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Abstract: We present an adjoint-based optimization for electromagnetic 
design. It embeds commercial Maxwell solvers within a steepest-descent 
inverse-design optimization algorithm. The adjoint approach calculates 
shape derivatives at all points in space, but requires only two “forward” 
simulations. Geometrical shape parameterization is by the level set method. 
Our adjoint design optimization is applied to a Silicon photonics Y-junction 
splitter that had previously been investigated by stochastic methods. Owing 
to the speed of calculating shape derivatives within the adjoint method, 
convergence is much faster, within a larger design space. This is an 
extremely efficient method for the design of complex electromagnetic 
components. 
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1. Introduction and motivations 

Silicon photonics offer the unique ability of managing light through sub-wavelength Silicon 
waveguides patterned on chip, enabling extremely tight integration of photonic components 
and conventional CMOS electronics. Consequently, functions that previously required many 
separate components may now all be performed on single chips, reducing their cost, energy 
consumption and size [1]. 

Nevertheless a number of challenges remain, one of them being the efficient management 
of light at these scales. Indeed, while straight Silicon waveguides can have extremely low loss 
and enable excellent transport of light throughout the chip, other functions (such as splitters, 
waveguide crossings, multimode interferometers) suffer from the presence of evanescent 
fields outside the waveguide and imperfect reflections at the Silicon/oxide interface. These 
induce scattering loss, which can be highly detrimental to the total system performance. For 
this reason, a significant effort in photonic device topology optimization has taken place 
recently. This has drastically reduced the losses in Y-splitters [2,3], crosstalk and insertion 
losses in waveguide crossings [3,4], along with other more exotic components [4] and is 
effectively enabling better photonic circuits. 

Most of these optimizations are based on heuristic optimization methods such as genetic 
optimization [4], particle swarm optimization [3,5], or other hybrid methods tailored for 
specific problems [6]. Heuristic optimization relies on a somewhat limited parameterization 
of the solution space and subsequent random testing of a large number of different parameter 
sets. Because of the high computational cost of solving Maxwell’s equations, these 
optimization methods may only be applied to relatively simple geometries, as they require the 
testing a very large number of different solutions in order to find a satisfactory one. 

While this is perfectly suitable for the simple problems mentioned above, these methods 
will fail to perform in a reasonable amount of time for more complex geometries and 
functions. It is therefore necessary to have a more efficient way of performing topology 
optimization for general purposes. In our shape optimization approach, shape derivatives play 
an important role. In this paper we present an adjoint method to calculate shape derivatives by 
wrapping an inverse algorithm around commercial Maxwell solvers. Such efficient gradient 
descent methods unlock the possibility to optimize particularly complex structures, which has 
not previously been possible. 

2. Presentation of the adjoint method for electromagnetic problems 

The adjoint method enables the computation of shape derivatives at all points in space, with 
only two electromagnetic simulations per iteration. It has been extensively used for shape 
optimization in mechanical engineering [7–9] but has seen more limited use for photonic 
components [10–14], and more recently quantum electronics [15]. Mathematical derivations 
of the adjoint method are available in optimization textbooks [8,16], but we will limit 
ourselves to a very simple example that intuitively illustrates the mathematical procedure 
when it is used in the context of electromagnetism. 
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Fig. 1. Adjoint method schematic: two simulations are needed for every iteration; the direct 
and the adjoint simulation. Sources for each simulation are drawn in red. 

In our example, we want to maximize the absolute value of the electric field at a given 
point 0x , given a geometrical region Ω  in which we can change the electric permittivity ε  at 

every point. That Figure-of-Merit is 

 
2

0( )FoM x= E  (1) 

(vectors are written in bold). The change in figure of merit for a small change of dielectric 
permittivity rεΔ  of volume VΔ  at x  in Ω  is 

 0 0Re ( ) ( )oldFoM x x Δ = ⋅ Δ E E  (2) 

where 0( )old xE is the value of the electric field at a given point before any change and 

0( )xΔE  represents the change in electric field when the small dielectric modification is 

performed. 
Some algebraic manipulations are needed to arrive at the derivative. The change in field at 

0x  can be written for a small enough volume perturbation VΔ : 

 0 0 0 0( ) ( , ) ( , ) ( )EP ind EP new
rx x x V x x xε εΔ = = Δ ΔE G p G E  (3) 

where 0( , )EP x xG is the Maxwell Green’s function relating the electric field at 0x  to the 

induced polarization density indp at x  in the infinitesimal volume VΔ . newE  is the electric 

field given the new dielectric distribution. If the change rεΔ  is small enough, we may 

approximate ( ) ( )new oldx x≈E E . Note that for binary structures rεΔ  is not small, but VΔ can 

be the small parameter for the derivative. A similar line of reasoning results in almost the 
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same final equation, albeit taking care to distinguish which components of E and D are 
continuous across the boundary [14,17,18]. 

We can then rewrite (2) as 

 0 0 0Re ( ) ( , ) ( )old EP old

r

FoM
V x x x xε

ε
Δ   = Δ ⋅  Δ   

E G E  (4) 

Using the reciprocity of the Green’s function 0 0( , ) ( , )EP EP Tx x x x=G G  we have 

 0 0 0Re ( , ) ( ) ( ) Re ( ) ( )EP old old adj old

r

FoM
V x x x x x xε

ε
Δ     = Δ ⋅ ≡ ⋅    Δ   

G E E E E  (5) 

The mathematical method can be understood from the new adjoint electric field: 

 0 0 0( ) ( , ) ( )adj EP oldx V x x xε= ΔE G E   (6) 

which is the electrical field induced at x  from an electric dipole at 0x driven with amplitude 

0 0( )oldV xεΔ E , as illustrated in Fig. 1. Thus, the gradient of the Figure-of-Merit can be 

obtained with only a single simulation, even though it provides the derivative with respect to 
permittivity at every point in the computational region Ω . The term 0( )old xE  is readily 

available from the original forward simulation. 
Therefore with just one forward simulation (which is needed to calculate the FoM in all 

optimization schemes) plus one adjoint simulation, the shape derivative can be obtained over 
the entire design region, for arbitrarily many degrees of freedom. With the gradient of the 
Figure-of-Merit calculated, changes in the geometry can be introduced proportional to the 
gradient, known as the gradient descent method. Applied iteratively, this can then lead to an 
optimum. For a more detailed and general study of the adjoint method and more complex 
Figures-of-Merit we refer to [17]. 

The adjoint method is also extremely attractive since the overall iterative scheme can be 
wrapped around a commercial forward solver, such as the one used in [19]. 

3. Y-Splitter optimization example using the level set method for shape representation 

A Y-splitter for λ = 1550nm vacuum wavelength light was optimized by the adjoint method 
to compare with state of the art Silicon photonic components optimized up to date [3]. The 
material system (Silicon waveguide, Silicon dioxide cladding) and the constraints of small 
overall dimensions and minimum feature size were kept the same as in [3]. For the minimum 
feature size a minimum radius of curvature of 200nm was imposed. The waveguide is 220nm 
thick, the most common choice for Silicon photonics. The two waveguide branches and their 
junction at the end of the splitter were left to be the same as in [3], although they also could 
have easily been optimized. The design region was the central 2µm × 2µm domain. 

The method used in [3] is particle swarm optimization, which consists of calculating the 
Figure-of-Merit for a large population of randomly generated solutions and having the 
population evolve at every iteration using the information collected in the previous tests, until 
a satisfying solution is reached. 
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Fig. 2. Top view of the optimized silicon splitter geometry obtained after 51 iterations of the 
Steepest Descent algorithm. Only the designable region geometry was allowed to change. The 
Silicon waveguide is 220nm thick, and the cladding is Silicon dioxide. 

By contrast, the adjoint method provides shape derivatives over the entire design region. 
The level set method, developed by Sethian and Osher [20], was chosen to represent the 
geometry. This enables a more flexible representation of a larger design space than, for 
example, spline interpolations used in [3–5]. Level sets are particularly usable within an 
adjoint approach, since a very large number of shape derivatives are inside the Level Set, 
compared to the feasible number of variables in stochastic optimization. Note also that level 
set methods impose two-phase, binary materials throughout the optimization, compatible with 
practical engineering, but in contrast with [10], which optimizes a continuously variable 
permittivity. 

The figure-of-merit that we employed was transmission into the fundamental mode of the 
bent output waveguides, which can be obtained from Poynting vectors: 

 ( )

2

1

8

m m

m m

d d
FoM

Re d

× ⋅ + × ⋅
=

× ⋅
 


H S E S

H S

E H

E
 (7) 

where mE and mH  are the field profiles of the fundamental mode at the surface S , while E  

and H  are the actual fields from the direct simulation at that surface. Thus Eq. (7) is the 
power transmission, corrected for the mode overlap. 

Adapting the adjoint Eq. (6) to the new figure of merit (7) (and employing an additional 
magnetic Green’s function, EMG , and magnetic symmetries [17]), we arrive at the adjoint 
field: 

 
0

( ')
( ) ( , ') ( ') ( , ')adj EP EM m

m

n x
x A x x x x x dS

μ
 ×

= × −  
 
 n

EE G H G  (8) 

with 
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( )

( )0

1

4

old old
m m

m m

d d
A V

Re d
ε

× ⋅ + × ⋅
= Δ

× ⋅
 


H S E S

H S

E H

E
  (9) 

where ( , ')EM x xG  is the electromagnetic Green’s function expressing the electric field at x  

due to a magnetic dipole at 'x . 
The adjoint simulation described Eq. (8) consists of sending the desired mode backwards 

into the splitter. This is analogous to Eq. (6), where the adjoint source was located at the 
measurement point of the Figure-of-Merit. This source problem can be solved with a standard 
Maxwell solver. FDTD is perfectly suited for this propagating wave problem. Also analogous 
to Eq (6) the phase of the adjoint source is set using oldE and oldH , from the forward 
simulation, as described in Eq (9). Once the adjoint simulation is performed, the derivative of 
the Figure-of-Merit with respect to dielectric permittivity at every point in the design region is 
calculated by combining the forward and adjoint simulations results into Eq. (5). FDTD is 
perfectly suited to solve the direct and adjoint problem, which consists of propagating waves 
in a dielectric. 

 

Fig. 3. Coupling efficiency evolution during the optimization. The switch from 2d to 3d FDTD 
is visible at iteration 41. For comparison, the previous record of ref [3]. was −0.13dB and 
required 1500 simulations. 

This derivative is then used to modify the geometry of the splitter. Since we employed a 
level set description of geometry, the derivative is used as a velocity field to modify the level 
set shape. This has the effect of pushing out the geometry boundary when the derivative is 
positive and pushing it in when it is negative. Since the refractive index if Silicon is higher 
than that of Silicon dioxide this implements the imperative of the derivative at every point: 
The Figure-of-Merit benefits from an increase in the dielectric permittivity where the 
derivative is positive and vice-versa. The step-size criterion for each iteration is a fixed area 
of changing type in 2d, and a fixed volume in 3d. 

The device was first optimized using 2d finite difference time domain (FDTD) 
simulations of a structure extruded infinitely in the 3rd dimension. In 2d, the effective index 
method is used and the Silicon is assigned the fictitious refractive index = 2.8, which mimics 
the proper in-plane wavevector of the correct 3d mode. Once iterative progress stopped in 2d 
(41 iterations), the problem was transferred to 3d for more iterations. Naturally the first 3d 
iteration is not as good as the optimized 2d device, since the effective index method is only an 
approximation. The optimal structure was computed within 51 iterations (102 simulations), 
achieving a record low insertion loss −0.07dB. By comparison, ref [3]. achieved a minimal 
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insertion loss −0.13dB, after 1500 simulations using particle swarm optimization. (Note that 
for such small attenuation, the simulation results are very sensitive to the simulation 
parameters, which may not have been perfectly identical to ref [3].). 

Thus adjoint steepest descent, with much lower computational cost, can yield as good or 
better results than particle swarm optimizations, which take no advantage of the underlying 
Maxwell equation physics. 

 

Fig. 4. Geometry evolution during the optimization process and total coupling efficiency to the 
output waveguides. Iter indicates the iteration number, and the insertion loss is given in dB. 
The optimization is first carried out using a 2d approximation with an effective waveguide 
index = 2.8, which mimics the 3d in-plane propagation constant. The final iterative steps are 
carried out in full 3d FDTD. 

The figure of merit evolution, as well as intermediate optimization steps, is presented in 
Figs. 3. and 4 respectively. There is a visible change between the 2d solution and the 3d 
solution, with a non-negligible efficiency improvement. This 3d improvement was only 
possible with the adjoint method, as the 3d computational cost limits the multiple simulations 
in particle swarm methods. The electric field intensity distribution of the final iteration is 
shown in Fig. 5. The large operating bandwidth of the optimized structure is shown in Fig. 6. 
and is good indication of the robustness of the design generated by the optimization. 
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Fig. 5. Simulated field intensity |E|2 for the optimized structure at λ = 1550nm for a slice in the 
middle of the device. 

 

Fig. 6. Simulated insertion loss of the optimized device for wavelengths between 1.5 and 1.6 
µm. The broad operating spectrum of the device is a good indicator of the robustness of the 
design. 

4. Conclusion 

As photonic and wireless components become an increasingly important part of electronics, it 
is evident that many problems will require electromagnetic optimization. The computational 
cost of solving Maxwell’s equations is significant, and inefficient design optimization 
algorithms will become unacceptable. We have shown that the adjoint gradient decent method 
for shape optimization of sub-wavelength photonic devices can be readily implemented by 
embedding commercial Maxwell solvers within an inverse optimization algorithm. 
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For exploration of larger solution spaces where local optima may exist, this method may 
be augmented with a clever choice of Figure-of-Merit, as well as global optimization routines 
such as simulated annealing to provide efficient and powerful automated design of photonic 
components. 

Adjoint-gradient-steepest-descent has already beaten the previous record for a 
manufacturable splitter within current Silicon photonics technology, at much less 
computational cost than previous methods. This opens the pathway to a more systematic, 
efficient, photonic component design optimization. The code used for this optimization is 
available at [21]. 
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