or vanishing
gradient. In other words, input for which the distance
is long may provide inappropriate feedback. To solve
this problem, LSTM units were proposed by Hochreiter
and Schmidhuber[20]. The main idea is to use linear
memory cells to store information of each iteration
and to utilize three gate units for reading, writing, and
resetting. Many LSTM variants have been designed for
specific tasks. In this paper, we adopt the LSTM variant
that was proposed by Zaremba et al.[21]

The LSTM cell is comprised of a memory unit
ct , which is analogous to a peephole and allows
information to flow through the cell without interaction.
To change the information in the memory unit, the
LSTM cell sets three logical gates: an input gate it
for writing, a forget gate for removing and an output
gate for reading. Each gate provides the percentage
of information that is involved in the corresponding
operation, which is determined by the input xt and the
previous hidden state ht�1. The detailed calculations
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are shown in Eqs. (1)–(6):
it D �.Wxixt CWhiht�1 C bi / (1)

ft D �.Wxf xt CWhf ht�1 C bf / (2)

gt D tanh.Wxcxt CWhcht�1 C bc/ (3)

ct D itgt C ftct�1 (4)

ot D �.Wxoxt CWhoht�1 C bo/ (5)

ht D ot tanh.ct / (6)

Generally, the semantic meaning of a word will
be affected by both the previous context and the
subsequent context. Hence, we use bidirectional LSTM
networks, which consist of two LSTM blocks with
forward and backward sequence inputs. We place
another simple LSTM block after the bidirectional
LSTM blocks, which can organize previous features on
the word level, and the last output will contain semantic
information of the entire sentence. In the following
sections, all RNNs that are mentioned in our model refer
to the LSTM variant.

3.2.1 Word-level attention
Since each word may make a different contribution
to the classification, we introduce a novel word-level
attention mechanism, which is driven by RNN features
of each word and the entire sentence. The attention
mechanism will concentrate more on the words that are
important for prediction and give them greater weights.
The working structure of the sentence attention layer is
shown in Fig. 2. The attention weight that corresponds
to each word is calculated via a non-linear combination
of the hidden state ht and the context vector hlast.
Through the weighted sum of the word states, we obtain
the attention features of the sentence.

Motivated by Luong et al.[22], we consider three
different scoring functions for the combination of
attention weight parameters ht and hlast. We only need

Fig. 2 Architecture of the attention layer.

one output, so there is only one representation a in the
equations, as shown in Eqs. (7)–(10):

a D V T
atn

nX
tD1

atht (7)

˛t D
exp.et /Pn

jD1 exp.ej /
(8)

et D v
T
ascore.ht ; hlast/ (9)

score.ht ; hlast/ D

8̂<̂
:
hT

t hlast; DOT;
hT

tWahlast; GENERAL;
tanh.WaŒht W hlast�/; CONCAT

(10)
where a is the attention representation of the sentence,
Vatn 2 R

dh�da is a transform matrix for a, and ˛t is a
real number that indicates the weight rate. To adjust
the proportion between attention features and tensor
features, we set the output dimension da as a hyper-
parameter.

3.2.2 Entity tensor layer
Tensor networks can describe a larger number of
interactions between inputs and model deeper relations.
In this paper, we place a tensor layer after the RNNs
for two entities. As shown in Fig. 3, given the hidden
features of the RNNs that correspond to two entities he1

and he2, we combine them in succession and extract
features through a bilinear form. For this target, we train
two weights: one with three dimensions for the square
interaction and the other with two dimensions for linear
interaction. Equations (11)–(13) define the output t of
the tensor layer:

t D f .pb C pl/ (11)

pb D Œhe1 W he2�
TWt1Œhe1; he2� (12)

pl D Wt2Œhe1; he2� (13)

The dimension of the weight matrix Wt1 is dt � 2dh �

2dh, where dh is the hidden size of the RNNs and dt

is the output dimension of the tensor layer (which is a
hyper-parameter).

Fig. 3 Architecture of the tensor layer.
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If we decompose the matrices in the equation for pb ,
we will find the mathematical principles of the tensor
layer. Given the input as Œx1; x2; :::; xm� and a slice of
the weight matrix264w1 � � � wm2�mC1

:::
: : :

:::

wm � � � wm2

375 ;
the square interaction can be calculated as Eq. (14):

pi
b D w1x1x1 C w2x1x2 C � � �C

wmx1xm C � � � C wm2xmxm (14)

or as Eq. (15):

pi
b D

mX
jD1; kD1

wj�kxjxk (15)

We observe that in the bilinear part of the tensor layer,
the model tries every second-order combination of
inputs. Hence, the tensor layer can relate the two inputs
multiplicatively instead of only implicitly through the
nonlinearity, as with standard neural networks, where
the entity vectors are simply concatenated[12].

Furthermore, the tensor layer can utilize a special
attention mechanism on a single input. Here, we present
the analysis and derive the equation. With the input
Œx1; x2; :::; xm�, the attention-weighted integral of the
input can be calculated as Eq. (16):

t i D

mX
jD1

xj score.Œx1 W xm�/ (16)

where the scoring function is same as Eq. (9); however,
here we define it using a linear evaluation:

score.Œx1 W xm�/ D

mX
kD1

wkxk C b (17)

We substitute Eq. (17) into Eq. (16):

t i D

mX
jD1;kD1

wjkxjxk C

mX
jD1

bjxj (18)

where the left part is equivalent to the square interaction
pb of the tensor layer and the right part is equivalent to
the standard interaction pl of the tensor layer.

The weight matrix t1 is M �N �N -dimensional.
Therefore, O.MN 2/ computational resources are
required to calculate it exactly, where M is the size of
the tensor layer and N is the input size. However, the
dimensions of the word vectors are usually in the range
of 50 to 300. Thus, it will not consume much more time
compared with a single-layer network with complexity
O.MN/: In addition, the multiplication of the matrix
is highly parallelizable and the calculation of the square
interaction can be completed in two multiplications.

3.2.3 Regularization and training
Dropout method is to reduce the complexity of the
network by obstructing a proportion of the cells in the
neural networks. Zaremba et al.[21] improved LSTM
networks so that dropout could be correctly applied. In
this paper, we adopt a dropout wrapper for the LSTM
cells and an output layer with rates of 0.6 and 0.4.
In addition, we constrain the L2-norms of the weight
vectors. The implementation of the back-propagation
algorithm with L2-regularization can be defined as Eq.
(19):

�  � C �
@|.�/

@�
C �2

@ˇjj� jj2

@�
(19)

where � and �2 are learning rates and |.�/ is the loss
function, for which we use the cross-entropy function,
which is defined as Eq. (20):

|.�/ D �
1

m

mX
iD1

yi logP.yi
jxi ; �/C

.1 � yi / log.1 � P.yi
jxi ; �// (20)

4 Experiment

4.1 Dataset and experimental setup

Dataset: We evaluate our model on the commonly
used dataset SemEval-2010 Task 8[13], which contains
nine types of relations and an “Other” type for the
entity relations that are not of any of these nine types.
The nine types are Cause-Effect, Instrument-Agency,
Product-Producer, Content-Container, Entity-Origin,
Entity-Destination, Component-Whole, Member-
Collection, and Message-Topic. Considering the
distinction between active and passive in relationships,
the dataset annotates the direction for the nine relation
types, while the “Other” type is not directional, so the
total number of relation types is 19. The SemEval-2010
Task 8 dataset consists of 8000 sample training sets
and 2717 sample test sets. We use the official scorer,
using macro-averaged F1-score (excluding Other), to
evaluate the model performance.

Settings: We use the word2vec skip-gram model[23],
which is trained on Wikipedia, to embed words into
vector representations. We also try the Senna model
and the glove model for word embedding. We pretrain
dPOS-dimensional embeddings for POS features and
dp-dimensional embeddings for position features. To
automatically identify the POSs of the words, we use
the Stanford POS Tagger toolkit. We initialize the
weight matrices with random values using Gaussian
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distributions. We use the Adam optimization method
to update matrices iteratively. Some detailed settings of
hyper-parameters are listed in Table 1.

4.2 Experimental results and comparison

4.2.1 Comparison with previous works
Table 2 provides a comparison of F1-scores among our
model and the previous works. We divide them into four
categories, and we observe that our model’s performance
is comparable to those of the state-of-the-art models.

Non-Neural Networks Models. We chose a
representative method with an SVM classifier[24],

Table 1 Hyperparameters.

Parameter Parameter name Value

dw Word Emb. Size 100
dPOS POS Emb. Size 25
dp Position Emb. Size 25
dh RNNs Hidden Size 200

da C dt Feature Extraction Size 120
� Learning Rate 0.01
�2 L2 Learning Rate 0.0001

Table 2 Comparison with previous results on SemEval 2010
task 8 dataset.

Classifier F1-score

Non-Neural Networks Model
SVM[24] 82.2

Shortest Dependency Tree (SDP) Model
MVRNN[14] 82.4

FCM[15] 83.0
DepNN[3] 83.6

depLCNN+NS[2] 85.6
SDP-LSTM[4] 83.7

DRNNs[16] 86.1

End-To-End Model
CNN[7] 82.7

BLSTM[6] 84.3
ER-CNN + R-RNN[5] 84.2

Attention-based Model
Hier-BLSTM[9] 84.3
Att-BLSTM[8] 84.0

Attention-CNN[25] 85.9
Multi-Att-CNN[10] 88.0�

Our Model
AT-BLSTM (word2vec) (word dim=100) 86.3

Notes: We failed to reproduce the positive result with the Multi-
Att-CNN model and the performance of our implementation
is about 85.5. We also found an experiment for the paper
on the GitHub https://github.com/FrankWork/acnn, which failed
to re-implement the result as well, though it may need more
optimizations. We think the problem is likely due to insufficient
details in the paper for the pooling attention and some tricks for
the use of relation labels.

which considers eight sets of original features: Lexical,
Dependency, PropBank, FrameNet, Hypernym,
NomLex-Plus, NGrams, and TextRunner. In the
paper on the SVM, the researchers tried different
combinations of the eight features and found that the
features all contribute to classification. This method
was the winner of the SemEval task at the time, with
an F1-score of 82.19, but was later outperformed. This
is because recent research focuses on the in-depth
exploration of the original information, mainly through
the neural networks, instead of using a well-designed
classifier for the carefully selected original features,
which may not fit well and may suffer extra deviations.
An increasing number of studies have shown that a
small number of the NLP features is sufficient for
classification through hidden feature extraction.

SDP Models. SDP is a reasonable method for
detecting semantic structure and logic. It eliminates
the irrelevant words to the relationship between two
entity nominals and constructs a tree framework for
the remaining words, according to which the parent
node has a direct effect on the child node. Hence,
the models that are based on the SDP can ignore
the meaningless words and the input itself will be
structured with connections. However, this is the ideal
case. In practice, the SDP may not always be accurate
and the parsing time will increase exponentially for
long sentences. Nevertheless, from the experimental
results, the models that are based on SDP have
obvious advantages. Moreover, in other research, the
attention mechanism is used to recognize relevant
words automatically, which can replace the SDP
pretraining and avoid the extra incorrect information
from the parse tools.

End-To-End Models. With the development of deep
learning, some researchers have pinned their hopes
on making networks extract features automatically.
Instead of concentrating on selecting the semantic
presentation or structure, they reform the networks to
make them more powerful and robust. According to
the experimental results, these models have advantages
over previous works and require very little artificial
participation while pretraining. However, when the
input is an entire sentence, the end-to-end models
inevitably suffer from uncorrelated noise disturbances.

Attention-based Models. The attention mechanism
provides a weight for each part of the input, which
reduces the interference of the noise words. It assigns
larger weights to significant words to reinforce their



240 Big Data Mining and Analytics, September 2018, 1(3): 234-244

impact on the classification prediction. As shown Table
2, the attention-based models outperform the end-to-
end models due to the special treatment of the noise
words. As in SDP-based models, instead of removing
the irrelevant words from the sentence, the attention-
based models assign small weights to the irrelevant
words (which may not be completely ineffective). In
addition to the attention mechanism, our model uses
a tensor layer to extract complex connections between
two entities, which play essential roles when the
context is not particularly helpful. Therefore, our model
performs better than most attention-based models.

4.2.2 Variants of the model
To evaluate effects of the attention layer and the tensor
layer, we construct four variants of the model, as shown
in Fig. 4.

Original model in Fig. 4a. In the original model,
advanced features are extracted. The inputs of both
the attention layer and the tensor layer are the hidden
features that are outputted by the RNNs.

Attention-only model in Fig. 4b. In this variant, we
only use an attention layer to extract features after the
RNNs. It is similar to Att-BLSTM[8], but we place an
additional basic LSTM block after the BLSTM block.

Tensor-only model in Fig. 4c. In this variant, only a
tensor layer is used after the RNNs. Comparing with
the attention-only model, we observe that the tensor

(a) Original Model (b) Attention-only Model

(c) Tensor-only Model (d) Tensor-after-Attention Model

(e) Attention-after-Tensor Model

Fig. 4 Variants of the model.

layer performs better. This is because the entity inputs
carry the context information through the multi-RNNs,
although not as well as the attention layer. Then, the
interactions of the relations are extracted through the
tensor layer.

Tensor-after-attention model in Fig. 4d. In this
variant, we replace the input of the tensor layer by the
output of the attention layer, as Eq. (21):

t D f .aTWt1aCWt2a/ (21)

where a is the output of the attention layer. We find that
the tensor-after-attention model is less effective than the
original model. We conjecture that this is because the
attention layer combines the entire sentence information
and lacks the pertinence of the entity pairs. Thus, the
relation features between entities are not strengthened
much by the tensor layer.

Attention-after-tensor model in Fig. 4e. Instead of
calculating the attention weights by the last output of
the RNNs, we consider the output of the tensor layer, as
Eq. (22):

˛i D softmax.vT
ascore.hi ; t // (22)

where ˛i is the attention weight of the i -th state of the
RNNs and t is the output of the tensor layer. We observe
that the effect of the attention-after-tensor model is
roughly equivalent to that of the original model, with
higher recall rate but lower accuracy rate. Weighted
sentence combination using the attention layer, which
is driven by the tensor layer, is available and effective.
However, it may require longer training time than the
original model.

4.3 Detailed analysis

4.3.1 Attention scoring functions
In this section, we compare different scoring functions,
as shown in Eq. (10), for the calculation of the attention
weights. For convenience, we use the attention-only
variant as shown in Fig. 4b. Figure 5 shows the training
losses of three models and Table 3 gives the F1-scores.

We observe that the DOT function does not well
fit our model and requires more time to train, since
it is inadvisable to evaluate the attention weight
using direct multiplication. The GENERAL function
and the CONCAT function give similar performances
and convergence rates, but the loss of the CONCAT
function declines more smoothly due to its simpler
representation. In our model, we adopt the CONCAT
function to calculate the attention weights.
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Fig. 5 Loss variation of the attention scoring functions.

Table 3 Results of the scoring functions.

Scoring function F1-score

DOT 77.4
GENERAL 84.2
CONCAT 84.3

4.3.2 Attention scoring functions
Figure 6 shows the distribution of word-level attention
weights, where Fig. 6a is a positive case and Fig. 6b
is a negative case. For the sentence “The most
common he1iauditsh/e1iwere about he2iwasteh/e2i and
recycling”, the relation between the two entities is
“Message-Topic”, and the model assigns the greatest
weight to the word “about” and minor weights to the
words “the most common audits”, which is semantically
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reasonable. Thanks to auto-weighting by the attention
layer, the model will identify the most highly related
words and will be easier to classify.

However, for the sentence “My he1ishoeh/e1i
he2ilacesh/e2i stay tied all the time” with the relation
“Component-Whole”, the context offers little help,
so the effect of the attention mechanism is less
than satisfactory. This is an extreme case, and it
will be ameliorated with the appropriate word vector
representation.

4.3.3 Effect of the tensor layer
Comparing the results of the attention-only model and
those of the other models in Table 4, we observe
that the tensor layer improves the performance of the
model by approximately 2%. The tensor operation is an
effective means for extracting deeper and more complex
connection information. In addition, according to Fig.
7, the convergence rate of the tensor layer is slightly
lower than that of the attention layer; however, it is
acceptable.

From Eq. (16) to Eq. (18), we have derived the
equivalence between the tensor operation and the
attention mechanism on a single input. The tensor layer

Table 4 Comparison of the variants.
Variant F1-score
Original 86.3

Attention-only 84.3
Tensor-only 85.3

Tensor-after-attention 85.0
Attention-after-tensor 86.2
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can be viewed as an attention-weighted combination
of all the dimensions in the input, which is driven
by itself. One difference is that there is no softmax
function for normalizing the attention weights, which
can be considered multiple attentions that concentrate
on multiple features.

4.3.4 Effect of the tensor layer
Figure 8 shows the F1-scores with different proportions
of attention features and tensor features. We find that
with 40 percent attention features and 60 percent tensor
features, the model gives the best result. Furthermore,
by analyzing the recall and accuracy rates, we observe
the following two phenomena:

With the tensor layer, the model achieves higher
recall rate but lower accuracy rate, which is ameliorated
by increasing the percentage of attention features; the
optimal performance is attained at the equilibrium
point. This is because some hidden relations may be
reasonable for the entity-level meanings, but are not
indicated by the contexts, so the tensor layer gives an
incorrect answer. However, with the introduction of the
attention layer, the weight of the context information
and the accuracy rate are increased.

The training speed increases when the attention layer
is introduced. The tensor layer draws support from the
multi-RNNs in extracting the context information, and
the contexts are necessary. We need to cross the tensor
layer to train the multi-RNNs, which will slow down
the update speed. However, for the attention layer, we
handle the contexts synchronously, and we can train
the tensor layer and the attention layer at the same
time. In summary, the tensor layer contributes greatly to
relation classification and the attention layer improves
the utilization of the contexts.

5 Conclusion

In this paper, we propose a novel bidirectional
recurrent neural network architecture for the relation

Fig. 8 Proportions of attention and tensor features.

classification task, which utilizes an attention layer to
organize the context information on the word level and a
tensor layer to detect complex connections between two
entities. Our model makes full use of the raw sentences
in the dataset, without trimming or reconstructing them.
In addition, we derive the connection between the
attention and the tensor. Experiment on the SemEval-
2010 Task 8 dataset shows that our model is effective
and competitive. In future work, we intend to explore
the application of the attention mechanism to recurrent
neural tensor networks, and we will expand our model
to other tasks.
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