
Abstract
Pixel-swapping algorithm is a simple and efficient technique
for sub-pixel mapping (Atkinson, 2001 and 2005). It was
initially applied in shoreline and rural land-cover mapping
but has been expanded to other land-cover mapping.
However, due to its random initializing process, this algo-
rithm must swap a large number of sub-pixels, and therefore
it is computation intensive. This computing power consump-
tion intensifies when the scale factor is large. A new,
modified pixel-swapping algorithm (MPS) is presented in this
paper to reduce the computation time, as well as to improve
sub-pixel mapping accuracy. The MPS algorithm replaces the
original random initializing process with a process based on
a sub-pixel/pixel spatial attraction model. The new algo-
rithm was used to allocate multiple land-covers at the sub-
pixel level. The results showed that the MPS algorithm
outperformed the original algorithm both in sub-pixel
mapping accuracy and computational time. The improve-
ment is especially significant in the case of large scale
factors. Furthermore, the MPS is less sensitive to the size of
neighboring sub-pixels and can still result in increased
accuracy even if the size of neighbors is small. The MPS was
also much less time consuming, as it reduced both the
iterations and total amount of swapping needed.

Introduction
Since the launch of the first Earth observation satellite,
remote sensing imagery has been utilized increasingly in
many applications including land-cover analysis, environmen-
tal monitoring, mineral exploration, military surveillance,
etc. A common problem associated with the application of
satellite images, however, is the frequent occurrence of mixed
pixels (e.g., Foody, 2004). Mixed pixels in traditional land-use
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and land-cover classification processes are often classified
into a single land-use/land-cover type, without preserving the
information that the pixel contains a mixture of multiple
land-uses and covers. Soft classification techniques were
introduced to avoid the loss of information by assigning a
pixel to multiple land-use/land-cover classes according to the
area each use/cover represents within the pixel. This soft
classification technique generates a number of fractional
images equal to the number of classes (Mertens et al., 2003).
Unfortunately, the results from soft classification do not
specify the location of each class within that particular pixel.
In many practical applications, it is often desirable to know
where each class is located within the pixel, in order to
obtain detailed spatial patterns of land-use and land-cover.

Sub-pixel mapping (or super-resolution mapping) was then
introduced (Atkinson et al., 1997; Atkinson, 1997) to achieve
this desirable goal, using the information obtained from both
soft and hard classification techniques. The aim of sub-pixel
mapping is to determine the most suitable locations for differ-
ent classes produced from a soft classification. It attempts to
allocate each thematic mapping fraction to an appropriate sub-
pixel location using soft classification results. Hence, sub-pixel
mapping is a spatial allocation technique that transforms a soft
classification into a finer scale hard classification.

Several approaches have been proposed to tackle the 
sub-pixel mapping issue: pixel swapping (Atkinson, 2001
and 2005), image sharpening (Foody, 1998; Gross and Schott,
1998), knowledge-based analysis (Schneider, 1993), Hopfield
neural networks (Tatem et al., 2001 and 2002), de-convolution
filters (Pinilla and Ariza, 2002), linear optimization (Verhoeye
et al., 2002), genetic algorithms (Mertens et al., 2003), feed-
forward neural networks (Mertens et al., 2004), Markov ran-
dom field-based approach (Kasetkasem et al., 2005), algorithm
based on sub-pixel/pixel spatial attraction models (Mertens
et al., 2006), and integration of information from indicator 
co-kriging or indicator kriging (Boucher and Kyriakidis, 2006
and 2007).

One of the sub-pixel mapping algorithms, named pixel-
swapping (PS), was first proposed by Atkinson (2001 and
2005) and tested with synthesized images. Due to its simplic-
ity and efficiency, the PS algorithm has been used success-
fully for mapping shorelines in Malaysia (Muslim et al., 2006)
and rural land-cover features in the Christchurch area of
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Dorset, UK (Thornton et al., 2006) with remotely sensed
imagery. However, the PS is time consuming and sensitive
to the number of neighboring pixels, especially while the 
sub-pixel scale factor is large. When the algorithm starts
pixel swapping, the land-use/land-cover class proportions
from soft classification are transformed into sub-pixel hard
classes using random initialization within each pixel. Due to
its pixel-by-pixel and iteration-by-iteration processes, this
PS algorithm swaps only one pair of sub-pixels per pixel per
iteration, thus taking a substantial amount of time for con-
verge. The computational time is more intensive when the
sub-pixel scale factor is large. Random initialization of the
spatial allocation of sub-pixels also affects the sub-pixel
mapping accuracy. The assumption of this paper is that
the initialization of the PS can be optimized to improve its
computational efficiency and sub-pixel mapping accuracy.
The objective of this paper is to focus on the improvement
of initialization of PS, thereby reducing the computational
time while improving sub-pixel mapping accuracy.

Materials and Methods
Pixel-swapping Algorithm
Pixel-swapping (PS) algorithm is an approach to sub-pixel
mapping proposed initially by Atkinson (2001 and 2005).
The objective was then to change the spatial arrangement
of sub-pixels in such a way that the spatial correlation
between neighboring sub-pixels (defined below) would be
maximized.

To swap sub-pixels, the proportions of land-use/
land-cover classes within each pixel are required (usually
obtained from soft classification) and initialized to trans-
form them into sub-pixel hard classes. The initialization of
sub-pixel locations can affect the computing efficiency and
ultimate mapping accuracy at sub-pixel level.

In Atkinson (2001 and 2005) initial work, a random
initialization was adopted. After spatial initialization, only
the spatial arrangement of sub-pixels is allowed to change
while the number of sub-pixels within each pixel and the
proportions of classes remain fixed. Once initialized, opti-
mization procedures are used iteratively to maximize spatial
correlation among neighboring sub-pixels to reach a final
stage of sub-pixel allocation.

The pixel-swapping algorithm comprises three basic
steps in each iteration. First, for each pixel, the attractive-
ness of each sub-pixel with identical class is calculated
as a distance-weighted function of its neighbors based on
the current arrangement of sub-pixel classes, and the total
attractiveness of a pixel is summed. If pi,j is a sub-pixel in
pixel Pa,b, and pk is one of pi,j’s neighboring sub-pixels,
pk may belong to Pa,b or its neighboring pixels. The total
attractiveness of Pa,b then is calculated as:OPa,b

(1)

where S is the scale factor for each pixel, and a pixel
contains S2 sub-pixels. Opi,j is the attractiveness of its i th row
and j th column sub-pixel, calculated as a distance weighted
function of its neighboring sub-pixels:

(2)

where N is the number of neighbors and is illustrated in
Figure 1, Z(pi,j, pk) is the value of the class between the sub-
pixel pi,j, and its kth neighbor pk. If the class value of sub-
pixel pi,j is identical with the class value of its neighbor pk,
the Z(pi,j, pk) is set to 1 and otherwise is set to 0. The
weighting parameter, lk, is a weight calculated using the
following equation:

(3)

where a is a non-linear parameter of the exponential model,
and h(pi,j, pk) is the distance between centers of sub-pixel
pi,j, and its neighboring sub-pixel pk, calculated as:

(4)

Second, based on the attractiveness of each sub-pixel
within pixel, the optimization algorithm ranks the scores on
a pixel-by-pixel basis. Finally, two sub-pixels with least
attractiveness and different class values are selected, and
their class values are swapped if the attractiveness of pixel
is increased; otherwise, no change is made. The above three-
step process is repeated iteratively until a solution is
reached. The process will stop when the algorithm fails to
make any further improvement.

The initial algorithm used by Atkinson (2001 and 2005)
was designed to work for binary class, but later was expanded
to work on multiple classes by Thornton et al. (2006), Makido
(2006), and Makido et al. (2007).

Initialization Based on Sub-pixel/pixel Spatial Attraction Model
The sub-pixel/pixel spatial attraction model was introduced
in sub-pixel mapping by Mertens et al. (2006). Instead of
iteratively optimizing the spatial correlations among sub-
pixels, the spatial attraction model directly estimates the
class of sub-pixels according to the class proportion of its
neighboring pixels. As such, the algorithm requires no itera-
tion to achieve the spatial allocation of sub-pixel classes.
The advantage of this algorithm is that it is computationally
efficient. In this study, the spatial attraction model was first
used to generate the sub-pixel class map, and then this

h(pi,j, pk) � 1(xk � xi,j)2 � (yk � yi,j)2

lk � expa �h(pi,j, pk)
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Figure 1. Illustration of neighboring definition. (Scale factor S is 4 in the figure, the central
black point is sub-pixel pi,j , and other grey points are its neighboring sub-pixels).
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newly generated map was used as an initialization in the
pixel-swapping algorithm for subsequent mapping.

The initialization process includes three basic steps.
First, based on the assumption that fraction values of identi-
cal classes in neighboring locations influence each other,
attraction values are calculated per class for each sub-pixel
within a pixel. Hence, attraction values of different classes
could be calculated for all sub-pixels within a pixel depend-
ing on their neighborhoods. Assume pi,j is a sub-pixel in pixel
Pa,b, and PK is one of Pa,b’s neighbors, then the class m’s
attractiveness om,P

i,j for sub-pixel pi,j can be calculated as:

(5)

where N is the total number of neighbors (in this study, N is
set to 8, which means that it only counts the nearest ones),
and fm(PK) is the fraction value of the K th neighboring pixel PK
for class m. The parameter lK is a weight factor, calculated as:

(6)

where h(pi,j,PK) is the distance between centers of sub-pixel
pi,j and its neighboring pixel PK, and can be calculated as:

(7)

The second step in the initialization is, according to
Mertens et al. (2006), to normalize the attraction values for
each class, as this can lead to better sub-pixel mapping
results. Therefore, the attractiveness is normalized according
to the following equation:

(8)

where Om,pi,j is the normalized attractiveness of sub-pixel pi,j
for class m, and S is the scale factor.

Finally, the attractiveness values Om,pi,j are used for the
assignment of sub-pixels to appropriate classes with the
assumption that the sub-pixel with the highest attractiveness
is assigned first. Thus, the sub-pixel class assignment, or
initialization of sub-pixel class allocation, is accomplished
and subsequent sub-pixel swapping can be applied to
achieve sub-pixel mapping. This modified pixel-swapping
method, or MPS, which substitutes the random class initial-
ization with a sub-pixel distribution based on sub-
pixel/pixel spatial attractiveness, is thus achieved.

Parameterization of Sub-pixel Mapping
Several parameters in SP algorithm, including scale factor
(S), type of neighbors and non-linear parameter of distance
function (a), are all critical and influence sub-pixel mapping
accuracy. Therefore, it is necessary to test the PS and MPS
algorithms with a wide range of these parameter values. In
this study, five scale factors, five types of neighbors, and
six different distance functions were tested and all combina-
tions are analyzed. The selected values of these parameters
are given in Table 1. Here, the type of neighbor is defined
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h(pi,j, PK) � 1(XK � xi,j)2 � (YK � yi,j)2.
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as a value of radius (n) and Figure 1 demonstrates the
definitions of different n used in this study.

Criteria for Algorithm Comparison and Evaluation
Four criteria variables were used, including adjusted kappa
(a statistical measure of sub-pixel mapping accuracy), CPU
time, number of iterations, and total swapping number to
assess the performance of the algorithms (original PS and
modified PS).

The accuracy assessment was measured by comparing
the sub-pixel mapping results of the MPS or PS with refer-
ence images. An adjusted Kappa coefficient was calculated
to evaluate the accuracy of sub-pixel mapping, which
was first proposed by Mertens et al., (2003). The statistic
measure is the same as the Kappa coefficient except it is
calculated only for mixed pixels. Due to the contribution of
pure pixels, adjusted kappa coefficient is a more sensitive
and objective measure of sub-pixel mapping accuracy
performance than the original Kappa coefficient.

The second performance measure is the CPU time used
for different algorithms. It only counts the CPU time con-
sumption for sub-pixel mapping computation on the same
computer.

The third performance measure is the number of itera-
tions and total amount of swapping, as they are useful
indicators of algorithm performance and efficiency. Because
pixel-swapping is a pixel-by-pixel, iteration-by-iteration
process, the number of iterations and total swapping number
will provide some idea of why different algorithms perform
differently. For instance, with same set of parameters, if the
number of iterations is larger, the CPU time will be higher;
and if the total swapping number is low but the mapping
accuracy is high, the initialization process must be effective
and the efficiency of the algorithm would be better.

In the study, the algorithm was implemented in MATLAB
(version 5.3) with script m, and all computations are con-
ducted on a MacPro workstation with two Intel Xeon 5150
Woodcrest 2.66 GHZ processors, 2 GB RAM, and Microsoft
Windows® XP SP2. Every set of parameters for each algorithm
runs five times, and the performance evaluation criteria
variables were averaged as a statistical measure of algorithm
efficiency and overall performance.

Test Images
Two images were tested in this study. One was a binary
synthesized image (Figure 2), and the other was a real land-
cover map (Figure 3). Both have a size of 512 by 512. The
synthesized image contained four (4) different characteristic
objects as a testing image to facilitate the comparison of
different algorithms. The land-cover image, which was
interpreted visually from 1:10 000 panchromatic aerial
photos (acquired in 2004) covering a small area in Lanxi
City, Zhejiang Province, China, was used as the second
image for testing practical applications of these two algo-
rithms. And these original images were used as a reference
for accuracy assessment.

Generation of fraction images from reference images is
called degradation, and pixel proportions for every class in
fraction images were calculated from reference images in a
window of size according to the required scale factor in
degradation. Fraction images were generated with five scale
factors, respectively, from the synthesized and real land-
cover images.

From the fraction images, the class with maximum
fraction for every pixel was identified, and it was assigned to
all sub-pixels located in the pixel, and then the hard classifica-
tion results were derived by this approach pixel-by-pixel. Hard
classification can be taken as traditional classification which
classifies mixed pixels into a single land-use/land-cover type.

TABLE 1. VALUES OF CRITICAL PARAMETERS USED IN SUB-PIXEL
SWAPPING ALGORITHM

Parameter Tested values

Scale factor (S) 2, 4, 8, 16, 32
Type of neighbor (n) 1, 2, 4, 6, 8
Non-linear value of distance function (a) 0.5, 1, 2, 4, 6, 8
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Figure 2. Sub-pixel mapping results of synthesized image with five degraded scale
factors generated by two different initializing methods: (a) Initializing randomly
(RANDOM ), and (b) Initializing based on sub-pixel/pixel spatial attraction model ( SPP ).
(Selected by the maximum adjusted kappa coefficient, solid edge represents the
position of reference image)

Results and Discussion
The accuracy and CPU time of sub-pixel mapping for the
synthesized and real land-cover images derived from the two
different initializing processes are listed in Table 2. The
initializing process based on the sub-pixel/pixel spatial
attraction model (SPP) has the highest adjusted kappa values
for all five scale factors. More importantly, the accuracy of
the resulting sub-pixel map from the SPP is far better than
that of the random initialization (RANDOM) process and even
better than the hard classification (HC) results. The RANDOM,
in contrast, resulted in the lowest accuracy. The reason was
believed that SPP made a more reasonable and accurate
spatial allocation for sub-pixels based on the fraction
information of its neighboring pixels in the initialization
step. Due to its complicated processes, the SPP required
more CPU time than RANDOM did, and time needed increased
as the scale factor became larger.

Figures 2 and 3 illustrate the sub-pixel mapping results
from the synthesized and land-cover images for RANDOM and
SPP initializations, respectively. Based on visual assessment
of the image quality, it appears that the results generated by
SPP initialization are far more accurate than those from the
RANDOM initialization. Obviously, the new initialization
method, SPP provides far better results in the initializing
mapping process.

The accuracy measurements of PS and MPS algorithms
for the two test images are demonstrated in Figure 4a and
4b, respectively; the adjusted kappa coefficients for two
algorithms and hard classification are illustrated in this
figure. In comparison with the results of hard classification
and original PS algorithm, the new MPS algorithm achieved
much better accuracy for all scale factors, especially in the
cases of large scale factors, due to the contribution of the
new initialization procedure. For both algorithms, their
adjusted kappa values monotone decrease while the scale
factor S increases from 2 to 32. In contrast, the original PS
algorithm is very sensitive to the size of neighbors, while
the MPS is much less sensitive, especially in the cases of
small size of neighbors. And, the MPS is also less sensitive
to the affects of value a, especially while scale factor is
small and the size of neighbor is large. In most cases, the
new MPS algorithm achieved higher accuracy, suggesting
that this new MPS obviously outperformed the original one
at all scale factors.

The CPU time for the two algorithms (including initial-
ization process) is shown in Figure 5 with different combi-
nations of parameters. Although the initialization process
based on sub-pixel/pixel attractiveness model requires more
computation time than the random initialization, the CPU
time of the new MPS algorithm is far less than the original
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TABLE 2. ADJUSTED KAPPA VALUE AND CPU T IME FOR TEST IMAGES WITH RANDOM INITIALIZATION (R ANDOM )
AND INITIALIZATION BASED ON SUB-PIXEL / PIXEL MODEL (SPP)

Synthesized image Land-cover image

Scale CPU time CPU time 
factor Adjusted kappa (second) Adjusted kappa (second)

HC* RANDOM SPP RANDOM SPP HC* RANDOM SPP RANDOM SPP

2 0.2723 0.1412 0.9917 1.07 1.88 0.4407 0.3480 0.9792 1.39 3.15
4 0.4880 0.3184 0.9620 0.44 1.65 0.6101 0.4746 0.9385 0.53 2.90
8 0.5600 0.4067 0.9174 0.35 3.44 0.6374 0.5082 0.8812 0.39 4.98
16 0.5139 0.3560 0.7536 0.45 11.22 0.5623 0.4322 0.7606 0.50 12.89
32 0.4353 0.2891 0.4628 0.77 47.77 0.4525 0.3302 0.5745 0.78 55.52

*Hard classification
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Figure 3. Sub-pixel mapping results of land-cover image with five degraded scale factors
generated by two different initializing methods: (a) Random initialization ( RANDOM ), and 
(b) Initialization based on sub-pixel/pixel spatial attraction model ( SPP ). (Selected by the
maximum adjusted kappa coefficient, solid edge represents the position of reference image)
A color version of this figure is available at the ASPRS website: www.asprs.org .

PS. Compared with the original algorithm PS, the new MPS
significantly reduced the computation iterations (Figure 6)
and total swapping number (Figure 7), which suggests that
the new MPS overall can save computing time and improve
efficiency and accuracy.

The sub-pixel mapping results from the two test images
are demonstrated in Figures 8 and 9. Visual assessment of
image quality reveals that the original PS algorithm yielded
somewhat better results than hard classification except when

the scale factor S is 32. The modified MPS method yielded
much better results than the original PS method for most
scale factors, especially for large scale factors. For the case
of scale factor S � 32, neither the original algorithm nor the
new MPS yielded satisfactory results, due to the lack of
spatial information from fraction images. However, the
results of sub-pixel mapping generated by the new MPS
algorithm are far more reasonable than results derived from
original algorithm and hard classification in most cases.
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Figure 4. Sub-pixel mapping accuracy for test images ( S is the scale factor, n is the type
of neighbor, a is the non-linear value of distance function): (a) Synthesized image, and 
(b) Land-cover image.

Conclusions
The pixel-swapping algorithm is a simple and efficient
method for sub-pixel mapping, but for large scale factors, it
is still computing intensive with low mapping accuracy.
A modified pixel-swapping (MPS) algorithm was proposed in
this study, by using a new initialization procedure based on
sub-pixel/pixel spatial attraction model. The results demon-
strated that the new MPS algorithm achieved much more accu-
rate super-resolution images than the original PS algorithm,
especially in the cases of large scale factors. Furthermore, the

new MPS was demonstrated to be much less sensitive to some
critical parameters of the algorithm, such as the type of neigh-
bor and non-linear value of distance function. This new MPS,
therefore, will provide better and easier ways to achieve finer
resolution products from coarse remotely sensed land-use
and land-cover maps. In addition to improving the accuracy
of sub-pixel mapping, this new MPS algorithm reduced the
computation time required for large image processing, thus
improving computing efficiency. The results from this study
are encouraging and promising in that the new method may
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Figure 5. CPU time in sub-pixel mapping computation ( S is the scale factor, n is the type
of neighbor, a is the non-linear value of distance function): (a) Synthesized image, and 
(b) Land-cover image.

be used to fine boundaries between classes and obtain detailed
land-use/land-cover information at sub-pixel levels.
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