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Abstract. In this letter, a two-group SI epidemic model is tackled with an eye to population mobility.
Using the method of Lyapunov functions, global stability of the disease-free equilibria with respect
to one group as well as both groups is investigated. We find that the disease outbreak can be
effectively controlled through adjusting the feedback control variables. Examples are worked out to
illustrate the theoretical results.
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1 Introduction

As is known, many infectious diseases, such as influenza, HIV/AIDS and SARS, are
often highly contagious, inflicting pain on millions of people and involving billions of
dollars in health care cost every year. One of the foremost tasks in biomathematics is
to study the transmission of infectious diseases quantitatively—hence control the dis-
eases effectively—by establishing mathematical models [5]. Generally, individuals in
a population belong to one of the two states: susceptible and infective; the fraction of the
population contained in each state is denoted by S and I , respectively. Most of the existing
works on SI (and other types of) epidemic models focus on homogeneous population, that
is, all individuals respond homogeneously regarding the disease; see e.g., [2,5,9,11,13,19]
and references therein.

In this letter, we introduce a general two-group SI epidemic model, which charac-
terizes individual movement between the two groups, signified by A and B. A transfer

∗This research was supported by the Program for Young Excellent Talents in Tongji University (2014KJ036).

c© Vilnius University, 2015

mailto:shylmath@hotmail.com


502 Y. Shang

Fig. 1. Flow diagram of the two-group SI model.

diagram for this model is shown in Fig. 1. The model mathematically can be stated as (see
Remark 1)

S′(t) = S(t)
(
r − σIA(t)− ρIB(t)− aS(t)

)
,

I ′A(t) = IA(t)
(
σS + β − µ− αIB(t)

)
,

I ′B(t) = IB(t)
(
ρS + α− λ− βIA(t)

)
,

(1)

where the parameters r, σ, ρ, a, α, β, µ, and λ are all positive constants; r is the
recruitment rate of susceptible individuals; σ and ρ represent the infection rates from
infected individuals to susceptible individuals in groups A and B, respectively; µ and
λ are the death rates of the infectives in groups A and B, respectively; α and β describe
“turnover” rates between the two groups. Here, the classification into groupsA andB may
find its applications not only in obvious physical settings—for example, individuals living
in two geographic regions [12] migrate with rates α and β—but also in more remarkably
psychological settings—for example, individuals gain and lose disease awareness [3] with
rates α and β. It is recently reported that [4, 14] whether possessing awareness or not
has pronounced impact on the spread of infectious diseases, which goes some way to
highlighting the importance of developing multi-group epidemic models.

Remark 1. The last two equations of (1) more naturally take the following form:

I ′A(t) = IA(t)
(
σS + βIB(t)− µ− αIB(t)

)
, (2)

I ′B(t) = IB(t)
(
ρS + αIA(t)− λ− βIA(t)

)
. (3)

We come up with system (1) particularly taking into consideration a couple of things.
First, when groups A and B are classified according to whether disease awareness is
present, the rates of change in infectives rely on the multiplication of IA and IB [8]. This
explains why the term IAIB appears instead of something like IA + IB . Second, in view
of recent study in swarm dynamics [15] which reveals that an individual in the real world
approximately interacts with only a fixed number of neighbors (as opposed to the fully
mixed assumption), we simplify βIAIB (in (2)) and αIAIB (in (3)) as βIA and αIB in
the second and third equations of (1), respectively.

Compartmental epidemic models in the literature such as above are mainly delineated
by ordinary differential equations. One of the fundamental questions is to determine the
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asymptotical stability of the disease-free equilibrium, which corresponds to the vanishing
of a disease in a region. Lyapunov functions are often constructed to obtain the desired
global asymptotical stability for the equilibria of the models. Recently, Chen and Sun
[1] first deal with the stability of a homogeneous SI epidemic model by introducing
feedback control variables—which capture the unpredictable disturbances and uncertain
environments in realistic situations—although such control techniques have already been
used in ecosystems [7,20]. Some optimal control strategies have also been studied in SIS
models [16, 17], which have implications in cyber security.

Motivated by the work [1], the system (1) mediated by feedback control takes the
following form:

S′(t) = S(t)
(
r − σIA(t)− ρIB(t)− aS(t)− cu(t)

)
,

I ′A(t) = IA(t)
(
σS + β − µ− αIB(t)

)
,

I ′B(t) = IB(t)
(
ρS + α− λ− βIA(t)

)
,

u′(t) = −eu(t) + dS(t),

(4)

where u(t) is feedback control variable and the parameters c, d and e are positive con-
stants. The initial conditions are

S(0) > 0, IA(0) > 0, IB(0) > 0, u(0) > 0. (5)

The vaccination term here is not a vaccinated population in the context of the controlled
epidemic model. It is a feedback vaccination control driven by the susceptible population
and with a decreasing transient term due to the initial condition of the vaccination. This
is clearly seen by integrating through time the last equation of (4).

Remark 2. The solutions of the models (1) and (4) are always non-negative under the
positive initial conditions (5) by the continuity of the state variables (populations and
vaccination control) for all time. Indeed, starting from positive initial conditions, the
variables continue to be positive always or instead until the corresponding time-derivative
is zero. But in this last case, the corresponding time-derivative continues to be zero for
all time so that the population remains at the same non-negative value reached at the first
time instant at which its time-derivative was zero. Therefore, the model is well-posed and
the Lyapunov function candidates used below are also well-posed.

The rest of the letter is organized as follows. In Section 2, we prove the global
attractivity of the three concerned disease-free equilibria (with respect to A, B, and
both) based on appropriate Lyapunov functions. In Section 3, we present numerical
examples to illustrate the effectiveness of the results. Finally, a brief discussion is given
in Section 4.

It is worthwhile to mention that there have been some publications considering stabil-
ity of multi-group epidemic models, see e.g., [6, 10, 18], where nevertheless no feedback
control variable is exerted.
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2 Stability analysis

In what follows, we focus on the case of moderate turnover rates, i.e., β < µ and α < λ.
One easily checks that the solutions of (4) under initial conditions (5) stay positive for
t > 0.

The points of equilibrium of the system are the solutions of (4):

S′(t) = I ′A(t) = I ′B(t) = u′(t) = 0.

Define two threshold values f = (eσr + (β − µ)ae)/((µ − β)cd) and g = (eρr +
(α − λ)ae)/((λ − α)cd). There always exists the disease-free equilibrium w.r.t. both
groups A and B, which is given by E0(S0, 0, 0, u0) with S0 = re/(ae + cd) and u =
rd/(ae + cd). A simple calculation shows that, if g > 1, there exists a unique disease-
free equilibrium w.r.t. group A, denoted E∧(S∧, 0, I∧B , u

∧), where S∧ = (λ − α)/ρ,
I∧B = (rρe + (α − λ)(ae + cd))/(ρ2e), and u∧ = d(λ − α)/(eρ). Likewise, if f > 1,
there exists a unique disease-free equilibrium w.r.t. group B, denoted E∨(S∨, I∨A, 0, u

∨),
where S∨ = (µ−β)/σ, I∨A = (rσe+(β−µ)(ae+cd))/(σ2e), and u∨ = d(µ−β)/(eσ).
In the following, we investigate the global attractivity of these disease-free equilibria.

Theorem 1. If f < 1 and g < 1, then the disease-free equilibrium E0(S0, 0, 0, u0) is
globally asymptotically stable, i.e., the disease dies out w.r.t. both groups A and B.

Proof. Define the Lyapunov candidate by

V (t) =

(
S − S0 − S0 ln

S

S0

)
+ IA + IB +

c

2d

(
u− u0

)2
.

Along the trajectory of the solution of system (4), we have

V ′(t) = (S − S0)
(
−a

(
S − S0

)
− σIA − ρIB − c

(
u− u0

))
+ IA(σS + β − µ− αIB)

+ IB(ρS + α− λ− βIA) +
c

d
(u− u0)

(
−e

(
u− u0

)
+ d

(
S − S0

))
= −a

(
S − S0

)2
+

(
β − µ+

σre

ae+ cd

)
IA +

(
α− λ+

ρre

ae+ cd

)
IB

− (α+ β)IAIB − ce

d

(
u− u0

)2
.

Since f < 1 and g < 1, it follows that V ′(t) 6 0. Moreover, V ′(t) = 0 if and only if
S = S0, IA = IB = 0 and u = u0. Thus, we obtain limt→∞ S(t) = S0, limt→∞ IA(t) =
limt→∞ IB(t) = 0 and limt→∞ u(t) = u0, which conclude the proof.

Theorem 2. If f < 1 and g > 1, then the disease-free equilibrium E∧(S∧, 0, I∧B , u
∧) is

globally asymptotically stable, i.e., the disease dies out w.r.t. group A.

Proof. Define the Lyapunov function by

V (t) =

(
S − S∧ − S∧ ln

S

S∧

)
+ IA +

(
IB − I∧B − I∧A ln

IB
I∧B

)
+

c

2d
(u− u∧)2.
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Along the trajectory of the solution of system (4), we obtain

V ′(t) = −a
(
S − S∧

)2 − β
(
IB − I∧B

)2
+

(
β − µ+

σre

ae+ cd

)
IA − ce

d

(
u− u∧

)2
.

Since f < 1, it follows that V ′(t) 6 0. Moreover, V ′(t) = 0 if and only if S =
S∧, IA = 0, IB = I∧B and u = u∧. Consequently, we have limt→∞ S(t) = S∧,
limt→∞ IA(t) = 0, limt→∞ IB(t) = I∧B and limt→∞ u(t) = u∧, which conclude the
proof.

Theorem 3. If f > 1 and g < 1, then the disease-free equilibrium E∨(S∨, I∨A, 0, u
∨) is

globally asymptotically stable, i.e., the disease dies out w.r.t. group B.

Proof. Consider the following Lyapunov function:

V (t) =

(
S − S∨ − S∨ ln

S

S∨

)
+

(
IA − I∨A − I∨B ln

IA
I∨A

)
+ IB +

c

2d

(
u− u∨

)2
.

Along the trajectory of the solution of system (4), we obtain

V ′(t) = −a
(
S − S∨

)2 − α
(
IA − I∨A

)2
+

(
α− λ+

ρre

ae+ cd

)
IB − ce

d

(
u− u∨

)2
.

The rest of the proof is in parallel with that of Theorem 2.

Remark 3. At this stage, it might be tempting to conclude that, if f > 1 and g > 1, then
the endemic equilibrium E∗(S∗, I∗A, I

∗
B , u

∗), where S∗ = (rαβ − ασ(α− λ)− βρ(β −
µ))/((α+β)σρ+αβ(a+cd/e)), I∗A = (σS∗+β−µ)/α, I∗B = (ρS∗+α−λ)/β and u∗ =
dS∗/e, is globally asymptotically stable. This, however, is not true; by using the Lya-
punov function V (t) = (S−S∗−S∗ ln(S/S∗))+(IA−I∗A−I∗B ln(IA/I

∗
A))+(IB−I∗B−

I∗A ln(IB/I
∗
B))+c/(2d)(u−u∗)2, it is straightforward to check thatE∗ is locally asymp-

totically stable. Numerical computation in Fig. 2d further shows that the ultimate value
of susceptible state can be either S∧, or S∨, or S∗ depending on the initial conditions.

3 Numerical examples

Consider the system (4) with parameters r = 1, σ = 0.6, ρ = 0.4, a = 1, µ = 1.5, λ = 1,
α = 0.9, and β = 1.2. We calculate that f = e/(cd) and g = 3e/(cd).

(i) Take c = d = 1 and e = 0.3. Then f = 0.3 < 1 and g = 0.9 < 1. We derive the
disease-free equilibrium w.r.t. A and B as E0(0.2308, 0, 0, 0.7692). Figure 2a
shows the dynamical behavior of the system, which is consistent with Theorem 1.

(ii) Take c = d = 1 and e = 0.8. Then f = 0.8 < 1 and g = 2.4 > 1. We derive
the disease-free equilibrium w.r.t. A as E∧(0.25, 0, 1.0938, 0.3125). Figure 2b
shows the dynamical behavior of the system, which agrees with Theorem 2.

Reducing α to 0.7 yields f = e/(cd) and g = e/(3cd).

Nonlinear Anal. Model. Control, 20(4):501–508
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(a) The disease fades out in both A and B when
f < 1 and g < 1.
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(b) The disease fades out only in A when f < 1
and g > 1.
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(c) The disease fades out only in B when f > 1
and g < 1.
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(d) The disease may fade out or become endemic
when f > 1 and g > 1.

Fig. 2. (a)–(c) Trajectories of system (4) under initial conditions (0.34, 0.04, 0.02, 0.1), (0.26, 0.1, 0.02, 0.1),
and (0.2, 0.06, 0.03, 0.2). (d) Trajectories of system (4) under initial conditions (0.76, 0.222, 0.0026, 0.15),
(0.3, 0.02, 0.3, 0.1), and (0.2, 0.4, 0.1, 0.2). System parameters are specified as in (i), (ii), (iii), and (iv),
respectively.

(iii) Take c = d = 1 and e = 2. Then f = 2 > 1 and g = 0.6667 < 1. We derive the
disease-free equilibrium w.r.t. B as E∨(0.5, 0.4167, 0, 0.25). Figure 2c displays
the dynamical behavior of the system, which again agrees with Theorem 3.

(iv) Take c = d = 1 and e = 5. Then f = 5 > 1 and g = 1.6667 > 1. We derive the
endemic equilibrium and the two disease-free equilibria as E∗(0.7582, 0.2213,
0.0028, 0.1516), E∧(0.75, 0, 0.25, 0.15), and E∨(0.5, 0.6667, 0, 0.1), respec-
tively. Figure 2d indicates that the ultimate state can be any of the three equilibria
depending on the initial conditions.

4 Discussion

To summarize, we propose a generic two-group SI epidemic model with feedback con-
trol. By constructing Lyapunov functions, global stability of the disease-free equilibria
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is tackled. The simulations above reveal that the outbreaks of disease in two groups can
be finely tuned by choosing appropriate values of feedback control variables. Meanwhile,
we find two critical threshold values f and g, which together determine the persistence or
extinction of the disease.

In the present work, simple feedback control variable involving only susceptible state
is considered. Although it proves to be very effective, design of more complex feedback is
certainly interesting. On the other hand, we know that time-delay widely exists in realistic
systems. Unmodelled delay effects in a feedback mechanism may destabilize an otherwise
stable system. We leave the question of delayed feedback control for future study.

Acknowledgment. The author is very thankful to the learned referees for valuable
comments.
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