
Abstract
The automated extraction of linear features from remotely
sensed imagery has been the subject of extensive research
over several decades. Recent studies show promise for extrac-
tion of feature information for applications such as updating
geographic information systems (GIS). Research has been
stimulated by the increase in available imagery in recent
years following the launch of several airborne and satellite
sensors. However, while the expansion in the range and avail-
ability of image data provides new possibilities for deriving
image related products, it also places new demands on image
processing. Efficiently dealing with the vast amount of avail-
able data necessitates an increase in automation, while still
taking advantage of the skills of a human operator. This paper
provides an overview of the types of imagery being used for
linear feature extraction. The paper also describes methods
used for feature extraction and considers quantitative and
qualitative accuracy assessment of these procedures. 

Introduction
Background
Humans have sought to extract information from imagery ever
since the first photographic images were acquired. As early as
the mid nineteenth century the French Army Corps of Engi-
neers experimented with using aerial photographs for recon-
naissance and mapping (Wolf and Dewitt, 2000). The expan-
sion of photogrammetry and remote sensing have since been
stimulated by advances such as the development of color film,
the invention of the airplane, and unceasing improvement in
instrumentation and techniques (Wolf and Dewitt, 2000).
However, interest in feature extraction has increased signifi-
cantly since the advent of digital imagery and the possibilities
associated with electronic processing. Focused conferences
provide an overview of many of the techniques available
(Baltsavias, et al., 2001; Gruen, et al., 1997; Gruen, et al.,
1995). In addition, several commercially available photogram-
metric workstation systems cited in the review by Plugers
(1999) now incorporate some automated feature extraction
capability. Other companies such as Definiens (2003) and Vi-
sual Learning Systems (VLSI, 2003) are developing software
specifically targeted at feature extraction. However, since the
majority of commercial vendors use proprietary algorithms
this paper does not provide a comprehensive review of such
systems.

Within the field of feature extraction there are many areas
of specialization. Some algorithms have been designed to
identify specific target objects while others focus more gener-
ally on building or road extraction. The techniques for these
different specializations can vary substantially. This paper
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focuses on the research performed for the purpose of extract-
ing linear features from remotely sensed imagery. One of the
primary reasons that researchers in the mapping sciences
focus on linear feature recognition is because of the signifi-
cance of roads in our society and the need to keep road loca-
tions updated (Pigeon, et al., 1999a). Park, et al. (2002) de-
scribe many of the challenges commonly associated with
linear feature extraction and overview some common
techniques. 

Research into automated feature extraction from imagery
dates back to the seventies. Since that time, technology has
improved and commercial access to imagery has continued to
expand. Destival (1986) described the improvements in fea-
ture extraction that were expected using 10 meter panchro-
matic imagery following the launch of the first SPOT satellite
in 1986. In moderate resolution imagery, such as SPOT or
Landsat Thematic Mapper (TM), linear features such as roads
are often narrower than the spatial resolution of the satellite.
Hemmer (1996) described this subpixel problem as one of the
complicating factors in extracting linear features using im-
agery from the satellite sensors available at that time. Wang
and Zhang (2000) compared high spatial resolution aerial
photography with SPOT and Landsat TM imagery for extracting
road networks. Wang and Zhang (2000) found that the success
of linear feature extraction was particularly related to spatial
resolution. Their experimentation found that photography
out-performed the lower resolution satellite imagery when ex-
tracting roads in an urban environment. High spatial resolu-
tion imagery provides a detailed representation of road net-
works needed for many applications that cannot be obtained
from lower resolution image sources (Xiong, 2001). In lower
resolution imagery roads appear as curvilinear structures,
while in higher resolution imagery roads appear as homoge-
nous regions that satisfy certain shape or size constraints
(Hinz, et al., 2001). Roads are often characterized in high spa-
tial resolution imagery as elongated regions (Agouris, 2001b).
The increased availability of high spatial resolution data has
stimulated the development of techniques specifically tar-
geted at taking advantage of the detail found in such imagery.
For example, many of the techniques developed for road de-
tection search for roads as pairs of edges: such techniques are
unsuited to processing lower resolution imagery.

Access to imagery with ground sample distances (GSD)
below five meters has increased significantly in recent years
with the launch of several airborne and satellite sensors.
This expansion in the availability of high spatial resolution
image data provides new possibilities for deriving image re-
lated products but also places new demands on processing
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capabilities. The improvements in spatial resolution provide
the potential for automatically defining linear features that
were previously unattainable (Penn and Livo, 2002). However,
to be most useful imagery must be processed quickly, and fea-
tures must be located accurately and classified correctly. With
such time restrictions and the vast amounts of data collected
daily, manual processing cannot hope to keep up with the
data acquisition (Gibson, 2003). The increased amount of data
is one of the driving factors that is stimulating the develop-
ment of automatic processing for extracting linear features
(Agouris, et al., 2001b).

In order to serve a wide variety of civilian and military
applications, planimetric features are generally represented
on maps by their centerlines, boundaries, or center points
(Yee, 1987). Historically, these features were interpreted and
extracted manually by a human interpreter viewing imagery
on a stereoplotter (Yee, 1987). Automatically updating road
layers can be a complicated effort, with partial-occlusion from
cars, vegetation, and buildings blocking some roads from de-
tection and other features with similar spectral or spatial char-
acteristics creating confusion when performing classifications.
Successfully exploiting the new high spatial resolution data
sources will require developing novel, robust feature extrac-
tion and image classification tools (Guindon, 1999). 

A common objective of feature extraction is to facilitate
the rapid update of GIS data (Ahac, et al., 1992). Such updates
can include deriving new information or using existing GIS
data sets to drive feature extraction (Bonnefon, et al., 2002).
Manual processing of data relies heavily on human labor,
pushing up the cost of developing such databases (Xiong,
2001). The potential for time reduction in creating and updat-
ing databases is an important factor in developing feature ex-
traction techniques. Another incentive for moving to auto-
mated feature extraction is convenience. The Canada Centre
for Mapping (CCM) traditionally updated maps through visual
interpretation of imagery (O’Brien, 1989). Digitization of the
maps at the CCM led to a logical shift from visual updates to
extraction of information directly from digital sources. Im-
proving the quality and consistency of derived data may be a
further reason for using automated procedures. Fitton and Cox
(1998) describe a need to identify geological features in im-
agery for use in deriving parameters for geophysical models.
The authors state that automatically extracting features from
imagery increases the speed of data processing and improves
the reliability of the parameters derived from these features. 

Types of Imagery Considered in Feature Extraction
The body of literature for linear feature extraction from
panchromatic aerial imagery is substantial (e.g., Agouris,
et al., 2001a; Katartzis, et al., 2001; Couloigner and Ranchin,
2000; Trinder and Wang, 1998). However, feature extraction
techniques are applied to imagery with a wide variety of spec-
tral and spatial characteristics. Many authors have reported
use of radar data for extracting linear features (e.g., Hellwich,
et al., 2002; Chanussot, et al., 1999; Tupin, et al., 1998; Iisaka
and Sakurai-Amano, 1995), while others such as Alharthy and
Bethel (2003) extracted roads from lidar data; additionally, au-
thors such as Pelletier (1985) describe feature extraction in
thermal imagery of an agricultural region. Several authors re-
port feature extraction using multispectral image sources in
the visible or near-infrared portion of the spectrum such as
SPOT (e.g., Hui, et al., 2001; O’Brien, 1989; Yee, 1987; Destival,
1986), Landsat TM (Wang and Zhang, 2000; Fitton and Cox,
1998), and Ikonos imagery (Gibson, 2003; Dial, et al., 2001).
Research has also been performed for linear feature extraction
from hyperspectral imagery. Gardner, et al. (2001) and Penn
and Livo (2002) reported some success in extracting road loca-
tions from AVIRIS imagery, while Doucette, et al. (1999) experi-
mented with HYDICE imagery. 

Much of the literature reported for feature extraction
applies to single band, high spatial resolution imagery. Ikonos
(Space Imaging, Inc., 2003) and Quickbird (Digital Globe,
2003) are examples of the new generation of high spatial
resolution satellite based sensors: Ikonos has one meter
panchromatic and four meter multispectral; QuickBird im-
agery has 0.61 meter panchromatic and 2.44 meter multispec-
tral. In both cases, these sensors record their highest spatial
resolution in a panchromatic mode. Processing techniques
that aim to use the highest spatial resolution data sources
will need to extract and exploit the spatial and/or contextual
information with a limited number of spectral channels
(Guindon, 1999). 

Feature Extraction
Manual versus Automated Extraction
Humans and computers have complementary strengths: hu-
mans are good at scanning large areas and recognizing objects,
whereas computers are good at optimization, detailed delin-
eation and repetition (McKeown, et al., 1996). Whether man-
ual, automated, or a combination of the two, feature extraction
can be a very involved process. Manual feature extraction
harnesses the interpretation skills of the operator but can be
time consuming and thus expensive to perform (Baumgartner,
et al., 1999). With a growing body of digital data archived
and a rapidly changing society, the efficient revision of carto-
graphic databases implies some form of automated feature
extraction (O’Brien, 1989). Data capture is often the most ex-
pensive component in a GIS application and techniques devel-
oped that can alleviate this are welcomed (Ansoult, et al.,
1990; Firestone, et al., 1996). Automated systems offer the
potential for time and labor savings and potentially may im-
prove accuracy and consistency of planimetric data (Yee,
1987). The use of automated or semi-automated procedures
can also provide cost savings by significantly reducing the
training time of photo interpreters (Pigeon, et al., 1999b). Au-
tomated procedures may also have other less tangible benefits
such as reducing operator fatigue (Firestone, et al., 1996).

Humans have the ability to group simple features, such as
points and lines, into meaningful structures (Guindon, 1999).
Semi-automated approaches rely on user provided cues to de-
lineate road components (Agouris, et al., 2001b). Only a short
number of years ago Gruen and Li (1997) considered fully au-
tomatic methods for feature extraction to be “far out of reach.”
Furthermore, the authors believe that using a semi-automated
approach is optimal because humans perform identification
almost flawlessly with limited effort. Humans are able to per-
ceive shapes in noisy data and adapt to varying conditions,
without being told explicitly what to expect. Writing com-
puter code to simulate this ability is a significant challenge.
Baumgartner, et al. (1999) found that their automatic road ex-
traction was not absolutely reliable and generally required a
human operator to edit the results. This typically entailed
deleting wrongly extracted roads and inserting missing parts.
Incorporating existing GIS data into the feature extraction
process can reduce the need for human direction (Agouris,
et al., 2001a).

Humans interpret imagery by evaluating a wide range of
cues including both spectral and spatial patterns. Traditional
classification methods are generally applied to multispectral
data sets and use spectral similarity of features within a class
to gather information. With high spatial resolution imagery, it
is often possible to consider spatial patterns to a greater de-
gree when looking for specific features. For example, it is pos-
sible to use structural information about roads (such as,
width, linearity, or limitations on curvature) to distinguish
them from other features that may be spectrally similar. Many
automated or semi-automated feature extraction procedures
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attempt to mimic the human interpretation process by incor-
porating both spectral and spatial information.

A Feature Model
To carry out object recognition, it is first necessary to establish
a model or framework that describes the general characteris-
tics of the feature of interest (Suetens, et al., 1992). Automated
feature extraction requires that such a model be defined in a
manner that can be implemented by computer (Trinder and
Wang, 1998). Model based processing exploits the constraints
and relationships that define objects, for example, the size,
shape, and material of a building, or the width, material, and
direction of a road. The feature model includes information
relating to a range of characteristics such as intensity, shape,
texture, and context (Suetens, et al., 1992). Models are often
characterized as being either flexible or rigid. A rigid model
defines features specifically, for example outlining the allow-
able size, shape and spectral response. A flexible model may
include specifications in terms of generic constraints, such as
smoothness, rectilinearity, curvature, compactness, symmetry,
and homogeneity. An objective function is used to find a best
fit between the model and the image data. Some techniques
use hierarchical types of models (Suetens, et al., 1992). For
example, Yee (1987) identified bridges by first finding poten-
tial road segments, then restricting the search to select those
with water on either side.

The simplest models rely only on local intensity values to
recognize features, as is the case in a traditional supervised
classification. Suetens, et al. (1992) believe that without con-
sidering geometric and semantic characteristics as well as sta-
tistical properties, most feature extraction procedures are un-
likely to succeed. Baumgartner, et al. (1999) initially defined
three contexts in order to subdivide a scene: urban, rural, and
forest. Road sub-models were then developed locally within
each of the global contexts, reflecting the complex nature of a
typical feature. Katartzis, et al. (2001) used a model that com-
bined both geometric and radiometric properties of the linear
features they aimed to extract.

Developing models of features to be extracted can provide
significant processing benefits. Most of the techniques re-
viewed for this paper relied on models to some degree. When
searching for roads in imagery, many authors use a simple
model; for example, assuming that roads have high intensity
and are linear (O’Brien, 1989). Yee (1987) incorporated struc-
tural knowledge of roads and inferred road segments by find-
ing parallel lines separated by specified road widths. Gruen
and Li (1997) specify a more detailed road model that consid-
ers a variety of characteristics. For example, road pixels are
lighter in intensity than neighboring non-road pixels, and in-
tensity values along a road generally do not change very much
within a short distance; roads are usually continuous in na-
ture, generally comprising straight line segments connected
by smooth curves with an upper bound on local curvature;
and the width of a road does not change significantly.

Techniques for Feature Extraction
Overview
There is a wide range of techniques used to detect linear fea-
tures in imagery. Many of the papers reviewed developed ex-
traction techniques for locating a specific feature class, such
as roads, while others considered adaptations to generalize
the search to other linear features such as streams, railroads,
and runways (Fischler, et al., 1981). The level of automation
in the reviewed techniques varied significantly. Some proce-
dures described in this paper require a significant amount of
human input to select potential road locations. Other proce-
dures use a few initial assumptions, such as the relative
brightness of road pixels or linearity, and allow the computer

to do the rest. A common application of linear feature extrac-
tion is updating GIS data layers. As a result, increasing num-
bers of techniques are taking advantage of this by using exist-
ing digital data to provide preliminary input information for
processing. 

Techniques for feature extraction often divide the process
into three primary steps: edge detection or road finding, road
tracking, and vectorization or road linking (Park, et al., 2002;
Trinder and Wang, 1998). Many techniques rely on some
form of preprocessing to enhance edges or lines, or segment
the imagery into homogeneous regions (e.g., Nevatia and
Babu, 1980; Sijmons, 1987; Guindon, 1998). Rowe and Grewe
(2001) found using edges, rather than individual pixels, was
more reliable when considering changes in linear features be-
tween pairs of images. Even though the authors acknowledge
the importance of the preprocessing procedures used for edge
detection, they are often not described in detail (e.g., Fitton
and Cox, 1998). Park, et al. (2002) provides a summary of
some common methods used for edge detection in the context
of extracting roads from imagery.

Many of the techniques reported in the literature combine
strategies from a variety of approaches. Categorizing such ap-
proaches becomes a challenge. The following sections of this
paper present many of the different techniques used in auto-
matically extracting roads from imagery, recognizing that
there is often substantial overlap between the procedures.

Mathematical Morphology
The techniques of mathematical morphology have proven use-
ful in automating feature extraction. Destival (1986) and
O’Brien (1989) used mathematical morphology to search for
roads in simulated and actual SPOT imagery, respectively.
Dong (1997) used mathematical morphology to extract linear
features from gray scale aerial imagery. Trinder and Wang
(1998) used mathematical morphology to extract lines in the
low-resolution component of a multi-resolution processing
system. Chanussot, et al. (1999) found that morphological op-
erators perform well for extracting roads because they are in-
trinsically characterized by shape. Roads are identified using
mathematical morphology by considering the intensity of pix-
els in relation to their neighbors. The procedure uses a priori
knowledge about the relative intensity of roads to perform the
automated road extraction, for example, assuming that roads
have brighter intensity than the background (Trinder and
Wang, 1998).

In mathematical morphology, images are filtered using a
kernel. The output of the filtering process depends on the
match between the image and the kernel and the operation
being performed (O’Brien, 1989). The two basic operations of
mathematical morphology are dilation and erosion (Serra,
1986). The simplest example of mathematical morphology
considers the analysis of binary images. The kernel typically
used for binary imagery is a 3 � 3 array consisting of 1s, 0s, or
1s. Dilation and erosion can be performed on binary images
using with the kernel shown in Figure 1 (O’Brien, 1989).

In dilation, the filter shown in Figure 1 is passed across
the image with the resultant value for the center cell set to 1 if
any 1 in the kernel matches a 1 in the image, which expands
features in the image and closes any gaps. In erosion, a value
of 1 is returned only if all the 1s in the kernel are matched
by 1s in the image. Erosion shrinks image features and elimi-
nates small features. Figure 2 shows a simple example where
Figure 2b and Figure 2c, respectively, illustrate dilation and
erosion of Figure 2a. For ease of visualization, a value of 1 in
Figure 2 is shown in the image as a black square and 0 as
white. Dilation followed by erosion (closing) closes small
gaps and connects sets; erosion followed by dilation (opening)
removes small or narrow elements, without effecting large
ones (Dong, 1997).
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When a gray scale image is analyzed, the pixel intensity
can be considered to form a three-dimensional surface (much
like a digital elevation model) with changes in intensity corre-
sponding to features such as peaks, holes, trenches, ridges,
and steps (O’Brien, 1989). Dilating the gray scale image fills
holes and trenches, broadens peaks and ridges, and shifts
steps outward. Erosion tends to eliminate features with a
width less than the kernel. 

The directional filter shown in Figure 3 is used to identify
linear features. Eroding an image using the kernel shown in
Figure 3 and also eroding the image with rotations of the same
kernel defines features with linear characteristics. When the
rotations of the kernel shown in Figure 3 are applied to an
area with homogenous intensity or a point feature, the output
will be the same for all directions. Linear features, such as
ridges and steps, are detected by identifying image locations
that show variation in the output for different directional
kernels.

Ansoult, et al. (1990) and Yamada, et al. (1993) used
mathematical morphology as a means of acquiring GIS layers
from scanned maps. In order to find closed boundaries of the
various classes displayed on the maps, Ansoult, et al. (1990)
used a mathematical morphology routine called a watershed
algorithm. This algorithm is performed in two stages, a skele-
tonization followed by a pruning. The skeleton is formed by

sequentially thinning the image with structuring elements
that preserve homotopy; the pruning transformation removes
lines that do not form closed contours. These two operators
are most easily explained by referring to the illustration
shown in Figure 4.

Figure 4a shows the initial binary imagery. Figure 4b
shows the same image skeletonized, that is, sequentially
thinned to lines of unit thickness. The watershed of the origi-
nal image is shown in Figure 4c, in which the skeleton has
been pruned leaving only closed contours. Daida and Vesecky
(1991) used a variation of this watershed algorithm to extract
features in radar imagery. Thinning linear features using
mathematical morphology increases the potential for vector-
ization and direct input into a GIS (Dong, 1997).

In order to extract roads from SPOT panchromatic imagery,
O’Brien (1989) used a multi-step mathematical morphology
based procedure. He reported difficulties in rural areas when
roads passed near the edge of fields, and in urban areas where
roads were confused with large paved areas such as parking
lots. Destival (1986) observed that the automated process re-
quired human intervention in several places, and, in fact, a
human could perform the road extraction more efficiently.
Dong (1997) found that the mathematical morphology opera-
tions operated most efficiently when applied in conjunction
with human interaction. For some studies, mathematical mor-
phology was a component in a multi-stage feature extraction
process (Chanussot, et al., 1999; Doucette, et al., 1999).

Hough Transform
The Hough Transform (HT) is an automatic analysis technique
used for detection of linear features in a variety of applica-
tions (Karnielli, et al., 1996). The standard HT detects analytic
curves, while a generalized HT can be used to detect arbitrary
shaped templates (Suetens, et al., 1992). The HT uses a para-
metric approach to describe features of interest and can detect
any feature that can be parameterized (Fitton and Cox, 1998).
In the parameter space, image patterns produce local extremes
at the most likely parameter values (Suetens, et al., 1992). Lin-
ear features in image space are transformed into single points
in the parameter space. Successful detection of linear features
using the HT requires preprocessing to threshold the input
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Figure 1. Basic kernel used for dilation and erosion in bi-
nary imagery.

Figure 3. Directional kernel used for detecting linear
features.

Figure 2. Simple example of erosion and dilation: (a) original
(b) dilated (c) eroded.

(a) (b) (c)
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image into a binary layer. Benefits of the HT are that it detects
lines with some fragmentation and it is reasonably unaffected
by random noise (Fitton and Cox, 1998). 

Lee and Moon (2002) used the parameterization of the HT
described by Duda and Hart (1972) for extracting linear fea-
tures. In this transform image space (x, y) is transformed to a
(�, �) parameter space. An example illustrating this parameter-
ization is shown in Figure 5. Based on the example shown in
Figure 5, the point (x, y) can be represented in polar coordi-
nates as (r, �). That is: x � r cos � and y � r sin �. The follow-
ing can also be observed from Figure 5:

� � r cos � � r cos (� � �) � r cos � cos � � r sin � sin �
� (x�cos �) cos � cos � � (y�sin �) sin � sin �
� x cos � � y sin � (1)

As mentioned earlier in this section, lines in the image
space are transformed to points in the parameter space. This
can be seen using the simple example shown in Figure 5.
Based on Equation 1, all of the points along the dashed line
including (x, y) will be transformed onto (�, �). A point in the
parameter space will have amplitude proportional to the num-
ber of points that populate the line in image space (Fitton and
Cox, 1998). The application of the HT reduces the problem of
searching for lines in the image space to searching for peaks
in the parameter space.

Lee and Moon (2002) used the HT to detect lines in a
range of image sources including JERS-1 SAR and Landsat TM.
The HT requires a binary image input, often produced using
linear and non-linear edge enhancement techniques. The suc-
cessful detection of lines by the HT is dependent on this initial
processing (Fitton and Cox, 1998). Fitton and Cox (1998)
found a large proportion of linear features were extracted by
varying different parameters to reduce artifacts. Iisaka, et al.
(1995) used the HT to detect road intersections in single look
synthetic aperture radar (SAR) imagery. Iisaka, et al. (1995)
compared road intersections found using the HT with those
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Figure 5. Illustration of parameters of Hough Transform (from Fitton
and Cox, 1998).

Figure 4. Stages of watershed algorithm: (a) initial;
(b) skeletonized; (c) pruned.

(a)

(b)

(c)
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on topographic maps of the area. They found a significant
number of road intersections were clearly defined. Commis-
sion errors caused by stream/road intersections were also ob-
served though not enumerated. 

Karnielli, et al. (1996) used the HT to detect linear geo-
logical features using three different image sources: digitized
terrestrial photography, digitized airborne photography,
and Landsat TM Imagery. The research compared computer-
extracted to manually-interpreted features with additional
verification in the terrestrial situation coming from field inter-
pretation. The automated algorithm detected only the major
features in the terrestrial imagery evaluated by Karnielli, et al.
(1996), while the interpreter tended to be biased toward short
lines. However, the automated algorithm successfully de-
tected short lines when the images were divided into small
pieces (Karnielli, et al., 1996). 

Multi-Resolution Techniques 
The appearance of roads in digital imagery is dependent
on the spectral and radiometric characteristics of the sensor
and the spatial resolution of the imagery. In lower spatial res-
olution imagery, roads tend to appear as lines as compared to
higher resolution imagery (less than two meter GSD) where
roads appear as elongated homogeneous regions with consis-
tent width (Baumgartner, et al., 1999). Many authors (e.g.,
Gibson, 2003; Couloigner and Ranchin, 2000; Baumgartner,
et al., 1999; Daida and Vesecky, 1991; Trinder and Wang,
1998; Shneier, 1982) report multi-resolution based approaches
to extract roads from imagery.

Many multi-resolution approaches generate lower reso-
lution imagery by degrading a high-resolution source. Both
Shneier (1982) and Baumgartner, et al. (1999) extracted lines
in imagery with reduced resolution, then used this informa-
tion to identify the roads in the higher resolution imagery.
The image degradation often involves generating an image
pyramid. Shneier (1982) created a pyramid of images by suc-
cessively passing a 2 � 2 filter over the image and replacing
the four-pixel neighborhood with the median value. As an al-
ternative, Couloigner and Ranchin (2000) used a wavelet
transform to generate pyramid layers. Instead of degrading a
high-resolution dataset for multi-resolution analysis, some au-
thors use multiple image types. Bonnefon, et al. (2002) used
SPOT imagery to approximately identify linear features then
used this preliminary data to identify roads in Ikonos imagery.

The pyramid approach used by Shneier (1982) took a se-
ries of progressively lower resolution images and applied a
line detector to the low-resolution images. The author as-
sumed each line in the lower resolution image corresponded
to an elongated region in the original image, and attempted to
identify the position and extent of these regions. Many au-
thors found distinct benefits by combining the abstraction of
the coarser scale with the detailed information found at the
finer scale. Trinder and Wang (1998) identified pairs of edges
in high-resolution imagery and combined this with lines in
lower resolution (re-sampled) imagery in order to fully extract
the road network. 

Baumgartner, et al. (1999) degraded images with 0.2–0.5
meter GSD until roads were a few pixels wide and abstracted
lines from this lower resolution image. These lines were used
to select edges in the original image that were candidates for
roadsides. A pair of edges are accepted as a road if they are
approximately parallel, have an approximately homogeneous
region between them, and have a corresponding line in the re-
duced resolution image. A dynamic programming approach
(see later section) was used to optimally fit a curve to the indi-
vidual road segments. Baumgartner, et al. (1999) used a tex-
ture-based segmentation procedure to subdivide the imagery
into three regions (urban, rural, and forest) and developed
local road models to suit each region. In rural areas more than

95 percent of roads extracted were actually roads and 80 to 90
percent of roads were extracted. This approach was less suc-
cessful in urban areas, with a visual assessment showing that
the fragmented roads in the built-up area were a challenge for
the automated processing algorithm. The test scenes did not
include significant forest areas for evaluation.

Template Matching
Another approach to feature extraction is the use of template
matching. In this approach, a template describing the general
characteristics of the feature of interest is defined. Templates
are often fixed in terms of attributes such as size, shape, and
intensity. Features are extracted by moving the template
through the image and evaluating the match at each location
using a similarity measure (e.g., correlation) to find optimal lo-
cations (Suetens, et al., 1992). The measure can include shape
(e.g., rectilinearity, parallelism or radial symmetry), image
constraints (e.g., forcing consideration of only homogenous re-
gions) or external constraints (Suetens, et al., 1992). While the
science behind Feature Analyst® (VLSI, 2003), an extension to
ESRI ARCGIS® and ERDAS IMAGINE® software, remains propri-
etary, the machine learning approach implemented utilizes
user-defined templates when searching for specific features.
Such templates incorporate both spatial and spectral informa-
tion. Opitz (2002) evaluated Feature Analyst for extracting
roads in pan-sharpened Ikonos imagery. He found that the au-
tomated tool provided accurate results with a substantial re-
duction in labor.

Gruen and Li (1997) used a template matching approach
to identify roads in digitized aerial imagery with an effective
GSD of 1.5 meters. Rather than using a rigidly defined tem-
plate, they used a least-squares template matching approach
to fit roads to a B-spline snake (LSB-SNAKES) using a de-
formable contour as the template. A snake is a curve that de-
forms itself from a given initial position to the nearest local
maximum of an appropriate metric (Suetens, et al., 1992). The
LSB-SNAKES approach used by Gruen and Li (1997) considers
both intensity variation and spatial observations. Intensity-
based observation equations are developed by matching gray
level variation in the image to the intensity variation specified
by the model. Spatial observation equations are based on
geometric constraints and knowledge of the limitations of
the location and shape of the feature to be extracted. The LSB-
SNAKES technique relies on an operator to identify seed
points located approximately along the curve (Gruen and Li,
1997). Agouris, et al. (2001a) used a differential snakes ap-
proach to perform change detection of road locations using
imagery with a ground resolution of 5 m. The technique
developed by Agouris, et al. (2001a) used existing GIS road
information for seed points, avoiding the need for manual
point identification.

A visual evaluation performed by Gruen and Li (1997)
showed that the LSB-SNAKES technique was successful even
when faced with varying road width, and partial-occlusion
caused by buildings, trees and cars. Despite Gruen and Li
(1997) emphasizing that one of the benefits of the LSB-SNAKES
approach was the metrics available, the results of the least-
squares fitting procedures were not reported, nor were any
other numerical results listed. Agouris, et al. (2001a) used
manually developed road layers, including intentional dis-
crepancies, to evaluate their change detection process. 

Poz (2001) presented an edge following technique that
used a local template to define roads in imagery with a 2
meter pixel size. The edge-based model used by Poz (2001)
was a modified version of that developed by Nevatia and Babu
(1980). Poz (2001) evaluated edges by comparing image re-
gions to rotated templates of width equal to the road. The
technique required seed points from the operator and relied
on a well-defined road model. The road tracing method was
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visually determined to be successful in the relatively simple
test case presented by Poz (2001).

Dynamic Programming 
Dynamic programming is a means of optimization through a
recursive search, for example to find a global optimum
(Suetens, et al., 1992). This approach is applicable only if a
function can be expressed in terms of relationships between
neighboring pixels alone and involves a sequential decision-
making process (Gruen and Li, 1997). In the application pre-
sented by Gruen and Li (1997), dynamic programming was
used to optimize road extraction in SPOT imagery based on the
procedure summarized below: 

• Define a curve as a polygon with n vertices; 
• Develop a merit function based on several of the radiometric

and geometric properties of the road model (as described in an
earlier section e.g., roads are bright, smooth, linear features,
with little change in intensity over a short distance), with
limitations on road curvature forming a fixed constraint;

• Move each vertex around in a window (for example, 5 � 5) to
find the maximum of the merit function based on the charac-
teristics described above.

To reduce computational complexity, the search at vertex
pi was restricted to points that were on the line perpendicu-
lar to the curve at pi. To further reduce the complexity an
image pyramid approach (as described earlier in the multi-
resolution discussion) was simulated. Rather than explicitly
re-sampling to create the image pyramid, early iterations se-
lected candidates along the line at specified intervals, for ex-
ample, every third pixel. Later iterations then decreased this
interval.

As mentioned earlier, the procedure described by Gruen
and Li (1997) is performed automatically after receiving
input from an operator to define a few approximate locations
of the curve vertices. After the first iteration, two new ver-
tices are added if the distance between adjacent vertices is
greater than a specified threshold distance. A second itera-
tion is then performed using the new polygon. Vertices are
also removed dynamically if they are found to be too close
to another vertex, are not necessary for defining the curve, or
do not fit the constraints of the model. Bonnefon, et al. (2002)
also applied dynamic programming to find an optimal solu-
tion when using SPOT imagery to update existing GIS data
layers. 

Pixel Swapping
Iisaka and Sakurai-Amano (1995) describe a feature detection
approach combining spectral and spatial information. In tradi-
tional spectral analysis, the intensity of a pixel (ai) is defined
simply by the location of the pixel (xi, yi), that is, spatial rela-
tionships between pixels are generally not considered. Iisaka
and Sakurai-Amano (1995) described a spectral relationship
as a mapping between two ordered sets. This is shown in a
simplified form in Equation 2 below where ai is the intensity
of pixel (xi, yi):

T: {(x0, y0), (x1, y1), . . . , (xi, yi), . . . , (xn, yn)} 
⇒ {a0, a1, . . . , ai, . . . , an}. (2)

The mapping in Equation 1 can be transformed as follows:

T: {. . . , (ai � ai�k) � (ai � ai�k), . . .} or T � T� � T� (3)

where ai�k is the intensity of a pixel at (xi�k, yi�k) and 

T+ � {. . . , (ai � ai�k), . . .) and T� � {. . . , (ai � ai�k), . . .).1
�2

1
�2

1
�2

1
�2

Considering n pixels within a window, the image T can be ex-
panded as follows:

T: �. . . , �ai � �
n

k�1

ai�k� � �ai � �
n

k�1

ai�k�, . . .� (4)

or

T+: �. . . , �ai � �
n

k�1

ai+k�, . . .�, and

T_: �. . . , �ai � �
n

k�1

ai+k�, . . .�. (5)

It can be observed that the subsets T� and T� intrinsically
carry spatial relationships by considering an image neighbor-
hood. As an example, a homogenous region has T� � 0 be-
cause ai � ai�k (for all local k): an isolated point in a binary
image will have T� � T � �

1
2�, since T� and T� will both equal �

1
2�

(ai+k � 0 for all k). An inside region has T� � T � 1 when con-
sidering a 3 � 3 neighborhood window. Iisaka and Sakurai-
Amano (1995) call this approach “pixel swapping” because
it evaluates the effect of swapping intensity values among
pixels.

Iisaka and Sakurai-Amano (1995) attempted to extract
road data from Landsat TM imagery. A brightness band was
calculated from TM bands 1, 2, and 3 and a thresholding was
applied to create a binary image that emphasized bright ob-
jects (roads and clouds). Using the pixel swapping approach,
clouds were then eliminated by dilating areas that were iden-
tified as inner regions (Iisaka and Sakurai-Amano, 1995).
Iisaka and Sakurai-Amano (1995) made qualitative assess-
ments of the success of the procedure.

Knowledge Integration
Knowledge engineering is the task of converting knowledge,
which may be intuitive, into some exploitable form (Pigeon,
et al., 1999a). Combining rules from a variety of sources,
including human intuition, can be challenging. Some com-
mercial software vendors now provide tools that support
integrating rules from a variety of image and ancillary data
sources, for example Expert Classifier©, a component of ERDAS
IMAGINE® (Leica, 2003). Fischler, et al. (1981) used a knowl-
edge integration approach to locate roads in imagery. Fischler,
et al. (1981) used rules to establish a numerical score for each
pixel to indicate the likelihood of that pixel lying on a road
(low values represented a greater probability). The road loca-
tion was determined by finding the lowest cost route that sat-
isfied all imposed constraints, such as continuity. This
process can combine a variety of local image feature operators
(such as edge detectors) and additional constraint layers in
order to optimize the search for roads. Scores from different
layers are combined based on knowledge, for example, about
the responsiveness of the operators used and the applicability
to a particular scene.

Fischler, et al. (1981) used the multisource knowledge in-
tegration technique to find roads in low-resolution aerial im-
agery. In their evaluation, they defined “low-resolution” to be
imagery where the width of a road was three pixels or less.
Fischler, et al. (1981) specified several performance criteria to
evaluate the success of the road delineation. These included:

• No point on the delineated road should be located outside the
road boundary when the road is clearly visible;

• The delineated road should be smooth where the road is
straight or smoothly curving (within the limitations of the
scanning);

• The delineated road should be labeled accordingly if it over-
lays portions of the road that are occluded;

• The delineated road should follow the actual center of the
road if it includes portions of the road that are partially
occluded.

1
�
n
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�
2

1
�
n

1
�
2

1
�
n

1
�
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Fischler, et al. (1981) tested their knowledge integration
procedure on 50 road segments in imagery covering seven
geographic locations. They found no failures when the roads
were clearly visible and all assumptions were satisfied.
Fischler, et al. (1981) did not find a single model that reliably
detected all roads. By using multiple operators, Fischler, et al.
(1981) were able to integrate a range of knowledge sources
and overcome the limitations of any single operator.
Classification-based Feature Extraction
A number of articles specifically take advantage of the multi-
spectral nature of sensors such as Landsat TM, SPOT and Ikonos
to extract road information. Classification is useful as a pre-
processing step in feature extraction, for example, to segment
images and focus a model on particular cover types. Classifica-
tion techniques have also been directly applied to solving the
problem of linear feature extraction. In most cases, even with
hyperspectral datasets, the spectral information alone was not
sufficient to define roads and the classification was one com-
ponent of a multistage process. Gardner, et al. (2001) found
that classification of roads using AVIRIS imagery was challeng-
ing because of the similarities of construction materials in
roads and roofs. They found that following the classification
with the spatial pattern recognition technique of a Q-tree filter
improved the result. In some applications, a road network is
simply one component of an output product.

The focus of the project presented by Baraldi and
Parmiggiani (1994) was not aimed specifically at extracting
roads, but rather at accurately classifying multispectral
satellite imagery such as Landsat TM and SPOT. They used an
ISODATA classification in conjunction with geometric image
cues, such as defining roads as thin, elongated regions, to
extract roads as part of their hierarchical approach to feature
extraction. Most traditional classification algorithms, such
as ISODATA, perform classification using spectral analysis
based on single pixels. The feature extraction routines uti-
lized by the eCognition® software consider image objects
rather than single pixels when performing classifications
(Definiens, 2003). 

In many cases, the amount of human intervention re-
quired for a spectral based classification limits its utility in
developing automated processes. Incorporating other informa-
tion, such as existing GIS data, allows development of more
automated systems. Doucette, et al. (1999) performed a princi-
pal component analysis on HYDICE imagery, and then used a
maximum likelihood classification to generate a classified
layer. This classified layer was combined with coarse GIS data
in a neural network in order to extract linear features. The GIS
data provided approximate location information for the ex-
traction, speeding up convergence while minimizing user
input. Agouris, et al. (2001b) applied an unsupervised classifi-
cation to Daedalus 3600 imagery, and then used spatial pro-
cessing through a K-Medians algorithm to determine which of
the defined classes represented roads.
Other Issues
While many of the approaches described in this paper focused
on one method for feature extraction, others merged proce-
dures to overcome limitations of one technique by harnessing
the strengths of another. Several authors raised the importance
of context in image interpretation. Computers, and humans,
need appropriate context models to carry out object recogni-
tion and scene interpretation (Suetens, et al., 1992). Terrain in-
formation may provide a knowledge source for feature extrac-
tion; for example, this may provide a constraint on the location
of roads and rivers (Yee, 1987). As discussed earlier, in their
search for roads, Baumgartner, et al. (1999) first segmented im-
ages into different contexts, and then used the appropriate con-
text to focus the extraction accordingly. Many feature extrac-
tion techniques incorporate contextual considerations.

There are a variety of programming approaches used to
solve the extraction problem. Iisaka and Sakurai-Amano
(1995) used genetic algorithms in order to reduce the comput-
ing cost of the extraction method they implemented. Neural
networks were important in many analyses (e.g., Doucette,
et al., 1999; Lepage, et al., 2000). Suetens, et al. (1992) de-
scribed more complex search strategies that systematically
constrain the search space by finding and refining partial
matches. These procedures may include techniques that
refine matches based on re-segmentation, template matching,
flexible model matching, or by any of the other techniques de-
scribed above.

The advantages of data fusion were discussed in the
multi-resolution context. For example, Gibson (2003) com-
bined one meter panchromatic with four meter multispectral
Ikonos imagery in seeking to extract roads. Hellwich and
Guenzl (2000) discuss the advantage of fusing different data
types based on the fundamental differences in image content.
The material an object is made of largely determines the ap-
pearance of that object in multispectral imagery; panchro-
matic imagery often has higher spatial resolution and there-
fore, provides geometric detail; microwave sensors such as
synthetic aperture radar contain information about surface
roughness. Hellwich and Guenzl (2000) combined the differ-
ing information within these various sources to great advan-
tage in feature extraction.

Assessing Feature Extraction Techniques
Many authors list a host of reasons for automating feature ex-
traction, ranging from time, cost and energy savings, to prod-
uct improvements, such as, increased detail or accuracy. Un-
fortunately, many of the papers reviewed did not provide
results to support these claims. Many authors stated inten-
tions of locating points in the field for verification of absolute
position, but did not include accuracy statistics for the study
reported.

Most of the papers reviewed relied heavily on visual as-
sessment for reporting the success of the feature extraction algo-
rithm. For example, Yee (1987) visually compared road extrac-
tion using two different automated methods to roads extracted
manually, reporting only that the manual identification results
were comparable to that of the automated procedure. Baumgart-
ner, et al. (1999) compared roads automatically identified in
several test images with manually plotted reference data to re-
port errors of omission and commission in applying their road
extracting techniques. Baumgartner, et al. (1999) also reported
the relative geometric accuracy for correctly identified roads,
comparing the distance in pixels between visually identified
road locations and those that had been extracted automatically.
Such assessments are limited by the accuracy of the manual
road identification. Authors such as Agouris, et al. (2001a) ex-
perimented with synthetic images in order to evaluate the va-
lidity of their algorithm. For the papers that did report accuracy
statistics, the most commonly reported measures were total cor-
rect, errors of commission and errors of omission. Some authors
(e.g., Fischler, et al., 1981) also defined performance criteria to
evaluate their extraction technique.

Many authors state that automated feature extraction pro-
cedures provide significant benefits in terms of saving opera-
tor time and effort. In spite of this, few of the studies reviewed
stated results to support this assertion. Some papers showed
that the automated procedure was in fact slower than manual
extraction (e.g., O’Brien, 1989). However, these evaluations
typically considered only a small test area and many were
performed at a time when computer power was significantly
less than what it is today. Additionally, many algorithms pre-
sented were in experimental stages and issues such as robust-
ness were more of a priority that computational efficiency
(Agouris, et al., 2001a).
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Conclusions
Feature extraction is important for a variety of applications,
particular due to the increasing interest in automatically up-
dating GIS databases from imagery. Automation is becoming
increasingly important to efficiently manage the vast amount
of imagery that is being collected and archived. This includes
imagery from across the electromagnetic spectrum with a
range of spatial resolutions. This paper reviewed a variety of
techniques used for identifying linear, planimetric features in
remotely-sensed imagery. The techniques reviewed relied on
spectral, spatial, and radiometric rules in order to effectively
extract features of interest.

Many of the papers reviewed reported qualitative
results that were based on a visual assessment. Those that
provided more quantitative results were often very vague in
defining how the evaluation was performed. Traditional
methods used for classification typically use confusion matri-
ces for expressing accuracy. Feature extraction routines tend
to focus on a single feature, for example roads, which reduces
the confusion matrix to a report of a total count of the feature
detected and errors of commission and omission. Some au-
thors developed synthetic images with defined noise levels
in order to evaluate the success of the feature extraction
algorithm.

Many of the techniques described require preliminary
input from either a human operator or from existing data lay-
ers. One of the aims of ongoing research into feature extrac-
tion is to increase the level of automation while reducing the
amount of human input required. To achieve this will require
significant improvements in the reliability of the automated
systems. Whether knowledge based computer systems will
improve to the level that the interpreter is no longer required
is yet to be seen. What is certainly true is that civilian access
to imagery is increasing, and without automation, much of
this imagery will never be used.
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