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Understanding auditory scenes is important when de-
ploying intelligent robots and systems in real-world
environments. We believe that robot audition can bet-
ter recognize acoustic events in the field as compared
to conventional methods such as human observation
or recording using single-channel microphone array.
We are particularly interested in acoustic interactions
among songbirds. Birds do not always vocalize at ran-
dom, for example, but may instead divide a sound-
scape so that they avoid overlapping their songs with
those of other birds. To understand such complex in-
teraction processes, we must collect much spatiotem-
poral data in which multiple individuals and species
are singing simultaneously. However, it is costly and
difficult to annotate many or long recorded tracks
manually to detect their interactions. In order to
solve this problem, we are developing HARKBird, an
easily-available and portable system consisting of a
laptop PC with open-source software for robot audi-
tion HARK (Honda Research Institute Japan Audition
for Robots with Kyoto University) together with a low-
cost and commercially available microphone array.
HARKBird enables us to extract the songs of multiple
individuals from recordings automatically. In this pa-
per, we introduce the current status of our project and
report preliminary results of recording experiments in
two different types of forests – one in the USA and the
other in Japan – using this system to automatically es-
timate the direction of arrival of the songs of multiple
birds, and separate them from the recordings. We also
discuss asymmetries among species in terms of their
tendency to partition temporal resources.

Keywords: bird songs, localization, temporal sound-

scape partitioning, microphone array, HARK

1. Introduction

Understanding auditory scenes is important when de-
ploying intelligent robots and systems in real-world envi-
ronments. Sound information, however, has not been so
widely utilized compared to visual information in envi-
ronmental monitoring and management. We believe that
recent advances in signal processing for robot audition en-
able robotic systems to recognize various acoustic events
in natural habitats better than conventional single-channel
recording or human observation.

In ornithology or bird observation, songs of birds pro-
vide critical cues for monitoring their behavior. In forests,
many male birds produce long vocalizations, called songs,
to advertise their territory or attract females in breeding
season. Songs vary by species that could consist of multi-
ple phrases. Conversely, shorter vocalizations occurs in
other contexts such as flight, threat, and alarm [1]. In
general, a species can be identified by songs more readily
than by calls, but this strongly depends on species-specific
properties.

A community of singing birds can be regarded as a
self-organizing system in the sense that they establish an
efficient soundscape through acoustic interactions with
neighboring individuals. Rather than vocalizing at ran-
dom, for example, birds may divide a soundscape so that
they avoid overlapping their songs with songs of other
bird species or individuals to communicate with neigh-
bors efficiently. Empirical studies on temporal partition-
ing or overlap avoidance of singing behaviors of song-
birds have been conducted across various time scales [2–
8]. We are interested in clarifying underlying dynamics
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as an example of such complex systems based on adaptive
behavioral plasticity from both theoretical [9] and empir-
ical standpoints [10, 11], which might share general prop-
erties with other biological (e.g., insects, reptiles [12]) and
engineering (e.g., sensor networks [13]) systems.

Much spatiotemporal data in which multiple individu-
als and species are singing simultaneously must be col-
lected to understand such complex interaction processes.
However, there are various issues for this task based on
a standard single-channel recording: 1) we have to per-
form long-term recordings because we do not know when
target species or individuals sing simultaneously. 2) It
is costly or even impossible to annotate manually such
long tracks because songs could be intermixed in single-
channel recordings. 3) No spatial or directional informa-
tion is available, which will be a key for distinguishing
individuals.

Using a microphone array for acoustic monitoring of
animals is a promising approach [14]. Collier et al. devel-
oped a wireless network of 8 nodes of 4-ch microphone
arrays (VoxNet) and showed that songs of wild birds such
as Mexican Antthrush (Formicarius moniliger) can be
spatially localized successfully [15]. Harlow et al. ex-
panded this system to 3D-localization of Shrike-tanagers
(Lanio aurantius) and Wood Wrens (Henicorhina leucos-
ticta) in a Mexican rainforest [16].

Despite the great potential of these techniques to en-
able us to better understand how birds communicate via
songs, systems developed in such studies are often not
commonly available or may only available upon request.
This prevents many field researchers from making use of
the latest technologies.

In addition, robustness against noises is an important
factor in field observations. Mennill et al. constructed an
array of multiple commercial stereo recorders (Songmeter
SM2 with GPS; Wildlife Acoustics Inc.) [17]. Recorded
sounds were synchronized to generate 8-channel data
and bird or animal calls were extracted manually. The
2D location of each source was estimated based on a
cross-correlation method [18] in MATLAB. This system
showed a high accuracy in localizing a variety of sounds,
including bird songs replayed by a loud speaker, under
ideal conditions in which a single target sound source was
played in a relatively quiet environment. In contrast, we
aim to grasp a more realistic representation of the sound-
scape in which multiple individuals or species sing simul-
taneously in noisy environments.

To this end, we are developing an easily-available and
portable system called HARKBird [19]. HARKBird con-
sists of a standard laptop PC with an open source soft-
ware for robot audition HARK (Honda Research Institute
Japan Audition for Robots with Kyoto University) [20]
and a low-cost and commercially available microphone
array. This enables us to automatically extract songs of
multiple individuals or species from recordings.

While some systems consisting of commercially avail-
able microphones for research use have been pro-
posed [17], they are still expensive and require exper-
tise for practical implementation. Some software pack-

ages [21] have also been proposed with a similar motiva-
tion, but one significant benefit of HARK is its continu-
ous updating since its original release in 2010 to include
the latest algorithms for sound source localization, sepa-
ration, and recognition. A MUSIC (Multiple Signal Clas-
sification) method, which is adopted as a sound source lo-
calization algorithm in HARK, realizes noise-robust and
high-resolution localization of multiple sound sources un-
der conditions where the number of sources is fewer than
the number of microphone elements. These features are
well suited for analyzing complex acoustic environments
in natural habitats.

We are using a single microphone array, which means
that we can only estimate the arrival direction of sound
sources rather than the spatial location. Even in such
a minimal case, rich acoustic information not available
from a single-channel recording enables us to grasp the
overall soundscape of bird songs in detail. That is, a mi-
crophone array reduces annotation cost while increasing
accuracy, especially where multiple individuals or species
are singing.

HARKBird also has the benefits of being portable and
customizable. We can see localization results immedi-
ately after recording in the field. The customizability of
HARK also enables us to make the system respond to lo-
calized acoustic events in real-time.

Our purpose in this work is twofold: first, to introduce
our system; and second, to show some localization results
of bird songs recorded in the USA and Japan, in order
to discuss advantages and limitations of HARKBird. We
also discuss asymmetric interactions among species that
engaged in temporal resource partitioning in the recording
in Japan.

2. HARKBird: A Portable System for Record-
ing, Localizing and Annotating Bird Songs

HARKBird is a portable system we developed for
recording, localizing1 and annotating the singing behav-
iors of multiple songbirds. HARKBird consists of a lap-
top PC and a commercially available USB microphone
array. Fig. 1 shows an overview of the system. Fig. 1(a)
shows the system in the field. In our pilot trials here,
we used a TOUGHBOOK CF-C2/CF-19 (Panasonic) and
a Microcone (Dev-Audio),2 a 7-channel microphone ar-
ray on a tripod. The Microcone has a small cone-shaped
body which is 10 cm high and 8 cm in bottom diameter
(Fig. 1(b)). It has 6 microphones 60◦ apart on the bottom
and 1 microphone on top.

For the software environment, we adopted Ubuntu
Linux 12.04 in which the latest HARK and HARK-
Python were installed. The whole system consists of
HARK and a set of Python scripts with major modules
(e.g., wxpython and pyside) and standard software for

1. In this paper, we use the term “localize” as an estimate of the direction
of arrival in 2D without distance information.

2. Microcone is discontinued. Instead, TAMAGO, a low-price 8-
channel USB microphone array, is available from System In Frontier
(http://www.sifi.co.jp/en/ [Accessed January 30, 2017]).
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(b) (d)

(c)(a)

Fig. 1. An overview of the system. (a) The system in the field. (b) A Microcone, which has a small cone-shaped body which
is 10 cm high and 8 cm in bottom diameter. It has 6 microphones 60◦ apart on the bottom and 1 microphone on top. (c) GUI
interface. (d) A network of HARK for localizing sound sources in a wave file with MUSIC (Multiple Signal Classification) using
7ch spectrograms with FFT, then separating localized sounds with GHDSS (Geometric High order Decorrelation-based Source
Separation) method.

sound processing (e.g., sox, arecord and aplay). The
scripts are available on our website.3

We introduce functions of the system that enable us to
record, localize, visualize and annotate bird songs. All
components of HARKBird are primitive but essential to
record and annotate bird songs in the field such as a forest.

2.1. Recording
Figure 1(c) shows the GUI interface of the system. We

can start and stop 7ch-recording (16 bit and 16/48 kHz)
quickly with this interface. Although online process-
ing is a significant benefit of HARK, we decided to
record offline to maximize recording duration by mini-
mizing the computational cost of the system on a battery-
powered laptop PC. In our trial recordings with a Pana-
sonic TOUGHBOOK CF-C2 with a large battery, it lasted
over 8 hours, which is enough to record bird songs from
dawn to noon. The name of each recording can be as-
signed according to the staring time, the date and a unique
ID. This enables us to start recording without overwriting
recorded files, which is a simple but essential requirement

3. http://www.alife.cs.is.nagoya-u.ac.jp/˜reiji/HARKBird/
[Accessed January 30, 2017]

for field research to avoid losing changes for recording
acoustic interactions among target species.

2.2. Localization and Separation Using HARK
We can start sound source localization and separation

of recorded files using HARK by choosing a recorded
wave file from a list of wave files created in the cur-
rent directory. Fig. 1(d) shows the network we used for
sound localization and separation. This network reads a
recorded wave file down converted to 16 kHz, localizes
sound sources with the MUSIC (Multiple Signal Classi-
fication) method using 7-ch spectrograms with the FFT,
and separates localized sounds with the GHDSS (Geomet-
ric High order Decorrelation-based Source Separation)
method. We can specify some parameters for the MUSIC
method and source tracking that are important for localiz-
ing bird songs successfully as follows:

1. The expected number of sound sources for the MU-
SIC method: Three or four sound sources are appro-
priate for tracking singing behavior of some species
in our study sites, although this depends on the time
and place.

2. The lower bound frequency for the MUSIC method:
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In forests, most noise originates from leaves, wa-
ter, and wind. On the other hand, the frequency
range of songs of major species is higher than such
low-frequency noise. Thus we usually set value at
1.5–2.5 kHz for localization processes, although this
value depends on the situation because we may fail
to localize the songs of species that have lower-
frequency songs. We fixed the upper bound fre-
quency at 10 kHz, which covers the frequency range
of songs of major species.

3. The threshold for source tracking: This parameter
determines a power threshold, and the system as-
sesses by the threshold whether the source local-
ization result is a noise to be ignored. Apparently,
the appropriate value for this parameter strongly de-
pends on the acoustic environment of a recording,
and thus it is important to be able to adjust it readily
at the time of analysis.

Based on localization and separation, the following files
will be created in a new folder: separated wave files,
log files of localized sources and a MUSIC spectrum at
each time step, lists of information on localized sounds
(start time, the direction of arrival (DOA) and duration) in
JSON format.

2.3. Visualization
Using the exported files above, HARKBird provides

several ways to visualize and analyze the acoustic envi-
ronment of recording. The GUI interface displays inter-
active windows containing spectrograms and localization
results, in which the duration and the DOA of each sound
is represented as a line. Each separated sound can be re-
played and visualized with a spectrogram by clicking on
the line ID, as shown in Fig. 2. HARKBird generates a
PDF file of localization results that include the spectro-
gram of the recording, the MUSIC spectrum, and the di-
rectional and temporal patterns of sound localization as
shown in Fig. 3. This PDF file is useful for visualizing
the long-term patterns of the acoustic environment.

2.4. Annotation
Our research group on ecological analyses of bird

songs4 uses an open-source software for human speech
analysis “Praat”5 for annotating the timing, duration and
types of songs or phrases in tracks recorded in California.
A tier, a timeline for representing the timing and dura-
tion of songs, is assigned to each species or individual as
shown in Fig. 4(b). Before annotating results with Praat,
noise should be excluded and localization results of the
same individual should be grouped into individual birds.
In this grouping, we assume that they are singing period-
ically without moving around drastically. Results can be
exported in standard Praat format or as a figure (Fig. 5).

4. http://artsci.ucla.edu/birds/ [Accessed January 30, 2017]
5. http://www.fon.hum.uva.nl/praat/ [Accessed January 30, 2017]

Fig. 2. Example of interactive windows of localization re-
sults. The track was recorded at Higashiyama-park, Nagoya,
Japan (April 2014). A Japanese White-eye (Zosterops japon-
icus) singing repeatedly at 10◦ and a Brown-eared Bulbul
(Hypsipetes amaurotis) singing repeatedly at −150◦.

As another approach, we provide a simple and minimal
annotation tool for editing and classifying localization re-
sults, as shown in Fig. 6(b), which will be discussed in
detail (Section 3.2.1). We can load a wave file and cor-
responding files of localization results. The tool over-
lays the temporal and directional distribution of localized
sound sources in the space of MUSIC spectrum. This tool
has a minimal interface for correcting the timing, direc-
tion and duration of individual localized sounds, to add a
new source that has not been localized by HARK, to re-
move unnecessary sources, and to assign labels to sources.
The modified results can be saved in JSON format.

3. Two Case Studies

We introduce two cases of localization analysis, and
discuss the advantages and limitations of the current
HARKBird. We expect that the minimal set of analysis
tools and the GUI of HARKBird will greatly assist users
in collecting acoustic data in the field. These features will
be particularly useful for bird researchers who are not nec-
essarily familiar with operating systems and localization
techniques.

3.1. Example of Recording in the USA
3.1.1. Localization of Different Types of Bird Vocal-

izations
We conducted several pilot recordings at our field site

in a mixed conifer-oak forest near Volcano, CA, USA
(May 2015). Fig. 3 shows localization results for a
recording of approximately four minutes. The local-

216 Journal of Robotics and Mechatronics Vol.29 No.1, 2017



HARKBird: Exploring Acoustic Interactions in Bird Communities

Nashville Warbler
Cassin’s Vireo Black-headed Grosbeak

Spotted Towhee Orange-crowned Warbler

Pacific-slope Flycatcher

Fig. 3. An example localization of a recording at our field site in a mixed conifer-oak forest near Volcano, CA, USA (May 2015).
We used the following parameter settings in Section 2.1: 1) 3 sources, 2) 2400 Hz and 3) 29.5. The classification of species was
conducted manually. Each rectangle roughly indicates the spatiotemporal pattern of the vocalizations of the corresponding species,
thus it may contain noise and the songs or calls of the focal species. NAWA: Nashville Warbler (Leiothlypis ruficapilla), BHGR:
Black-headed Grosbeak (Pheucticus melanocephalus), OCWA: Orange-crowned Warbler (Vermivora celata), CAVI: Cassin’s Vireo
(Vireo cassinii), PSFL: Pacific-slope Flycatcher (Empidonax difficilis), SPTO: Spotted Towhee (Pipilo maculatus).

ization results were based on all seven microphone el-
ements. We focus on songs and calls of six species
because they were recognized at least five times each:
the Nashville Warbler (Leiothlypis ruficapilla, NAWA);
the Black-headed Grosbeak (Pheucticus melanocephalus,
BHGR:); the Orange-crowned Warbler (Vermivora celata,
OCWA); the Cassin’s Vireo (Vireo cassinii, CAVI); the
Pacific-slope Flycatcher (Empidonax difficilis, PSFL);
and the Spotted Towhee (Pipilo maculatus, SPTO).

First, we see that sound sources were repeatedly lo-
calized at fixed degrees of arrival. This fact means that

several individuals were singing at these directions peri-
odically. By replaying the separated sound or compar-
ing the timing of localized sounds with the spectrogram
for the corresponding period, we aurally confirmed which
species was singing at each direction, as shown in Fig. 3.

For example, several sound sources localized periodi-
cally at −30◦ are the songs of the NAWA. A song of the
CAVI consists of different types of short phrases with a
short break between phrases localized at around −120◦
and −150◦ throughout the recording. This fluctuation
shows that it slightly moved from −120◦ to −150◦. Thus,
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88 94
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87 95

86 89 90 92 96

sec97.8 110.9

10kHz

0kHz

PSFL

SPTO

NAWA

CAVI

BHGR

(c)

(b)

(a)
88: SPTO

91: NAWA

97: PSFL

87: BHGR 160: OCWA

89: CAVI 90: CAVI 92: CAVI

(c)

Fig. 4. Detailed results of localization at the duration between 97.8 and 110.9 seconds in Fig. 3. (a) The spectrogram of the original
recording. (b) Tiers (timelines) of songs for each species. (c) Spectrograms of separated songs.

Fig. 5. Example of ad-hoc classification of localized sources
in Fig. 2. The sources categorized into the same class are
connected with thick lines.

localization results indicate that this soundscape consisted
of songs of different bird species.

These species have the distinct, species-specific prop-
erties in their vocalizations. We focused on the interval
from 97.8 to 110.9 seconds in Fig. 4. The spectrogram
of the first channel of the original recording in Fig. 4(a)
shows songs of the different species. The tiers (timelines)
of Praat in Fig. 4(b) show the timing and duration of sepa-
rated sources for each species, together with their IDs. In
the spectrograms of some separated vocalizations of these
species, such as in Fig. 4(c), a rectangular region on the
spectrogram represents the duration and frequency range

of focal songs, phrases or calls. These vocalizations are
observed more clearly in Fig. 4(c) than Fig. 4(a) thanks to
the successful separation of sound sources. However, the
durations of the separated sources tend to be longer than
the target vocalizations, possibly caused by other songs,
especially those of the BHGR, which has a longer and
louder song. The source with the ID 91 corresponds to
the song of the NAWA, which is slightly longer (2.5 sec-
onds) and with a higher frequency (at 3–8 kHz). The
short sources (ID 86, 89, 90, 92 and 96) are phrases
of the CAVI, whose song consists of different types of
short phrases with a short break between phrases. On the
other hand, many phrases of the BHGR were localized as
a single and long source (87) because intervals between
phrases were too short to be localized as separate sources.
The parameters of HARK can, of course, control the min-
imum pause length.

Without HARKBird, we could not recognize the call
of the SPTO (88) by neither looking at the spectrograms
nor listening to the recording because it was singing too
faintly, possibly singing faraway. Nevertheless, we recog-
nize the species-specific property of a call of the SPTO in
the spectrogram of the localized source (88), and recog-
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Table 1. Accuracy of localization.

Species NAWA BHGR OCWA CAVI PSFL SPTO
type song song song phrase call call

Actual song 13 16 10 95 5 12
Localized song 13 12 4 89 4 11

Success rate 100.0 75.0 40.0 93.7 80.0 91.7

nize the call by replaying the separated source. This is one
benefit of using HARK for annotation, because it enables
us to look closer at sources that are not easily recognized
from a single channel recording. Sources 106 and 116
in Fig. 3 include the similar songs to that of source 88,
thus we clearly recognize the existence of this individual
at about 100◦, vocalizing at regular intervals. Although
the call of the PSFL (97) was very short, we recognized it
while the BHGR was singing simultaneously. The songs
of the OCWA were localized only a few times because
this individual appeared to be singing faraway. The local-
ization of this species might have been affected by overlap
with other species’ songs (e.g., BHGR).

3.1.2. Accuracy Evaluation
To evaluate overall localization accuracy, we conducted

fine-grained annotation of this recording by human anno-
tators, finding that some songs or calls were not localized
by HARK. Because we do not know the ground truth of
the singing behaviors of these species, we defined the suc-
cess rate of localization for each species as “the ratio of
the number of localized songs by HARK to that of ac-
tual songs recognized by human annotators or HARK.”
The ratios are shown in Table 1. More than 70% of the
songs and calls were localized successfully, except for the
OCWA that sang from a distant location. Because the to-
tal number of localized sources was 191 and that of actual
songs is 133, 30.3% of the localized sources were either
noises or a mixture of several species’ songs. This result
indicates a need for the development of the automatic an-
notation system, particularly its ability to deal with noise.

3.2. Example of Recording in Japan
3.2.1. Effects of Surrounding Environments on Local-

ization of Bird Songs
Another example is a track recorded at the Inabu field,

the experimental forest of the Field Science Center, Grad-
uate School of Bioagricultural Sciences, Nagoya Univer-
sity, in central Japan (May 2015). The forest is mainly
conifer plantation (Japanese cedar, Japanese cypress, and
red pine), with small patches of broadleaf trees (Quercus,
Acer, Carpinus, etc.). In this forest, common bird species
are known to vocalize actively during the breeding sea-
son. Fig. 6(a) shows an example of localization result
for about 10 min. We focus on the five major species
that sang repeatedly in the recording: Blue-and-white
Flycatcher (Cyanoptila cyanomelana, BAWF), Narcissus

Flycatcher (Ficedula narcissina, NAFL), Coal Tit (two
individuals, Periparus ater insularis, COTI), Japanese
Bush-Warbler (Horornis diphone, JBWA) and Eurasian
Wren (Troglodytes troglodytes, EUWR).

Several sequences of localized sources were manually
classified as indicated in Fig. 6(a). For example, the
COTI, NAFL and BAWF were singing at about 120◦, 80◦
and −170◦ from the microphone at 200 seconds, respec-
tively. The EUWR sang long and loud songs a few times
from about −120◦ at 270 seconds, and the JBWA sang
at around −180◦ during the last 70 seconds. This means
that HARKBird can roughly capture the soundscape of
singing behaviors of these species. It should be noted that
two individuals of the COTI sang at close but slightly dif-
ferent directions. Such directional information of sources
was informative to discriminate between different individ-
uals of the same species. Each separated sound was also
important for listening to the song more clearly, compared
with the original recording. This observation cannot be
obtained with a single-channel recording.

This analysis showed several technical limitations of
our system. It localized many non-bird song sound
sources because the localization results strongly re-
flected the acoustic environment around the microphone.
Fig. 6(b) shows a correctly annotated track using the
annotation tool to edit results from HARK. Because all
noises were removed manually in Fig. 6(b), a comparison
between Figs. 6(a) and (b) shows there were many noises
between −150◦ and 0◦. In Fig. 6(a), in particular, there
are sound sources localized repeatedly in the direction of
0◦, and it turned out that these were not sound sources
from real birds but reflected songs of the species mainly
at around −170◦ and −180◦, i.e., the BAWF and JBWA
reflected by the wall of an old prefabricated hut located at
about 0◦.

Short sound sources localized between −150◦ and
−50◦ were continuous noise made by water flow or leaves
in a stand of bamboos stand near the microphone. Actu-
ally, the values of the MUSIC spectrum in these directions
in Fig. 6(b) tended to be higher throughout the recording.
These effects of the surrounding environments (e.g., ob-
stacles and vegetations) will need to be taken into account
in the future. For example, we can remove these unnec-
essary sounds by using a directional filter, which may im-
prove the overall quality of the localization processes.

3.2.2. Temporal Overlap Avoidance
To see if there was significant temporal overlap avoid-

ance of singing behaviors among the individuals that were
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Flycatcher Blue-and-white 

Flycatcher
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Fig. 6. An example localization of a recording at the Inabu field, the experimental forest of Nagoya University, in central Japan
(May 2015). (a) A result of localization by HARK. We used the following the parameter settings in Section 2.1: 1) 3 sources, 2)
2200 Hz and 3) 29.5. (b) A snapshot of the correctly annotated track using the annotation tool by editing the results from HARK.
Each rectangle corresponds to the individual in (a). All noises were removed and non-localized songs were added manually. The
classification of species was also conducted manually.

actively singing in the recording track between 140 and
583 seconds, we focused on the song timing and duration
of COTI (individual 2), NAFL, and BWFL. The duration
of time occupied by no species (vacant), monopolized by
the songs of a single species, or occupied by the songs of 2
or 3 species were 108, 235 and 100 seconds, respectively.
We found that the solo singing time (235 seconds) was
significantly longer than would be expected if the birds
were singing with random timing (t-test, p < 0.001),6
meaning that temporal overlap avoidance occurred in this
time period.

Studies have pointed out that differences exist between
species in the tendency to avoid temporal overlaps [2–
5]. For example, Suzuki and Arita showed that, using a
computational coevolutionary model of a resource shar-
ing problem, inter-specific diversity in behavioral plastic-
ity can emerge and contribute to the efficient and equal
benefit of interacting species [9].

To see whether there is such inter-specific diversity in
behavioral plasticity during this time, we measured the
information flow from one species’ behavior to another
using transfer entropy (see [22] for detail). This measure
quantifies the expected amount of directional information
flow from one time series to another.

Specifically, transfer entropy TY→X(k, l) from a discrete

6. For the statistical analysis, we created 50 surrogate datasets of singing
behaviors in which the durations of two randomly selected non-singing
intervals were swapped 1000 times for each species. We then checked
whether the observed transfer entropy was significantly different from
the average value of those of the surrogate data or not, using a t-test.

time series Yt = {yt}t=1,2,... to another discrete time series
Xt = {xt}t=1,2,... represents, given the past l values of Yt ,
the amount of reduction in the uncertainty about the fu-
ture value of Yt (i.e., the reduced entropy of the transition
probability of Yt ) by knowing the past k values of Xt , cal-
culated as follows:

TY→X(k, l) = ∑ log
p
(
xt+1|xk

t ,y
l
t
)

p
(
xt+1|xk

t
) , . . . . . (1)

where xk
t and yl

t denote {xt−k+1, . . . ,xt} and
{yt−l+1, . . . ,yt}, respectively. In our case, X and Y
correspond to the time series of singing behavior of the
species X and Y when we calculate the information flow
from the species X to Y . To discretize each time series,
we created a binary time series by assigning a binary
value (1: singing or 0: not singing) to each 0.5-second
time interval.

Because transfer entropy can be positive even when the
states of the additional time series (Yt ) are completely ran-
dom, the effective transfer entropy ETY→X [23] must be
calculated:

ETY→X = TY→X −mean(TYrand→X), . . . . . (2)

where TYrand→X is transfer entropy from surrogate time
series Yt , in which durations of two randomly selected
non-singing intervals were swapped 1000 times for each
species, to observed time series Xt . We generated 50 dif-
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Fig. 7. The network of effective transfer entropy gener-
ated from the song timing and durations of COTI 2, NAFL
and BWFL between 140 and 582 seconds in Fig. 6. Each
arrow represents a statistically significant information flow
from the species of the outgoing node to that of the incom-
ing node.

ferent TYrand→X and used its mean to calculate ETY→X .7

Using a t-test (p < 0.05), we also tested whether the ob-
served transfer entropy differed significantly from the av-
erage of those of 50 surrogate data.

Figure 7 shows a network of statistically significant ef-
fective transfer entropy. Each node represents a species
and each directional arrow from a node of one species
to another represents the existence of statistically signifi-
cant information flow from the former species to the latter
compared to the expected values of surrogate data.

We, therefore, conclude that asymmetric information
existed among species. The BAWF, for example, does not
receive incoming arrows from the others, implying that
the song timing of this species may not be affected by the
other species’ song timings. On the other hand, the NAFL
receives two incoming arrows from the BAWF and COTI,
implying that this species may decide song timings de-
pending on the other species’ timing (e.g., deciding not to
sing if others are singing, or to stop singing if others begin
to sing). This result appears to fit with intuitive observa-
tion because the BAWF sings loudly and consistently on
top of a tree whereas the NAFL sings and moves around
in the middle of a tree. Although the result is from a short
recording, we have observed similar tendencies in some
other recordings.

4. Conclusion

We introduced HARKBird and demonstrated that it
successfully estimated the degree of arrival and separated
sounds of bird songs, with some localization results of
songs recorded in two different types of forests in the
USA and Japan. We summarized the advantages and lim-
itations of the system. Results showed that HARKBird
roughly grasped the soundscape consisting of bird songs

7. We used k = l = 1.

of multiple species. If conditions permit, HARKBird lo-
calizes over 70% of songs as sound sources. This means
that localization results can reduce two costs: the cogni-
tive cost for annotation by knowing the spatial or direc-
tional relationships among individuals, and the operating
cost by using localization results as a template or initial
data of annotation.

The preliminary analysis of bird songs recorded in
Inabu, Japan, also showed that HARKBird roughly cap-
tures the singing behavior of different species in the
soundscape. However, at the same time, the analysis high-
lighted several technical limitations of HARKBird. It lo-
calized many unnecessary sounds that may be associated
with abiotic features of the acoustic environment. In ad-
dition, we still need to discriminate manually between
songs of different species at this phase. These issues can
be resolved by more flexible tuning of the parameter of
HARK [19] and automatic classification of sound sources.

We also showed the existence of temporal overlap
avoidance in the singing behaviors of some species in the
recording in Japan, and discussed the asymmetric rela-
tionships among species by using transfer entropy anal-
ysis. This shows that HARKBird has a high potential to
reveal complex interaction processes that underlie tempo-
ral soundscape partitioning among species.

We are currently developing a function that automat-
ically recognizes and separates bird songs using with a
deep neural network technology. We believe that fur-
ther development of HARKBird will improve our under-
standing of such complex behaviors in bird communities.
HARKBird is now available with a new inexpensive com-
mercial microphone array, TAMAGO.
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