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Animal breeding faces one of the most significant changes of the past decades – the implementation of genomic selection.
Genomic selection uses dense marker maps to predict the breeding value of animals with reported accuracies that are up to
0.31 higher than those of pedigree indexes, without the need to phenotype the animals themselves, or close relatives thereof.
The basic principle is that because of the high marker density, each quantitative trait loci (QTL) is in linkage disequilibrium (LD)
with at least one nearby marker. The process involves putting a reference population together of animals with known
phenotypes and genotypes to estimate the marker effects. Marker effects have been estimated with several different methods
that generally aim at reducing the dimensions of the marker data. Nearly all reported models only included additive effects.
Once the marker effects are estimated, breeding values of young selection candidates can be predicted with reported accuracies
up to 0.85. Although results from simulation studies suggest that different models may yield more accurate genomic estimated
breeding values (GEBVs) for different traits, depending on the underlying QTL distribution of the trait, there is so far only little
evidence from studies based on real data to support this. The accuracy of genomic predictions strongly depends on characteristics
of the reference populations, such as number of animals, number of markers, and the heritability of the recorded phenotype.
Another important factor is the relationship between animals in the reference population and the evaluated animals. The
breakup of LD between markers and QTL across generations advocates frequent re-estimation of marker effects to maintain the
accuracy of GEBVs at an acceptable level. Therefore, at low frequencies of re-estimating marker effects, it becomes more
important that the model that estimates the marker effects capitalizes on LD information that is persistent across generations.
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Implications

The commercial application of genomic selection implies
that relatively large numbers of important breeding animals
are genotyped using high-density markers. This opens up the
possibility to perform quantitative trait loci (QTL)-mapping
studies with greater power and precision than was possible
beforehand, while the estimated SNP effects are valid for the
whole evaluated population rather than, for instance, only
within a sire family. Some of the models applied for genomic
breeding value prediction find their origin in QTL mapping.
For instance, the internal model (or rather single-nucleotide
polymorphisms (SNP)) selection step in BayesB, in fact
assesses the probability that a SNP is linked to a QTL. This
implies that applying such models, as a ‘by-product’ yield
the probability that QTL exist across the genome. Although

QTL mapping in itself is not the primary goal, identification
of regions that heavily influence a number of traits, would
greatly help to further disentangle the nature of different
traits, as well as the genetic correlation between them.

Introduction

An important tool in genetic improvement of livestock spe-
cies is the prediction of breeding values. Breeding value
prediction depends on knowledge of relationships between
individuals. Defining genetic relationships between animals
allows estimation of the proportion of phenotypic variance
that is heritable. A major breakthrough in animal breeding
was the application of best linear unbiased prediction (BLUP)
to predict breeding values, made possible by direct derivation
of the inverse additive relationship matrix (Henderson, 1975).
Three disadvantages from applying this method to predict
breeding values are the following: (i) to estimate reliable
breeding values for selection candidates, phenotypic infor-
mation of the animal itself or close relatives is needed;
(ii) BLUP favours close relatives leading to increased
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inbreeding; and (iii) the infinitesimal model is assumed,
meaning that an infinite number of genes with small effect
underlie a trait. Efforts to apply quantitative trait loci (QTL)
mapping, to allow implementation of marker-assisted selec-
tion (MAS), tried to tackle both issues (Dekkers and Hospital,
2002). These approaches identify QTL that have a large effect
on a trait and trace those to enhance reliability of predicted
breeding values, before phenotypic information is available.

Early applications of QTL mapping have the disadvantage
that still phenotypic records are needed from the animals
themselves or from their close relatives, because they use
linkage mapping, where the linkage phase between marker
and QTL has to be estimated for instance for each (grand)
sire family (e.g. Weller et al., 1990). More recent developed
methods of QTL mapping rely on population-wide linkage
disequilibrium (LD) information. This means that in the model
it is assumed that across the population each separate allele
of a QTL locus generally is transmitted together with a
separate allele at a marker locus. This assumption holds when
recombination between a QTL and a marker is limited, that is,
the physical distance between a marker and QTL locus that
are in LD should be small and thus a high marker density
is needed. With increasing distance between two loci that are
in LD, the chance of recombination increases, and therefore,
the accuracy of forward prediction using estimated single-
nucleotide polymorphisms (SNP) effects decreases. The recent
availability of high-throughput SNP genotyping provides
dense marker maps at reasonably low cost, and allows to
map more and smaller QTL. However, the effect of small QTL
is hard to estimate, implying that the inaccuracy and bias of
estimated QTL effects may increase.

Both the efficiency and the accuracy of detecting QTL can
be increased by applying multiple QTL models (Jansen,
1993; Zeng, 1994). Meuwissen et al. (2001) applied a
multiple QTL model and skipped the QTL-mapping step in a
method that is termed genomic selection. This method
simultaneously estimates the effects for a large number of
markers across the chromosome, for example, approxi-
mately 50 000 are currently applied in cattle (Van Tassell
et al., 2008), and directly sums those effects to total so-
called genomic estimated breeding values (GEBVs). The fact
that all effects are estimated simultaneously implies that,

even though individual marker effects may be over-
estimated, the expected variance of the total estimated
breeding values, including all estimated marker effects,
does not exceed the total genetic variance.

The objective of this paper is to review the methods and
procedures applied for genomic prediction, as well as the
prediction of GEBVs and the accuracy of GEBVs.

Genomic prediction – the process

The key issue in genomic prediction is estimation of effects
of individual SNP alleles on a trait of interest. These SNP
effects are estimated using a reference population, also
termed training data (Meuwissen, 2007) (Figure 1). This
reference population typically comprises at least 1000 indivi-
duals that have reliable phenotypic as well as genotypic
information. This phenotypic information could be own
phenotypic performance, but also breeding values obtained
from (national) evaluations based on phenotypic informa-
tion (De Roos et al., 2007; De Roos et al., 2009; Lund and
Su, 2009), deregressed proofs (Berry et al., 2009; Schenkel
et al., 2009; VanRaden et al., 2009), daughter-yield devia-
tions or average offspring performance (González-Recio
et al., 2008). By linking the genotypic and phenotypic
information together, estimates for each of the SNPs are
obtained. The last step in the process involves genotyping
of young selection candidates, whose GEBVs are obtained
by summing up all the relevant SNP effects.

An important question is which animals need to be
included in the reference population. Several approaches can
be taken. In dairy cattle, for instance, the most straight-
forward approach is to use proven bulls (De Roos et al.,
2007; VanRaden et al., 2009), that have reliable national
breeding values, which allows to derive reliable deregressed
proofs. This approach is an obvious choice when obtaining
reliable phenotypes is time consuming and expensive,
compared with the cost of genotyping. Furthermore, the
young selection candidates may be close relatives (such
as offspring) of the phenotyped animals in the reference
population, which may enhance the reliabilities of the
breeding values (Habier et al., 2007). When animals for
the reference population both need to be genotyped and

Reference population:
1000+ animals with known
genotypes (SNPs) and reliable EBV

↓

Obtain GEBV for SNPs

↓

Accurate GEBV young selection candidates

↑

Young selection candidates with known genotypes (SNPs) but WITHOUT performance records

Figure 1 Genomic selection – the process.
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phenotyped, and costs of phenotyping are low compared
with genotyping costs, the design of the reference popu-
lation may be optimized cost effectively. Although so far not
much research is done on the optimal composition of a
reference population, theoretically the optimal reference
population should comprise the whole range of phenotypes
and genotypes, to allow reliable prediction across these
ranges. However, this is not possible in real life, so the
reference population should be designed to reflect the
whole range of phenotypes and genotypes as close as
possible. Since prediction of GEBVs is shown to be more
reliable when juvenile animals share their recent pedigree
with animals in the reference population (Habier et al.,
2007), it seems straightforward that composing a reference
population closely related to the juvenile selection candi-
dates is an optimal strategy. De Roos et al. (2008a), how-
ever, showed, that it is particularly important that at least
some of the animals in the reference population originate
from the same pedigree or line as the juvenile animals. This
indicates that a reference population that needs to serve
multiple lines may optimally contain animals from all lines,
and yield nearly as accurate predictions for each of the lines
as a line-specific reference population may do. The likely
reason for this is that combining animals from different
families or lines ensures that only LD that persists across
those families or lines is utilized in the prediction equations.
This is, however, only possible if marker density is suffi-
ciently high such that each QTL has at least one SNP that is
in sufficiently high LD across multiple lines or breeds. De
Roos et al. (2008b) showed that in order to accurately
predict GEBVs for Jerseys, using prediction equations based
on a Holstein–Friesian reference population, at least
300 000 SNPs are needed, while the current available SNPs
(approximately 50 000) are sufficient for accurate predic-
tions within the same breed. In addition, Harris et al. (2008)
reported that based on 44 146 SNPs, GEBVs for Jerseys
using SNP effects estimated in Holstein, and vice versa,
were not accurately predicted. Since within the Holstein–
Friesian breed, the average r 2 between adjacent SNPs at
a marker density that resembles the currently used 50 000
SNPs is between 0.15 and 0.20 (De Roos et al., 2008b;
Khatkar et al., 2008), it is expected that panels that may be
used to predict breeding values across breeds or lines
should capture at least the same level of LD across those
breeds or lines.

Genome – wide breeding value estimation

Sources of data
In terms of sources of information, the simplest model to
predict GEBVs only uses phenotypic and genotypic data
(e.g. Meuwissen et al., 2001), where genotypic data in
recent commercial applications nearly always consist of SNP
genotypes. In addition, pedigree data may be used (Figure 2).
This allows to derive an additive relationship matrix and
incorporation of polygenic breeding values in the model
(Calus and Veerkamp, 2007). Whenever pedigree informa-

tion is not available, the additive relationship matrix can be
constructed directly from the genotypic information (e.g.
Fernando, 1998). In terms of pre-processing data, pedigree
information can be compared with SNP information to
discover possible genotype or pedigree errors, while pedi-
gree and SNP information may be used jointly to derive
marker haplotypes (e.g. Meuwissen and Goddard, 2001).

The model
Generally, the model to predict GEBVs, considering only
additive genetic effects, is described as:

yi ¼ fixed effectsþ animali þ SðSNPijkÞ þ ei

where yi may be a phenotype, national EBV, daughter-yield
deviation, deregressed EBV or average offspring perfor-
mance of animal i; fixed effects are a set of fixed effects,
which may only be the overall mean, animali is a polygenic
effect, S(SNPijk) is the sum of both SNP effects (k 5 1, 2),
summed across all loci ( j ) for animal i. Note that for both
alleles, a separate effect may be estimated (k 5 1, 2), or
alternatively, one allele substitution effect a may be esti-
mated per locus.

The GEBVs of animal i can be obtained as follows:

GEBVi ¼ animali þ SðSNPijkÞ:

Parameterization of the model
The simplest parameterization of the model consists of
estimating effects for each SNP allele, or estimating allele
substitution effects for each SNP locus (e.g. Xu, 2003b).
This implies that both the order of the SNPs along the
genome and the linkage phase of the SNP alleles do not
need to be known. A disadvantage of fitting the SNP alleles
is that the model ignores the effect of recombination, which
may change the linkage between marker and QTL alleles.
Estimating effects of constructed marker haplotypes solves
this problem to some extent: copies of each unique
haplotype are assumed to carry the same QTL alleles. In this

GEBVs: Sources of data
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Figure 2 Sources of data that may be used in genome-wide prediction of
breeding values.
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case, the marker haplotypes are treated to be alike-in-state
(AIS; e.g. Meuwissen et al., 2001; Villumsen and Janss,
2008).

The assumption that copies of each unique haplotype
carry the same QTL allele can be relaxed by treating hap-
lotypes to be identical-by-descent (IBD; Meuwissen and
Goddard, 2001). Two haplotypes are IBD whenever they
consist of the same marker alleles due to inheritance from a
common ancestor. Since the probability that two haplotypes
are IBD is nearly always larger than zero and smaller than
one, predicted IBD probabilities between haplotypes are
included in the model to account for the relationships
between haplotypes (Meuwissen and Goddard, 2001). An
additional difference between marker AIS and IBD haplo-
types is that the IBD status of haplotypes is evaluated
at one position in the genome (a so-called putative QTL
position), whereas AIS haplotypes are considered to be
AIS across the whole haplotype. When IBD probabilities
between two haplotypes are close to one, those haplotypes
are usually considered to be the same to reduce the number
of effects that needs to be estimated and thereby increasing
power to estimate effects (Yu et al., 2005) and speeding up
convergence (Calus et al., 2009).

Underlying QTL distribution
Estimated SNP or haplotype effects capture at least partly
the underlying QTL effects. Consequently, the distribution of
estimated SNP or haplotype effects should resemble the
distribution of the underlying QTL effects. Estimated dis-
tributions of QTL effects suggest that there are many loci
of small (near zero) effect and that there are few loci with
large effect (Hayes and Goddard, 2001). However, for many
traits, the distribution of underlying QTL may largely be
unknown a priori. The design of QTL-mapping studies may
lead to overestimated effects for large QTL (Xu, 2003a),
while small QTL may not be picked up at all. Furthermore,
the effect of a single QTL may be explained by multiple
SNPs, leading to more SNP supposedly linked to QTL, on
average having relatively smaller effects than the QTL. This
suggests that prior information on the distribution of QTL
effects should be used with caution when designing models
to estimate SNP effects, or, alternatively, that models should
be able to make inferences from the data with regard to the
distribution of QTL effects.

Methods to solve the model
The main challenge for models that estimate SNP effects is
that generally phenotypes are available from a few thou-
sand animals, while the number of SNP is much larger, for
instance, approximately 50 000 SNPs for cattle. A practical
problem is how this set of equations can be solved. Another
issue is that the distribution of QTL effects implies that
there are many loci of small (near zero) effect and that
there are few loci with large effect (Hayes and Goddard,
2001). This implies that methods may have to be able to
eliminate loci with (near) zero effect and/or have to be able

to deal with the problem that the number of loci whose
effect need to be estimated, is much larger than the number
of records available. A straightforward approach is to select a
reduced set of explaining loci. This can be done by just
looking at the genomic variation, that is, by selecting a
subset of SNPs (so-called tag-SNPs), that together explain a
large part of the genomic variation in the full set of SNPs
(e.g. Ke and Cardon, 2003). Another approach is to select a
subset of SNPs that may be associated with a phenotype
of interest. Applied approaches are, for instance, machine
learning classification procedures (Long et al., 2007), or
forward stepwise regression to determine for each SNP
whether it significantly explains phenotypic variance, given
the effects of the already selected SNPs (Habier et al., 2007).

Conceptually more appealing is to incorporate a step in
the model that determines for each of the SNPs whether it
is associated with a QTL or not, and therefore, whether it has
a non-zero effect on the phenotype or not. Such an approach
was implemented in a Bayesian model by Meuwissen et al.
(2001), and termed BayesB. In BayesB, a Metropolis–Hastings
step is used in every iteration to determine for each locus
whether it has an effect on the phenotype or not. If it has not,
the effect of that locus is set to zero. One concern about this
model is that it relies quite heavily on the considered prior
information to infer the SNP effects (Gianola et al., 2006).

An alternative approach is to apply a mixture model,
where one distribution of variances is assumed for loci with
an association with the phenotype, and a distribution with
very small values is assumed for loci with no association
with the phenotype (Meuwissen and Goddard, 2004; Calus
et al., 2008; Janss et al., 2008). This method allows to apply
Gibbs sampling, while avoiding the Metropolis–Hastings
step that is used in BayesB. The benefit of this method is
that all loci for which no clear evidence is found for a direct
association, together still may explain a substantial part of
the genetic variance (Calus et al., 2008). This makes that
these mixture models are able to combine the properties of
the BayesB and the ‘genomic BLUP’ (GBLUP) model; the
distribution with large effects is expected to pick up the
same SNPs as the BayesB model, while the other SNPs still
all explain a roughly equal small amount of the variance as
in the GBLUP model. The GBLUP model assumes that each
of the SNPs equally contributes to the additive genetic
variance (Meuwissen et al., 2001). It has been shown that
constructing a genomic relationship matrix based on all
markers and included in a regular mixed model, instead of a
pedigree-based relationship matrix, is equivalent to the
GBLUP method (Goddard, 2009). The contribution of each
locus to the genomic relationship matrix can be weighted to
account for different variances per locus or differences in
local marker density (VanRaden, 2008).

Several other models have been considered for genome-
wide prediction. Apart from a few methods that assume equal
contribution to the genetic variance by all loci, a common
feature of these methods is to reduce the dimension of the
SNP data. Reported alternatives include non-parametric kernel
methods (Gianola et al., 2006; Bennewitz and Meuwissen,
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2008; Gianola and van Kaam, 2008), partial least squares
(PLS) regression (Raadsma et al., 2008; Solberg, 2008), prin-
cipal component analysis (PCA; Solberg, 2008), genetic algo-
rithms, and Bayesian LASSO (de los Campos et al., 2009).
Kernel methods were shown to yield similar results as the
Bayesian methods for purely additive models (Bennewitz and
Meuwissen, 2008), but may outperform the Bayesian models
when considering non-additive effects (González-Recio et al.,
2008). PCA reduces dimensionality of the SNP data matrix
by finding a few variables explaining as much variance as
possible, while PLS does the same, yet conditional on the
dependent variable (i.e. the phenotypic information).

Nearly all of the mentioned studies only considered
additive genetic effects in the model. Some models have
been presented that explicitly include dominance (Xu, 2003b)
or epistatic effects (Xu and Jia, 2007). The main problem
with the epistatic effects is that for a high number of
markers the number of potential interactions becomes
unreasonably high, and evaluating all of them is impossible.
A suggested solution involves modelling one genetic term
that includes additive and epistatic effects, without dis-
criminating explicitly between them (Gianola et al., 2006;
Gianola and van Kaam, 2008).

Accuracies of GEBVs

Results from simulation studies
In the following, the term accuracy is used for the corre-
lation between true and estimated breeding values, usually
denoted as rTI . The accuracy of GEBV depends partly on the
parameterization of the model and the statistical model
that is used to solve it. Comparisons, based on simulated
data, indicated that at low marker density the IBD-
haplotype parameterization yielded considerable higher
accuracy followed by the IBS-haplotype parameterization
and the single SNP model (Calus et al., 2008). At high
marker density, with LD comparable to the marker density
of commercially available SNP chips, the differences in
accuracy between the models were negligible (Calus et al.,
2008). Including a polygenic effect in the model also
increased the accuracy of GEBVs at low marker density
(Calus and Veerkamp, 2007), while at high marker density,

or in a situation where the markers already explained most
of the genetic variance, including a polygenic effect, hardly
increased the accuracy of the GEBVs (Calus and Veerkamp,
2007; Solberg, 2008).

In simulation studies, Bayesian models, including BayesB
and mixture models, have been reported to yield accuracies
for animals without phenotypic records ranging from 0.7 to
0.8, when the marker density was equivalent to one SNP
per cM and approximately 1000 animals were included in
the reference population (Meuwissen et al., 2001; Habier
et al., 2007; Calus et al., 2008; Solberg et al., 2008). In
these studies, the simulated QTL followed a gamma
(Meuwissen et al., 2001; Calus et al., 2008; Solberg et al.,
2008) or normal distribution (Habier et al., 2007). Both
distributions imply that a limited number of loci explains a
large amount of the genetic variance, which fits the
assumption of those Bayesian models. When the number of
QTL (8700) was large relative to the number of markers
(8729), a model that assumed equal contribution to the
additive variance by each SNP (i.e. including a genomic
relationship matrix instead of a pedigree-based relationship
matrix) was shown to need at least 5000 (out of 8729)
markers across the genome to give an accurate prediction
of the simulated heritability (Hayes and Goddard, 2008).
These results suggest that fine-tuning the model depending
on the trait and the underlying QTL distribution greatly adds
to the fit of the model to the data.

Results based on real data
In applications to real dairy cattle data, allowing unequal
contributions of SNPs to the genetic variance yielded GEBVs
that had only a slightly higher reliability than GEBVs esti-
mated with a model that assumed equal contributions of
SNPs to the genetic variance (Hayes et al., 2009; VanRaden
et al., 2009). Reliabilities were, however, substantially
higher using BayesB for traits that are affected by DGAT
(VanRaden et al., 2009). These results suggest that the
distribution of QTL effects in real data is generally less
extreme than assumed in the above-mentioned simulation
studies, but more research is needed to verify this.

Table 1 gives a summary of ranges of GEBV accuracies for
several dairy cattle breeding traits obtained from published

Table 1 Ranges of accuracies for genomic estimated breeding values across traits as estimated in different countries for various sizes of the
reference population

Reference Size reference population Number of SNPs included Range accuracy of GEBVs
Range accuracy of

GEBVs – accuracy of PA1

Table 2 Berry et al. (2009) 596 42 598 0.56 to 0.71 0.01 to 0.17
Table 1 Lund and Su (2009) 12382 38 055 0.55 to 0.85
Harris et al. (2008 and 2009) 2490 44 146 0.63 to 0.82 0.15 to 0.24
Table 1 De Roos et al. (2009) 3600 48 000 0.52 to 0.82 0.04 to 0.23
Table 3 Schenkel et al. (2009) 3966–4127 38 416 0.36 to 0.77 20.01 to 0.29
Table 3 VanRaden et al. (2009) 5335 38 416 0.44 to 0.79 0.18 to 0.31

GEBVs 5 genomic estimated breeding values; PA 5 parent average.
1That is, pedigree index.
2Calculated as 80% of the reported 1548 bulls in the reference population.
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studies based on real data with approximately 40 000 SNPs.
Dairy cattle was used here as an example, because the
results published on other species are limited so far. The
accuracies from the different studies in Table 1 were
obtained using different methods, apply for different groups
of animals and may be for GEBVs or GEBVs blended with
traditional proofs. Here, accuracies were used that were
obtained for blended proofs of young bulls, or attempted to
resemble those, whenever available. All studies presented
in Table 1 showed that the accuracy of GEBVs was up to
0.31 higher than for pedigree indexes for bulls without any
phenotypic data on offspring available, although for some
traits, the GEBVs did not outperform pedigree indexes.
Although inclusion of many different traits and use of dif-
ferent methods to assess the accuracy in different studies
makes comparison of the obtained accuracies difficult,
the reported maximum accuracy of each study was for
a milk production trait. Those maximum values per
study show that having 600 reference bulls resulted in
lower accuracies (0.71) than when using at least 1200
reference bulls (accuracy >0.77). Despite the limited
number of studies in Table 1, and differences among the
studies, the results suggest that there is a trend of
increasing accuracy of GEBVs with increasing numbers of
bulls in the reference population. Therefore, it seems
advisable to include .1000 bulls in the reference popula-
tion to obtain GEBVs for juvenile selection candidates with
accuracies that are higher than those for pedigree indexes
for all traits.

Factors affecting the accuracy of GEBVs
Independent of the applied model to estimate marker
effects, the accuracy of GEBVs strongly depends on the LD
between marker and QTL loci that is consistent between the
reference population and the animals for which GEBVs are
predicted, and the accuracy of the estimated marker effects
(Goddard, 2009). The accuracy of the estimated marker
effects depends on the characteristics of the reference
population, such as the number of included phenotypes
(Hayes et al., 2009; VanRaden et al., 2009), sampling of
animals from the population (Habier et al., 2007) and the
heritability of the trait (Calus et al., 2008; Hayes et al.,
2009). The ‘phenotypes’ of the reference population that
are used to estimate the SNP effects may be deregressed
EBVs, as applied in many cases for dairy bulls. In this case,
the heritability is effectively increased per animal, by
adjusting the residual variance by a weight that is calcu-
lated from the number of offspring contributing to the EBVs
of the bull (e.g. Fikse and Banos, 2001). The LD between
marker and QTL loci depends largely on the marker density.
This indicates that the accuracy of GEBVs can be increased
by increasing the number of animals in the reference
population (Meuwissen et al., 2001), by sampling animals
within families relevant for selection (Legarra et al., 2008),
by increasing the marker density (Meuwissen et al., 2001;
Calus et al., 2008; Solberg et al., 2008) and by increasing
the heritability (Calus et al., 2008; Solberg, 2008).

The accuracy of prediction of GEBVs across and within
different families or lines may be different, because the
marker effects may absorb polygenic effects from one
pedigree structure that are different from another structure
(Habier et al., 2007; Legarra et al., 2008). This does have a
consequence not only for the construction of the reference
population set, but also for the evaluation of different
methods to predict GEBVs. An important additional para-
meter to compare different methods may therefore be the
amount explained within and across family variance
(Legarra and Misztal, 2008).

Persistency of LD and accuracy of GEBVs across
generations

Accurate genomic breeding value prediction strongly
depends on the persistency of LD between markers and
QTLs across generations. LD within a population can be
created and maintained by selection, migration, mutation
and drift (Lynch and Walsh, 1998). The same forces may,
however, decrease the LD between two loci, especially if
the allele frequency at either locus is substantially changed.
As a consequence, when marker effects are not re-estimated,
the accuracy of GEBVs across generations is expected to
decrease. In simulation studies, it was shown that the
accuracy of GEBV decrease slowly when mating is random
(Meuwissen et al., 2001; Solberg, 2008), and more rapid
when selection is considered (Muir, 2007). Since recombi-
nation will break up LD in both situations, this indicates that
selection is an important factor to break up LD between
markers and QTL.

The breakup of LD between markers and QTL, and con-
sequently the reduction of accuracy of GEBVs across
generations of selection, is one factor that determines
the optimal frequency to re-estimate SNP effects. Another
factor, from the perspective of the breeding program, is the
frequency in which reliable phenotypes become available
to re-estimate the SNP effects. In dairy cattle, a practical
approach would be to continuously add phenotypic
daughter information that becomes available for bulls that
were selected as juveniles based on their GEBVs. In the
time required to obtain this daughter information, two to
three generations of selection maybe performed purely
based on GEBVs (Villumsen et al., 2009). Some studies
showed that depending on the frequency of re-estimating
the effects, different methods may be more suitable to
obtain SNP effects whose accuracies are more persistent
across generations. For instance, methods that are better
able to disentangle between LD and linkage information
show better persistency of GEBV accuracy across genera-
tions (Habier et al., 2007; Zhong et al., 2009). Despite the
finding that approximately 50 000 SNPs are sufficient for
within-breed genomic breeding value prediction in cattle,
larger SNP arrays that undoubtedly will become available in
the future will increase the LD between SNPs and QTL,
leading to slower reduction of the accuracy of GEBVs across
generations.
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In most applications of genomic breeding value estimation,
only additive genetic effects are considered. Despite this, a
part of the estimated genetic effects may actually be non-
additive by nature (Hill et al., 2008). This may decrease the
predictive ability of GEBVs across generations as well. For
instance, in the situation that an epistatic effect between two
unlinked loci is partially absorbed in the estimated additive
effects due to extreme allele frequencies, the inheritance of
this ‘additive’ effect will not follow the Mendelian rules. As a
consequence, these fitted ‘additive’ effects may improve the fit
of the model to the data, but actually decrease the accuracy of
forward prediction.

Conclusions

Genomic selection is the ultimate application of markers in
animal breeding. Using a reference population of animals
with known genotypes and phenotypes enables to predict
breeding values of young selection candidates that have
reported accuracies that are up to 0.31 higher than those of
pedigree indexes. Published results indicate that for dairy
cattle at least approximately 1000 bulls are required in the
reference population to obtain GEBVs with accuracies that
compete with the accuracies of EBVs based on progeny
testing for all traits. Several methods, of which most aim at
reducing the dimension of the marker data, can be applied
to estimate marker effects. The accuracy of genomic
selection strongly depends on the characteristics of the
reference population, as well as the relationship between
the evaluated animals and the reference population.
Breakup of LD between markers and QTL across genera-
tions advocates frequent re-estimation of marker effects to
maintain the reliability of GEBVs at an acceptable level.
Therefore, at low frequencies of re-estimating marker
effects, it becomes more important that the model that
estimates the marker effects capitalizes on LD information
that is persistent across generations.
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