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Abstract: We present a comprehensive theory of dead-time effects on
Time-Correlated Single Photon Counting (TCSPC) as used for fluorescence
lifetime measurements, and develop a correction algorithm to remove these
artifacts. We apply this algorithm to fluorescence lifetime measurements
as well as to Fluorescence Lifetime Imaging Microscopy (FLIM), where
rapid data acquisition is necessarily connected with high count rates.
There, dead-time effects cannot be neglected, and lead to distortions in the
observed lifetime image. The algorithm is quite general and completely
independent of the particular nature of the measured signal. It can also
be applied to any other single-event counting measurement with detector
and/or electronics dead-time.
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1. Introduction

Fluorescence microscopy has become an indispensable tool in modern biology and
medicine [1–3]. This is due to the high sensitivity of fluorescence detection, but also to the
selectivity with which structures of interest can be labeled. In particular the ability to label dif-
ferent targets with different fluorescent dyes of different spectral properties makes fluorescence
microscopy such a powerful tool in studying the relative structural organization and dynam-
ics of various parts and molecules of living cells. Besides using fluorescent dyes of different
excitation/emission wavelengths and discriminating them by spectrally resolved fluorescence
detection, a further means of disentangling different dyes in a fluorescence microscopy image
is to use their fluorescence lifetime, see e.g. [4]. As with the spectral properties, which differ
from dye to dye, also the fluorescence lifetime is different between different dyes. Moreover,
fluorescence lifetime measurements have become increasingly popular for the quantification of
Förster Resonance Energy Transfer (FRET) [5, 6] measurements in bio-imaging, because they
allow for accurate FRET rate estimates which are independent of intensity measurements that
can be skewed by optical absorption, cross-talk, and/or scattering.

In the present paper, we consider a FLIM system which is based on a confocal scanning
microscope [7] and which uses TCSPC [8, 9] for measuring the fluorescence decay at every
scan position. If a fluorescent molecule is excited from its electronic ground state into its first
electronic excited state, it will remain, on average, for a certain time (on the order of nanosec-
onds) in this state before jumping back to its ground state while emitting a fluorescence photon
(or via other, non-radiative de-excitation channels). The chance to find a molecule still in its
excited state after excitation is described by the fluorescence decay curve. In TCSPC, one de-
termines this curve by exciting molecules with a periodic train of short laser pulses, and then
measuring the time delay between the recorded fluorescence photons and the exciting laser
pulses. When building a histogram of these delay times, one obtains an estimate of the fluores-
cence decay curve, which is typically fitted with a single- or multi-exponential decay function.
Modern TCSPC systems measure the arrival times of detected photons in an asynchronous way,
independent of the laser pulse times, and only subsequently correlate recorded photon detection
times with the times of the laser pulses. However, an important detail is that both the photon
detector(s) as well as the timing electronics have dead-times: After a successful detection (de-
tector) or timing (electronics) of a photon, both detector and electronics need to recover and
to return to an active state before being able to detect/record the next photon. These recoveries
typically take several tens of nanoseconds and, therefore, cannot be neglected. At high count
rates where the time between photons is in the order of the some percent of these dead-times,
this leads to an increasing loss of detectable photons, and worse, to a distortion of the finally
measured fluorescence decay curve.

The distortion of dead-time effects are reduced at low count rates. Low count rates limit the
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signal-to-noise ratio and increase the time to obtain sufficient statistics for a fluorescence decay
curve, which in turn limits the image acquisition rate in scanning microscopy. In FLIM, at each
scan position during the sample scan with a laser-scanning confocal microscope, one records
a TCSPC curve from which not only the fluorescence intensity but also a lifetime value is ex-
tracted. For rapid FLIM image acquisition, one wants to maximize the count rate that should
be limited only by photobleaching and phototoxicity, but not by potential dead-time effects in
the TCSPC measurement. Thus, a TCSPC data evaluation method that faithfully reproduces
the correct fluorescence decay curve even at high count rates is an important prerequisite for
unbiased fast FLIM. Here, we present a data evaluation method which provides dead-time cor-
rected fluorescence decay estimates from TCSPC measurements at high count rates, and we
demonstrate our method on FLIM of fluorescently labeled cells.

Note that our work focuses on pure dead-time systems without pile-up and is in general
not applicable to classical reverse start-stop TCSPC. We do not consider pile-up, which would
complicate the description and is beyond the scope of the current work.

2. Fundamentals

2.1. Distortion effects in TCSPC measurements

In a TCSPC measurement, the arrival time of photons is measured with respect to an exter-
nal sync source, usually provided by the pulsed excitation laser. The output pulse of the de-
tector is electronically timed, typically by a Time-to-Digital Converter (TDC). Different TC-
SPC schemes exist:

1. In (forward) start-stop TCSPC, the laser sync starts the timer and a photon detection event
stops the timer. After the stop, there will be a certain dead-time of the timing electronics.
The first laser sync after the dead time starts the timer again. This means that only the
first photon in an excitation period can be recorded, so there is a preference to detect the
early photons of the decay, also referred to as “classical pile-up” [10].

2. In reverse start-stop TCSPC, a photon detection event starts the timer and the next sync
pulse stops the timer. After the stop and the dead-time of the timing electronics, the
next photon can start the timer anytime during the sync period. This leads to a lower
detection probability in the beginning of the sync period, also referred to as “inter-pulse
pile-up” [10]. An additional complication is that the TDC in these systems usually works
by charging a capacitor with a constant current so that the voltage is proportional to the
elapsed time. Since the read-out involves discharging the capacitor, the duration of the
dead-time depends on the start pulse and thus on the photon arrival time [10].

3. A modern TCSPC system, such as described in [11], uses independent clock-based TDC
timers for the sync and detector pulses. Only when a photon is timed, the start-stop time
is recorded as the difference of the detector timer and the sync timer. For sync periods
longer than the dead-time it is thus possible to record more than one photon during one
sync period.

The first two described TCSPC systems have the limitation that they can detect only one pho-
ton per sync period (pile-up effect [10]). Especially the classical pile-up of forward start-stop
TCSPC does not depend on the dead-time and has been adressed in several publications, see for
example [12, 13], and references therein. Reverse start-stop measurements suffer from pile-up
as well as dead-time distortions [14]. An overview on different start-stop TCSPC architectures
and their pile-up behavior is given in [15].
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2.2. Dead-time effects on fluorescence decay curves

In our current paper, we will focus on TCSPC measurements with the recently developed
new generation of counting electronics that use independent timers and have a constant dead-
time [11]. Although this eliminates classical pile-up effects [8], dead-time effects still distort
the recorded fluorescence decay curves. The impact of the dead-times of both detector and
electronics is schematically shown in Fig. 1. After each photon detection, the single-photon
detector has to recover and is, during some dead-time D, unable to detect another photon. This
detector dead-time of length D is symbolized by the small rectangles in Fig. 1. In parallel, after
timing a photon detection event, the timing electronics has also to recover, with dead-time E,
before being able to record another photon detection event. This dead-time of duration E is
symbolized by large rectangles in Fig. 1. Typically, one has E >D, but in the case of E <D, the
problem reduces to a single dead-time problem which is a special case of the theory developed
below.

Fig. 1. Schematic of continuous photon detection/registration with dead-time effects of both
the electronics (large blue rectangles) and the detector (small violet rectangles). Red balls
are successfully detected and recorded photons; blue balls are detected but not recorded
photons, because their detection takes place during recovery of the electronics; green balls
are photons which hit the detector but are not detected because they fall within the recov-
ery period of the detector. Note that the detector dead-time only occurs after successful
detection of a photon (red and blue balls), while the electronics dead-time only occurs after
successfully timing a photon (red balls).

Three scenarios for photons hitting the detector are now possible. In the best case, both detector
and electronics are in their recovered resting state and can detect and record the photon (red
balls in Fig. 1). Or, the detector has already recovered from the previous photon detection event,
but the electronics is still in its recovery and not yet ready to record the detected photon (blue
balls in Fig. 1). Or, in the worst case, the next photon hits the detector so closely to the previous
one that the detector itself is still in its dead-time and cannot detect the photon (green balls in
Fig. 1). It is important to notice that this can even happen while the electronics itself would be
already capable to record another detection event (see the green photon event in Fig. 1 where the
small rectangle, delimiting the detector dead-time, extends beyond the large rectangle, which
delimits the electronics dead-time).

Let us now describe mathematically how these dead-times affect a recorded fluorescence
decay curve. Consider a fluorescent sample which is excited by a periodic train of short laser
pulses with period P. Let us denote the resulting fluorescence photon hit rate (number of pho-
tons per time hitting the detector) by k(t). This function is periodic with period P, and its
integral over one period is given by ∫

P
0 dt′k(t′) = εP, where ε is the average rate of detectable

photons if there would be no dead-time of neither detector nor electronics. However, due to the
dead-time of both detector and electronics, the rate of actually recorded photons h(t) is given
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by

h(t) =w(t)k(t) (1)

Fig. 2. Schematic of two photon registration events, showing the electronics dead-time
(large blue rectangle) and the time region after the electronics dead-time which is still af-
fected by the detector dead-time (small violet rectangle). The double arrow is the time span
between the end of the electronics dead-time which started with the last photon registration
at time t′ and the next photon registration at time t.

where w(t) is a weight function which accounts for the dead-time effects. To find this function,
let us consult Fig. 2, assuming that there was a photon detection event at time t′. What is the
chance to record the next photon at time t with no other photon recorded in between? Obviously,
if t − t′ is smaller than the electronics dead-time E, then this chance is zero. If t − t′ is larger
than E +D so that both electronics and detector have been fully recovered, then this chance is
proportional to exp[−∫

t
t′+E dτk(τ)], which is the probability that no photon has hit the detector

between the time of recovery of the electronics, t′+E, and the detection at time t. The situation
is slightly more complicated if t′ +E < t < t′ +E +D because in that case, it is required that
there was no photon hitting the detector for the full interval from t −D till t, otherwise the
detector would still be in its recovery phase when the next photon arrives at time t. Thus, for
this case, the chance is proportional to exp[−∫

t
t−D dτk(τ)]. One has to multiply this factor by

the probability density that there was indeed a photon recording at time t′, which is given by
h(t′) itself. Thus, we arrive for the weight function w(t) at the expression where w(t) is a
weight function which accounts for the dead-time effects. To find this function, let us consult
Fig. 2, assuming that there was a photon detection event at time t′. What is the chance to record
the next photon at time t with no other photon recorded in between? Obviously, if t − t′ is
smaller than the electronics dead-time E, then this chance is zero. If t − t′ is larger than E +D
so that both electronics and detector have been fully recovered, then this chance is proportional
to exp[−∫

t
t′+E dτk(τ)], which is the probability that no photon has hit the detector between the

time of recovery of the electronics, t′ +E, and the detection at time t. The situation is slightly
more complicated if t′ +E < t < t′ +E +D because in that case, it is required that there was no
photon hitting the detector for the full interval from t −D till t, otherwise the detector would
still be in its recovery phase when the next photon arrives at time t. Thus, for this case, the
chance is proportional to exp[−∫

t
t−D dτk(τ)]. One has to multiply this factor by the probability

density that there was indeed a photon recording at time t′, which is given by h(t′) itself. Thus,
we arrive for the weight function w(t) at the expression
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w(t) = ∫
t−E

−∞

dt′h(t′)exp[−∫

t

min(t′+E,t−D)

dτk(τ)] (2)

where we integrate over all possible recording times t′ of the photon preceding the photon at
time t. According to the lower bound of the inner integral, we break this into two parts and
express the infinite integral as a sum over intervals of length P:

w(t) = ∫
t−E

t−E−D
dt′h(t′)e−∫

t
t−D dτk(τ)

+
∞

∑
l=0
∫

t−E−D−lP

t−E−D−(l+1)P
dt′h(t′)e−∫

t
t′+E dτk(τ). (3)

Taking into account the strict periodicity of all functions with period P, and that the integral
k(t) over one period is εP, a variable transformation t′ → t′ − lP for the inner integral of the
second part leads to a geometric series, yielding

w(t) = e−∫
t

t−D dτk(τ)
∫

t−E

t−E−D
dt′h(t′)+

1
1−e−εP ∫

t−E−D

t−E−D−P
dt′h(t′)e−∫

t
t′+E dτk(τ). (4)

Equations (1) – (4) show a very intricate connection between the actual fluorescence decay
curves, described by k(t), and the recorded TCSPC curve, given by h(t). These equations
determine h(t) via an integral equation involving the product of h(t) and a kernel containing
the unbiased decay function k(t).

With Eqs. (1) and (4), one can now calculate the dead-time distorted curve h(t) if the ”true”
decay curve k(t) is known. One first sets h(t) = k(t), then uses Eq. (4) for calculating w(t),
which can be used to update h(t) via Eq. (1), which is then again used to calculate an updated
w(t) and so on. This iteration converges already after a few cycles, giving the correct shape
of h(t) up to some constant factor. However, the recursion cannot yield the absolute values of
h(t), because any re-scaling of h(t) does not change Eq. (1)! Figure 3 shows a Monte Carlo
Simulation (MCS) of a TCSPC experiment (see Methods section), together with recursively
calculated h(t) which is then linearly fitted against the simulated curve. The figure shows the
perfect match between the shape of the MCS of h(t) and that of its recursive computation using
Eqs. (1) and (4). As can be also seen, the dead-time effects considerably distort the recorded
TCSPC curve, mimicking a much faster fluorescence decay at the high-intensity first part of the
curve, much faster than the actual decay which underlies the measurement.

Unfortunately, Eqs. (1) and (4) cannot be used to recover k(t) from a measured h(t). The
idea would be to first set k(t) equal to h(t), then to calculate w(t) via Eq. (4), which can then
be used to update k(t) as h(t)/w(t) following Eq. (1), and so on. However, as we have checked
numerically, the result of this procedure depends sensitively on the value of εP which occurs in
Eq. (4). If one tries to update this value via εP= ∫

P
0 k(t)dt, then the recursion does not converge!

Only if this value is known a priori, then a recursion using Eqs. (1) and (4) converges to the
correct curve k(t). Thus, the next subsection focuses on how to independently determine εP
from a measurement.

2.3. Determination of photon hit rate

As we have seen in the previous sub-section, the photon hit rate cannot be obtained from a
measured TCSPC curve h(t) and using Eqs. (1) and (4), even if the dead-time values E and D
of both electronics and detector are known. However, by using the photon detection raw data,
one cannot only calculate the TCSPC curve h(t) by correlating photon detection times with
the laser sync, but one can also calculate an Inter-Photon Time Distribution (IPTD) by building
a histogram of the time differences of photon detection times between subsequent photons.
An experimental example is shown in Fig. 4. Sure enough, the IPTD, which we will denote
by g(T), is zero if T ≤ E, due to the electronics dead-time. If T > E +D, then the probability
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Fig. 3. Monte Carlo Simulation (MCS, blue) of a TCSPC measurement with an excitation
period P= 256, electronics dead-time E = 64, and detector dead-time D= 16. The photon hit
rate ε was set to a value so that εP = 2, i.e. that, on average, two photons hit the detector per
excitation cycle. The black line shows the underlying perfectly mono-exponential decay
curve with a decay time of 30 time units. The green line is the computed h(t) using Eq.
(1) and (4) after 10 iterations. The dead-time corrected decay curve, as computed from
the simulated h(t), is shown in red. The lower panel shows the relative deviation of the
reconstruction (red circles) from the ideal decay (black line), normalized by the square root
of the ideal decay.

to detect a next photon at time t +T if there was a detection event at time t is given by the
probability of not detecting any photon between the end of the electronics dead-time, t+E, and
the next photon detection at time t+T , times the probability density to see a photon at time t+T ,
i.e. k(t+T). Due to the effect of the detector dead-time, if E < T ≤E+D, then this probability is
given by the product of the probability of not detecting any photon between t +T −D and t +T ,
and k(t +T). Finally, for finding g(T), one has to average the result over one excitation period
with weight function h(t). The result then reads

g(T) ∝ ∫

P

0
dth(t)exp[−∫

T

min(E,T−D)

dτk(t +τ)]k(t +T). (5)

The important point now is that, if one sums g(T) over subsequent time intervals E +D+NP ≤

T < E +D+(N +1)P of width P, with N being any non-negative integer, i.e. by calculating

mN = ∫

E+D+(N+1)P

E+D+NP
g(T)dT =Cexp(−NεP), (6)

one finds that these integrals fall off as exp(−NεP), as also shown in Fig. 4. Thus, by fitting the
mN with an exponential function yields the average number of photon hits per excitation cycle,
εP. Knowing this number, one can now use Eqs. (1) and (4) to recursively calculate the dead-
time-corrected decay k(t) from the measured decay h(t). We have developed a software tool
which, for a given file of photon detection times, automatically estimates εP as just described,
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and then uses this number for recursively calculating a dead-time corrected TCSPC curve. The
tool is public domain and can be downloaded at http://www.joerg-enderlein.de/software.html.

Fig. 4. Measured histogram of the inter-photon time distribution (black solid line) extracted
from a TCSPC measurement on a fluorescence dye solution. The yellow and red shaded
regions on the left are the electronics and detector dead-time intervals, respectively. The
cyan bars are the calculated values of mN , Eq. (6), for N = 0, ...,5. The red dashed line
shows the single-exponential decay of mN . From this fit, one determines an average value
of photon hits per excitation cycle of εP = 1.0.

2.4. Determination of detector and electronics dead-times

For correctly recovering an unbiased decay curve from a measured TCSPC curve, one needs
to know the electronics and detector dead-times, E and D. An elegant way to determine both
values is to measure an autocorrelation function while illuminating the measurement system
with a continuous-wave constant-intensity light source. This autocorrelation function A(t − t′)
is proportional to the probability of recording a photon at some time t if there was a photon
recording at time t′. If the light source has constant intensity (no time-dependence), the auto-
correlation function depends only on the time difference t − t′.

For deriving a theoretical expression for the autocorrelation function, we will proceed in two
steps. In a first step, we completely ignore the dead-time of the electronics and consider only
the effect of the dead-time of the detector. Let us consider the probability density to record a
photon at time t if there was a photon recording at time t′, but no photon recording in between.
Obviously, this probability density is zero if t−t′ ≤D, and if t > t′+D, then it will be proportional
to exp[−ε(t − t′ −D)], which is the probability that no photon hits the detector between time
t′+D and time t, and ε is the constant average photon hit rate. Thus, the normalized probability
density f (t − t′) for detecting a photon at time t if there was a detection event at time t′ with no
other photon detection in between is given by

f (t) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if t ≤D
ε exp[−ε(t −D)] if t >D.

(7)
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Next, let us consider the same probability density but now with exactly one intermediate photon
recorded at any time t′′ in between. Obviously, this probability density is zero if t− t′ ≤ 2D, and
is otherwise equal to the auto-convolution of the probability density f (t), ∫

t
0 dt′′ f (t−t′′) f (t′′),

computed at time t − t′ −2D > 0. By repeating this argument for all possible numbers of inter-
mediate photon recordings, one finds the following expression for the autocorrelation function
a(t) [16]:

a(t) =
⌊t/D⌋

∑
j=1

f ( j)
(t) (8)

where f ( j)(t) is the j-th auto-convolution of the function f (t) which is recursively defined by

f ( j)
(t) = ∫

t

0
dt′ f (t′) f ( j−1)

(t − t′) (9)

and setting f (1)(t) = f (t). The upper limit in the summation (8) is the maximum possible
number of photons which can be recorded within time t for a given detector dead-time D,
where ⌊t/D⌋ denotes the largest integer number smaller than t/D.

Now we are ready to consider the general case of both detector and electronics dead-time,
assuming that D ≤E (the case D >E reduces to the just considered case of a system having only
detector dead-time D). Analogously to the derivation of a(t), we will again start by finding
an expression for the normalized probability density F(t − t′) to detect a photon at time t if
there was a photon detection at time t′ but no other photon detection in between. Due to the
electronics dead-time, this probability density is zero if t − t′ < E. The interesting case now
occurs if t − t′ > E but also t − t′ < E +D. In that case, it can happen that a photon hits the
detector shortly before the electronics recovers from its own dead-time so that no photon can be
detected due to the detector dead-time although the electronics is again ready to process another
detection event, see also Figs. 1 and 2. For this intermediate time interval, E < t − t′ < E +D,
the function F(t − t′) is proportional to the previously found autocorrelation a(t − t′) which is
exactly the chance to be able to see another photon at t if there was one at time t′, when taking
into account the detector dead-time alone. Finally, for time values t greater than t′ +E +D,
the probability density F will fall off exponentially as exp[−ε(t − t′ −D−E)], which is the
probability that no photon hits the detector between time t′+E +D and time t. In summary, we
find

F(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if t ≤ E
Z−1a(t) if E < t ≤ E +D
Z−1a(E +D)exp[−ε(t −E −D)] if t > E +D

(10)

where Z is a normalizing constant, and a(t) is taken from Eq. (8). By a similar reasoning as
before, the final autocorrelation function A(t) is then found as

A(t) =
⌊t/E⌋

∑
j=1

F( j)
(t) (11)

where F( j)(t) is the j-th auto-convolution of the function F(t), and the upper limit in the
summation (11) is the maximum possible number of photons which can be recorded within
time t when taking into account the electronics dead-time E.

Thus, the calculation of the full autocorrelation function, Eq. (11), starts first by calculating
the function f (t), Eq. (7), using the knowledge of the detector dead-time D and the average
photon hit rate ε; then continues by calculating a(t), Eq. (7), via recursive convolutions of
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Fig. 5. Autocorrelation functions for five different photon hit rates ε as indicated in the leg-
end. Measured curves are represented by circles, solid lines show a global fit of Eq. (11) to
all five measurements. The yellow and red shaded regions on the left mark the fitted elec-
tronics and detector dead-times, respectively. All autocorrelation functions were calculated
at evenly spaced time points with 1ns spacing. At very high count rates, fit quality starts to
deteriorate due to increasing jitter of the detector dead-time.

f (t), Eq. (9); then proceeds by calculating F(t), Eq. (10), using a(t) and the knowledge of the
electronics dead-time E; and ends by calculating the final autocorrelation functions A(t) via
recursive convolutions of F(t). Although this may seem computationally expensive, it is not:
The numerical calculation for one autocorrelation function with ca. 1000 sampling points along
the time axis needs only a fraction of a second on a conventional PC and using a non-compiled
Matlab script, which is included in our dead-time correction toolbox which can be downloaded
at http://www.joerg-enderlein.de/software.html. Thus, it can be easily used for fitting measured
autocorrelation curves and thus for extracting D, E and ε as fit parameters. An example for five
different count rates is shown in Fig. 5, using our experimental TCSPC system (see Methods
section) with the laser in continuous wave mode. The sample was a dye solution of Atto655
as described in section 3.2. Autocorrelation curves of different count rates were fitted with a
global model for E and D, but individual values for εP. From the fitted curves, we determined
a detector dead-time of D = (39.5±0.6)ns (red shaded region in Fig. 5), and an electronics
dead-time of E = (79.1±0.4)ns (yellow shaded region in Fig. 5). The errors were obtained by
bootstrapping the data into 14 bunches of 106 photons each and calculating mean and standard
deviation.

3. Results

3.1. Numerical simulation of dead-time correction

To check the performance of our algorithm of reconstructing an unbiased TCSPC curve from
one with dead-time effects, we performed Monte Carlo simulations. All simulations were done
with the same electronics and detector dead-time values as used for Fig. 3, and by assuming
again a perfectly mono-exponential decay with a decay time value of 30 time units. It should be
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Fig. 6. Results of Monte Carlo simulations of the performance of the recovery algorithm
for dead-time corrected decay curves from measured TCSPC. Shown are the mean values
(solid lines) and variances (shaded regions) of mono-exponential decay time values which
are obtained from fitting the simulated decay curves. Simulations were performed for the
same dead-time values as used in Fig. 3, for a range of photon hit values per excitation
period, εP, from zero to 2, and for two different values of total number of photon hits, i.e.
εP times number of excitation cycles, of 200 (light shaded region) and 1000 (dark shaded
region). The corresponding decay curves have smaller number of photons, due to the dead-
times of both electronics and detector.

emphasized that the particular character of the decay is completely unimportant, because our
algorithm will reconstruct an unbiased TCSPC curve whatever the underlying decay curve is,
and it is completely independent of the particular nature of this decay. In the simulations, we
assumed that the number of photons per sufficiently small time interval ∆t centered at time t
is described by a Poissonian probability distribution with mean value k(t)∆t. Simulations were
performed for two values of total photon hits of 200 and 1000 photons, respectively, and for a
range of average photon hits per excitation, εP, between zero and two. It should be mentioned
that the actual number of counted photons, ε

′P = ∫
P

0 h(t)dt, becomes increasingly smaller, with
increasing value of εP, than the number of total photon hits due to dead-time effects.

For each simulated experiment, we calculated the “measured” decay curve, h(t), and the
IPTD, g(T), from which the values mN were calculated, see. Eq. (6). From these values, an
estimate of εP was derived by fitting the mN to an exponential function in N. This estimate was
then used in the reconstruction of the dead-time corrected decay k(t) from h(t), using Eqs. (1)
and (4). Finally, both h(t) and k(t) were fitted with a mono-exponential decay function for
determining the decay time. For each pair of values of total photon hits and εP, we performed
104 simulations, and we then fitted the resulting decay-time distributions by Gaussians, for
obtaining the mean value and variance of the decay-time estimation. The final result of these
simulations is summarized in Fig. 6. It shows for both the raw and dead-time corrected decay
curves the mean value and variance of the extracted decay-time value as a function of the
average number of photon hits per excitation cycle, εP. As can be seen, with increasing value
of εP, the dead-time distortion of the “measured” decay curve h(t) leads to increasingly shorter
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apparent decay times. However, when fitting the dead-time corrected decay-curves, one finds
perfect agreement, on average, between the fitted and the actual decay-time. Remarkably, the
dead-time correction even works well for as few as only 100-200 photons per measured decay
curve. Only the variance of the fitted decay-times becomes wider for smaller numbers of total
photon counts, but no systematic bias in the decay-time estimate is showing up.

3.2. Fluorescence decay measurements on dye solution

As a first experimental proof of principle of the validity and performance of our reconstruction
algorithm, we recorded TCSPC data on a sample of a pure dye solution, where we changed,
from measurement to measurement, the excitation intensity and thus the impact of dead-time
effects. A thick dye solution (10 µM) of Atto655 (ATTO-TEC, Siegen, Germany) in combina-
tion with a variable laser power was used to generate different photon hit rates ε . For very high
photon hit rates (ε ≳ 1/P), buffer overruns were encountered after a few seconds, but during
that time, a sufficiently large number of photons could be recorded. TCSPC histograms were
constructed from the photon arrival times. For all histograms, we used bunches of 106 photons,
and for the dead-time correction we used the a priori determined dead-time values E = 79ns
and D = 39ns. For each measurement, the parameter εP was estimated from the IPTD of pho-
ton arrival times, separately for each bunch. Lifetimes were determined by tail-fitting, starting
1 ns after the peak of the decay curve, and using a mono-exponential fit function and a simplex
fitting routine. This procedure was repeated for ten consecutive bunches of 106 photons each,
yielding an average εP and an average lifetime with standard deviation for each measurement,
which are plotted in Fig. 7. As can be seen from this plot, the dead-time distortion effect leads
to a decrease in fitted lifetime of the uncorrected histograms with increasing excitation rate, i.e.
number of photon hit per excitation cycle εP. The figure also shows that the dead-time correc-
tion results in fitted lifetime values which are unbiased and independent of εP, with an unbiased
lifetime value of τfl = (1.902±0.005)ns (dashed line), in excellent agreement with published
lifetime values of Atto655.

3.3. Fluorescence lifetime imaging

We performed FLIM measurements of fixed human mesenchymal stem cells with actin fila-
ments labeled with the dye Atto647N. The sample was imaged with a home-built confocal
microscope using a 640 nm excitation laser and a long-pass filter before the detector. Results
are shown in Figs. 8 and 9. Both intensity and lifetime images are shown, with and with-
out dead-time correction. In particular for the high-intensity images, the dead-time correction
shows a clear improvement and rectification of both intensity and lifetime values. Even for the
low-intensity image, where the excitation intensity was reduced by six times and the maximum
number of photon hits per excitation cycle was well below 0.1, one can still see slight changes
in lifetime values after dead-time correction. In the top row of Fig. 10, we show a line plot
through the brightest pixel of Fig. 8. The bright pixels (upper left plot) show a significantly
lower lifetime in the uncorrected data (upper right plot) due to dead-time distortion. This trend
is not visible after the correction: the lifetime stays constant over the line within the statistical
error. Thus, in this case, not correcting for the dead-time distortions would lead to misinterpre-
tation of the data. In the bottom row of Fig. 10 we show the TCSPC histograms of the brightest
pixel at high (bottom left, εP = 0.50) and low laser power (bottom right, εP = 0.09). One can
clearly see that the uncorrected and corrected TCSPC curves show a negligible difference for
the lower photon hit rate, which is clearly not the case for the curves shown for the high εP
value. The fitted lifetime values of the corrected curves agree within their errors, whereas the
values differ significantly for the uncorrected curves.
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Fig. 7. TCSPC measurements on Atto655 dye solution at varying excitation power and
thus fluorescence intensity. The fluorescence intensity is given here as dead-time corrected
values of average number of photon hits per excitation cycle, εP. The inset shows also the
relation between the actual average number of detected photons per excitation cycle, ε

′P,
and εP, showing the increasing dead-time related saturation of the measurement system
with increasing intensity. Red symbols show determined lifetime values from uncorrected
TCSPC curves, and blue symbols show lifetime values determined from dead-time cor-
rected TCSPC curves. The dashed line shows the average over all lifetime values for all
dead-time corrected measurements.

4. Methods

4.1. Monte Carlo simulations

Monte Carlo simulations of the TCSPC experiment were performed in the following way. First,
for each excitation cycle, the number of hitting photons was randomly drawn from a Poissonian
distribution with mean value εP. Then, for the thus determined number of photons, their hit
times with respect to the start of the corresponding excitation cycle were randomly drawn from
an exponential distribution with decay time τ , where τ is the value of the mono-exponential
fluorescence decay one wants to model. Knowing the excitation cycle and the hit time within
this cycle for each photon, the global hit time is calculated for each photon, and then all these
times are sorted in time. Then, the algorithm steps sequentially through these photon hit times
and determines, for each photon, whether its hit time is still within the detector or electronics
dead-time interval of the previous validated photon detection event. If this is the case, then the
photon is eliminated from the photon stream, and the algorithm proceeds to the next photon.
Finally, from the remaining photon stream, a TCSPC histogram and the IPTD is calculated.

4.2. Software

The software for the dead-time correction of fluorescence lifetime measurements used in this
study is available for download at http://www.joerg-enderlein.de/software.html. It is written in
Matlab with core parts outsourced to C++ MEX files for performance acceleration, which can
be compiled under Windows or Linux using the provided build scripts. The algorithm recovers
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Fig. 8. Human mesenchymal stem cell with actin filaments labeled by Atto647N, and im-
aged with a confocal scanning TCSPC microscope. The top row shows the intensity image
before (left) and after (right) dead-time correction, where the counts were determined us-
ing the calculated hit rates (ε) for each pixel. One can clearly see the significant increase in
signal strength after dead-time correction for regions with high fluorescence intensity. The
bottom row shows the same for the lifetime images (left before, and right after dead-time
correction). The tremendous impact of artifacts on the resulting lifetimes is clearly visible:
In regions of high intensity, the lifetime values in the left bottom image always underesti-
mate the true value, as seen in the dead-time corrected image at bottom right. The images
are 20×20 µm2 with a pixel size of 140nm and a dwell time of 5ms per pixel, the yellow
scale bar is 5 µm. The highest number of photon hits per excitation cycle in this image
is 0.5.
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Fig. 9. Image of the same sample as in Fig. 8, but using a ca. six times lower excitation
intensity. Now, the dead-time correction does nearly not change neither the intensity nor
the lifetime images, and both lifetime images are close to the dead-time corrected lifetime
image of Fig. 8. However, due to the much lower fluorescence signal strength, the lifetime
image is much noisier than the dead-time corrected lifetime image in Fig. 8.

the true photon hit rate k(t) from the measured curve h(t) in an iterative fashion, starting from
the guess k0(t) = h(t). In a next step, w0 [t ∣k0(t)] is computed via Eq. (4), and it is used to
update k(t) as k1(t) = h(t)/w0 [t ∣k0(t)]. This is repeated n times, until the relative change in
kn(t) is smaller than a predefined threshold. It was observed that convergence is usually fast
requiring only about 2 to 5 iterations.

4.3. Setup for cell measurements

For FLIM measurements, we used a setup based on a commercial confocal system (Mi-
crotime 200, PicoQuant, Berlin, Germany). Linearly polarized light from a 640 nm diode
laser (LDH-D-C-640, PicoQuant, Berlin, Germany), equipped with a clean-up filter (Z640/10,
Chroma Technology, Rockingham, VT, USA), was coupled into a polarization-maintaining
single mode optical fiber. The laser driver (PDL 828 “Sepia II”, PicoQuant, Berlin, Ger-
many) allows for continuous wave (cw) or pulsed excitation mode of the laser (pulse width
of 100 ps FWHM). For all lifetime measurements, we used the pulsed excitation mode with a
repetition rate of 20 MHz. The light at the fiber output was re-collimated and reflected by a
dichroic mirror (FITC/TRITC Chroma Technology, Rockingham, VT, USA) into the side port
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Fig. 10. The upper row shows a line plot through the brightest pixel of the cell meas-
ured at high laser power (Fig. 8 ) for intensity (left) and lifetime (right). The TC-
SPC curve of the brightest pixel (εP = 0.50) is given in the lower left plot yielding
τuncorrected = (2.87±0.02)ns and τcorrected = (3.42±0.02)ns. Next to it on the right, the
TCSPC curve of the same pixel at low laser power (Fig. 9) is shown (εP = 0.09), yield-
ing τuncorrected = (3.36±0.04)ns and τcorrected = (3.47±0.04)ns. For all plots, the gray line
represents the uncorrected data and the dashed black line the corrected data.

of an inverted microscope (IX71, Olympus Deutschland, Hamburg, Germany). An internal mir-
ror reflected the beam into the back aperture of the objective (UPLSAPO 100× Oil, 1.4 N.A.,
Olympus Deutschland, Hamburg, Germany), which also collected the fluorescence light. After
a 50 µm pinhole, the light was collimated and focused onto a single-photon counting module
(SPCM-CD 3516 H, Excelitas Technologies, Wiesbaden, Germany). Back-scattered excitation
light was blocked with a long-pass filter (EdgeBasic BLP01-635R, Semrock, Rochester, NY,
USA). A single-photon timing electronics (HydraHarp 400, PicoQuant, Berlin, Germany) was
used to record the detected photons with an absolute temporal resolution of two picoseconds.
The sample was mounted on a three-axis piezo stage (P-562.3CD with controller E-710.3CD,
both Physik Instrumente, Berlin, Germany), and image acquisition was performed using the
SymphoTime software (PicoQuant, Berlin, Germany) in time-tagged, time-resolved (TTTR)
mode.

4.4. Setup for solution measurements

For the solution measurements, the same setup as described in the previous subsection was
used, but with few modifications: We used a water immersion objective (UPLSAPO 60×W,
1.2 N.A., Olympus Deutschland, Hamburg, Germany) and a 150 µm pinhole and a band-pass
filter (BrightLine HC 692/40, Semrock, Rochester, NY, USA). For data acquisition, the output
of the detector was connected to an inverter (SIA 400, PicoQuant, Berlin, Germany) followed
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by the timing electronics (HydraHarp 400, PicoQuant, Berlin, Germany). There, events were
recorded with 32 ps resolution with respect to the 20 MHz sync signal provided by the laser
driver. The timing data was recorded with the original HydraHarp 400 software (version 3.0)
in TTTR mode. For the measurement of the autocorrelation function, the laser was used in
cw mode.

4.5. Cell culture and staining

Adult human mesenchymal stem cells from bone marrow (hMSCs, P4, Lonza, PT-2501),
have been cultivated in T75 cell culture flasks (Corning, 43061) in DMEM (Gibco, A18967-
01), 10% fetal bovine serum (Sigma-Aldrich, F2442-500ML) and 1% antibiotics (Peni-
cillin/Streptomycin, life technologies, 15140-122) at 37○C and 5% CO2 and split every 2-3
days (P2→P4). Then the cells were seeded on glass cover slides in a density of 10.000 hMSCs
per glass in 6-well plates (Sarstedt, 83.3920). They were supplied with 2 ml medium/well at
37○C and 5% CO2. The cells have been fixed 24 h after seeding using 10% Formaldehyde in
PBS for 5 min. The cells were permeabilised using 0.5% Trition X 100 in PBS for 10 min,
blocked with 3% BSA in PBS for 30 min, incubated in Triton X for 5 min and washed with
PBS. All antibodies were kept in 3% BSA in PBS. Fluorescent staining was performed with
Phalloidin Atto647N (Atto-Tec, AD647N-82) [1:250] for 1.5 h. The samples were mounted on
microscope slides (VWR, 631-1550) using Fluoroshield mounting medium (F6182-20ML).

5. Conclusion

We have presented a complete analysis of dead-time effects in TCSPC measurements, and have
developed an algorithm for how to correct these effects in measurements. It is important to
emphasize that the correction algorithm is very general and does not depend, in any way, on
the particular nature of the underlying fluorescence decay. It is applicable to any single-event
counting or timing measurement with electronics and/or detector dead-times and is not re-
stricted to TCSPC measurements. It not only corrects dead-time artifacts for lifetime, but also
for intensity, which could be beneficial for lidar [17] or time-resolved fluorescence anisotropy
measurements [18]. We have written a free software for Matlab which can be downloaded
at http://www.joerg-enderlein.de/software.html. We hope that the correction scheme will find
wide application in all TCSPC measurements where high count rates are encountered, in par-
ticular in high-speed FLIM measurements.

In principle, it should be possible to extend the model to reverse start-stop TCSPC. One
would have to include the pile-up and variable dead-time by making the dead-time a function
of the photon arrival time. However, our present model should theoretically also be applicable
to a reverse start-stop TCSPC system as long as the dead-time of the system is constant and
longer than the excitation period.

Acknowledgments

We are grateful to Carina Wollnik for providing the cell samples used in the present work.
This work was supported by the DFG Cluster of Excellence ’Center for Nanoscale Microscopy
and Molecular Physiology of the Brain (CNMPB)’. Daja Ruhlandt, Sebastian Isbaner, Simon
Christoph Stein and Narain Karedla are grateful to the DFG for financial support of their po-
sitions via projects A14, A05 and A11 of the SFB 937, and project A06 of the SFB 860, re-
spectively. Anna Chizhik is grateful to the Human Frontiers Science Program Organization
(HFSPO, grant RGP0061/2015) for financial support.

#259351 Received 11 Feb 2016; revised 1 Apr 2016; accepted 9 Apr 2016; published 21 Apr 2016 
(C) 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.009429 | OPTICS EXPRESS 9445 




