ORB SLAM 2 : an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

Raul ur-Artal and Juan D. Tardos

Presented by:

Xiaoyu Zhou Bolun Zhang Akshaya Purohit Lenord Melvix

Outline

- Background
- Introduction
- Tracking
- Local mapping
- Loop closing
- Experiments and Results

What is SLAM ?

- Simultaneous localization and mapping

Why SLAM ?

- In an environment without GPS, how is localization achieved?

Visual SLAM: Front-End

Motion estimation: 2D-2D: Essential Matrix, Planar Projective Transformation Matrix

- minimize reprojection error
- Impossible if the camera purely rotates

Visual SLAM: Front-End

Motion estimation: 3D-3D: Iterative Closest Point (ICP)

Given two sets of 3D points, iteratively estimate the transformation Tk that can minimize the 3D-3D distance.

Visual SLAM: Front-End

Motion estimation: 3D-2D: Perspective from n Points (PnP)

The solution is found by determining the transformation that minimizes the reprojection error.

Visual SLAM: Back-End

Bundle Adjustment(BA):

- Very similar to camera-pose optimization,
- Also optimize the position of 3D points, minimize reprojection error.
- Extremely time consuming.

Visual SLAM: Strongest Constraint

Loop Closure:

- The most valuable constraint for pose-graph optimization.
- Usually between nodes that are far away, which may have large drift.
- Very afraid of false positive, which can destroy the entire map.

- Background
- Introduction
- Tracking
- Local mapping
- Loop closing
- Experiments and Results

ORB-SLAM2: System Overview

- Feature-based
- Monocular, Stereo, and RGB-D
- Loop closing, relocalization and map reuse
- Three threads running in parallel
 - Tracking
 - Local Mapping
 - Loop Closing

ORB-SLAM2: Map

• Map points

- 3D position
- Viewing direction
- Representative ORB descriptor
- Viewing distance

• Keyframes

- Camera pose
- Camera intrinsics
- ORB features in the frame

ORB-SLAM2: Place Recognition

Recognition Database

- Database built incrementally, which stores for each visual word in the vocabulary, in which keyframes it has been seen.
- Vocabulary tree using hierarchical k---means clustering
- Leaves are the visual words

- Background
- Introduction
- Tracking
- Local mapping
- Loop closing
- Experiments and Results

Tracking

• Localize the camera with every frame and decide when to insert a new keyframe.

Tracking: Preprocess Input

- Preprocess the input to extract features at salient keypoint locations
- All system operations are based on these features.
- Stereo Keypoints: (u₁, v₁, u_R)
 - Close: depth < 40X baseline
 - Far: Otherwise

Tracking: Preprocess Input (Extract ORB)

Tracking: Pose Prediction or Relocalization

- Pose Estimation From Previous Frame
 - Constant velocity motion model to predict the camera pose
 - Perform a guided search.
 - Pose optimization
- Pose Estimation via Global Relocalization (if tracking lost)
 - Convert the frame into bag of words
 - Query the recognition database: Get matching Keyframes
 - Outlier rejection: RANSAC
 - PnP to get pose
 - Guided Search
 - Pose optimization

Pose Prediction (Motion Model) or Relocalization

New KeyFrame Decision

Tracking: Pose Prediction or Relocalization

- Pose Optimization using Motion-only bundle adjustment:
 - Optimize camera orientation **R** and position **t**
 - Minimizing error between matched 3D points in world coordinates and key points
 - Levenberg-Marquadt for non-linear optimization

$$\{\mathbf{R}, \mathbf{t}\} = \underset{\mathbf{R}, \mathbf{t}}{\operatorname{argmin}} \sum_{i \in \mathcal{X}} \rho \left(\left\| \mathbf{x}_{(\cdot)}^{i} - \pi_{(\cdot)} \left(\mathbf{R} \mathbf{X}^{i} + \mathbf{t} \right) \right\|_{\Sigma}^{2} \right)$$
$$\pi_{\mathrm{m}} \left(\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \right) = \begin{bmatrix} f_{x} \frac{X}{Z} + c_{x} \\ f_{y} \frac{Y}{Z} + c_{y} \end{bmatrix} \quad \pi_{\mathrm{s}} \left(\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \right) = \begin{bmatrix} f_{x} \frac{X}{Z} + c_{x} \\ f_{y} \frac{Y}{Z} + c_{y} \\ f_{x} \frac{X - b}{Z} + c_{x} \end{bmatrix}$$
$$\underbrace{\operatorname{Stereo/RGB-D}_{\operatorname{Frame}} \xrightarrow{\operatorname{Pre-process}} \operatorname{Pose Prediction}_{\operatorname{orelocalization}} \underbrace{\operatorname{Track}_{\operatorname{Loal Map}} \operatorname{New Key Frame}_{\operatorname{Decision}}}_{\operatorname{Decision}}$$

Tracking: New KeyFrame

Decision criteria (all required):

> More than 20 frames must have passed from the last global relocalization.

Stereo/RGB-D

Frame

Pre-process

Input

Pose Prediction

(Motion Model)

or Relocalization

New KeyFrame

Decision

Track

Local Map

- Local mapping is idle, or more than 20 frames have passed from last keyframe insertion.
- Current frame tracks at least 50 points.
- > Current frame tracks less than 90% points than Kref.

- Background
- Introduction
- Tracking
- Local mapping
- Loop closing
- Experiments and Results

Local Mapping

• Process new keyframes and performs local BA to optimize the map points and the poses of the keyframes

Local Mapping: New Map Point Creation

- Determine new map point properties
 - Mean unit vector of all its viewing directions
 - Representative descriptor
 - Observation distance
- Search correspondences in other keyframes
 - Connected keyframes K_1 in covisibility graph
 - Neighbor keyframes K_2 to the keyframes K_1
 - Project new map points to K_1 and K_2
 - Update covisibility graph

Local Mapping: Local Bundle Adjustment

• Optimizes set of co-visible keyframes and all points in those keyframes

$$\begin{aligned} \{ \mathbf{X}^{i}, \mathbf{R}_{l}, \mathbf{t}_{l} | i \in \mathcal{P}_{L}, l \in \mathcal{K}_{L} \} &= \\ \underset{\mathbf{X}^{i}, \mathbf{R}_{l}, \mathbf{t}_{l}}{\operatorname{argmin}} \sum_{k \in \mathcal{K}_{L} \cup \mathcal{K}_{F}} \sum_{j \in \mathcal{X}_{k}} \rho\left(E(k, j)\right) \\ E(k, j) &= \left\| \mathbf{x}_{(\cdot)}^{j} - \pi_{(\cdot)} \left(\mathbf{R}_{k} \mathbf{X}^{j} + \mathbf{t}_{k} \right) \right\|_{\Sigma}^{2} \end{aligned}$$

where K_L are set of co-visible keyframes, P_L are all points in those keyframes and K_F are other keyframes not in K_L observing points in P_L

- Background
- Introduction
- Tracking
- Local mapping
- Loop closing
- Experiments and Results

Loop Closing

Loop closing is the act of correctly asserting that a vehicle has returned to a previously visited location

Why close loops?

- Previously visited location gets remapped in wrong global location
- Error accumulates out-of-bound
- Incorrect loop detection is even more harder to recover.

- Background
- Introduction
- Tracking
- Local mapping
- Loop closing
- Experiments and Results

Experiments and Results

	ORB-SLAM2 (Stereo)			Stereo LSD-SLAM		
Error	t_{rel}	r_{rel}	t_{abs}	t_{rel}	r_{abs}	t_{abs}
(Units)	(%)	(deg/100m)	(m)	(%)	(deg/100m)	(m)
00	0.70	0.25	1.3	0.63	0.26	1.0
01	1.39	0.21	10.4	2.36	0.36	9.0
02	0.76	0.23	5.7	0.79	0.23	2.6
03	0.71	0.18	0.6	1.01	0.28	1.2
04	0.48	0.13	0.2	0.38	0.31	0.2
05	0.40	0.16	0.8	0.64	0.18	1.5
06	0.51	0.15	0.8	0.71	0.18	1.3
07	0.50	0.28	0.5	0.56	0.29	0.5
08	1.05	0.32	3.6	1.11	0.31	3.9
09	0.87	0.27	3.2	1.14	0.25	5.6
10	0.60	0.27	1.0	0.72	0.33	1.5

KITTI dataset

 Comparison with previously most successful open source stereo SLAM--LSD SLAM

