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Abstract: We simulate the early dynamics of enhanced light transmission
through a subwavelength metallic slit and find that the amplitude of the
transmitted light can be modulated. To understand this novel phenomenon
and underlying physics, we develop a new analytical model. The field of
each light period is considered as an individual unit. Each field is partially
transmitted through the slit as the first subunit. The portion reflected from
the exit interface travels a round trip in the slit and then partially exits
again as the second subunit. There may be a gap in time between these
two subunits. This process repeats so as to produce a subunit train, which
is verified by the simulation of an incident sinusoidal pulse of one light
period. When the wave units are continuous, the superposition of the trains
produces the observed light. While the round-trip time is an integer multiple
of the light period, the modulation period is the same. Besides academic
importance, this study may be applicable to photonics with short laser
pulses.

© 2015 Optical Society of America

OCIS codes: (050.6624) Subwavelength structures; (050.2230) Fabry-Perot; (260.3160) Inter-
ference; (320.2250) Femtosecond phenomena.

References and links
1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through

sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
2. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nature

Photon. 3, 55–58 (2009).
3. W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using

plasmonic dipole antennas,” Nano Lett. 10, 1006–1011 (2010).
4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic

nanosensors,” Nature Mater. 7, 442–453 (2008).
5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
6. L. Novotny and N. van Hulst, “Antennas for light,” Nature Photon. 5, 83–90 (2011).
7. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and

spectral imaging,” Nat. Commun. 1, 59 (2010).
8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martı́n-Moreno, F. J. Garcı́a-Vidal, and T. W. Ebbesen,

“Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
9. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwave-

length aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500 (2003).
10. K. R. Chen, “Focusing of light beyond the diffraction limit of half the wavelength,” Opt. Lett. 35, 3763–3765

(2010).

#234872 - $15.00 USD Received 17 Feb 2015; revised 27 Mar 2015; accepted 31 Mar 2015; published 9 Apr 2015 
(C) 2015 OSA 20 Apr 2015 | Vol. 23, No. 8 | DOI:10.1364/OE.23.009901 | OPTICS EXPRESS 9901 



11. K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H.
Hwung, and A. Y. G. Fuh, “Beyond-limit light focusing in the intermediate zone,” Opt. Lett. 36, 4497–4499
(2011).

12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830
(2003).

13. P. Lalanne and J. P. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nature
Phys. 2, 551–556 (2006).

14. J. B. Pendry, L. Martı́n-Moreno, and F. J. Garcı́a-Vidal, “Mimicking surface plasmons with structured surfaces,”
Science 305, 847–848 (2004).

15. F. L. Neerhoff and G. Mur, “Diffraction of a plane electromagnetic wave by a slit in a thick screen placed between
two different media,” Appl. Sci. Res. 28, 73–88 (1973).

16. E. Betzig, A. Harootunian, A. Lewis, and M. Isaacson, “Near-field diffraction by a slit - implications for super-
resolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).

17. R. F. Harrington and D. T. Auckland, “Electromagnetic transmission through narrow slots in thick conducting
screens,” IEEE Trans. Antennas Propag. AP-28, 616–622 (1980).

18. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the
wavelength,” Opt. Commun. 175, 265–273 (2000).

19. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603
(2001).

20. J. Bravo-Abad, L. Martı́n-Moreno, and F. J. Garcı́a-Vidal, “Transmission properties of a single metallic slit: From
the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004).

21. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73, 153405
(2006).

22. M. Mechler, O. Samek, and S. V. Kukhlevsky, “Enhanced transmission and reflection of few-cycle pulses by a
single slit,” Phys. Rev. Lett. 98, 163901 (2007).

23. S. V. Kukhlevsky, M. Mechler, L. Csapo, and K. Janssens, “Near-field diffraction of fs and sub-fs pulses: super
resolution of nsom in space and time,” Phys. Lett. A 319, 439–447 (2003).

24. J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,”
IEEE Trans. Nanotechnol. 7, 229–236 (2008).

25. X. Wang, X. G. Zhang, Q. Yu, and B. N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Phys.
Rev. B 47, 4161–4167 (1993).

26. K. Y. Kim, Y. K. Cho, H.-S. Tae, and J.-H. Lee, “Light transmission along dispersive plasmonic gap and its
subwavelength guidance characteristics,” Opt. Express 14, 320–330 (2006).

1. Introduction

The extraordinary optical transmission (EOT) through a subwavelength hole array in a metal-
lic film [1] is a fundamental scientific topic in wave mechanics and inspires researchers in the
area of plasmonics to explore the possibility of applications on optical devices, such as ultrafast
active plasmonics [2], particle trapping [3], bio-sensing [4], plasmonic solar cells [5], optical
antennas [6], color filters [7], and light shape manipulation [8–11], etc. A single subwavelength
slit is the simplest configuration to understand the fundamental mechanism and its related opti-
cal properties. For simplicity, the metal can be considered as a perfect electric conductor (PEC)
for the investigation of interesting transmission phenomena. Although PEC does not support
surface plasmons (SPs) [12, 13], the wave-SP-like interaction can still be studied with struc-
tured PEC because of the so-called ”spoof SPs” [14].

In the last few decades, extensive theoretical works have been carried out for understanding
the steady light transmission through this kind of configuration. For instance, Neerhoff and
Mur [15] introduced the Green’s theorem for the calculation of light transmission through a slit
with the width larger than the incident wavelength; Betzig et al. [16] confirmed its accuracy
when the slit is of subwavelength scale. Harrington and Auckland [17] proposed an equivalent
transmission line model for this problem. Both theories predict the transmitted light intensity
varying periodically with the film thickness. In fact, the slit can be considered as an open cavity
to allow a Fabry-Pérot-like resonance resultant from the reflected waves traveling back and forth
in the slit [18]. The resonance has also been theoretically investigated by a mode expansion
method [19, 20], as well as the phase shift of the reflection inside the slit [21].
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Mechler et al. [22] analyzed the transmission of Gaussian pulses with only a few light periods
and pointed out that there are three regimes of resonant excitation according to their temporal
pulse widths. In fact, the time-dependent analysis was obtained by the inverse Fourier transform
from the solution of Neerhoff and Mur at each frequency, i.e., solving the phasor of the time-
harmonic electric and magnetic fields from Maxwell’s equations [23].

In this article, periodical variation of the transmitted energy as a function of thickness and
transmission spectra due to Fabry-Pérot-like resonance for a subwavelength slit are demon-
strated from monochromatic sources or a sinusoidal pulse of one light period in a finite-
difference time-domain (FDTD) simulation system. With a monochromatic light, we find that
the transmitted electric field through the configuration can be monotonically increased at the
early stage. In fact, the increment is periodically modulated before the amplitude is saturated.
The saturation time increases with the film thickness and requires at least four wave periods
of the light wave, which is comparable to the time scale of a femtosecond (fs) laser pulse.
We propose a new analytical model in which the wave field generated in each light period is
considered as an individual unit. Each wave unit can produce a train of subunits due to partial
reflections within the slit at its entrance and exit interfaces as well as the propagation in be-
tween. The repeating process is verified by the sinusoidal pulse illumination. The superposition
of the wave units at the observation location yields the wave fields that agree well with the
simulation results. This model illuminates the underlying new physics.

In section 2, we show the Fabry-Pérot-like resonance for the configuration and the simulation
results for the increment and the modulation of the electric fields. Section 3 gives the novel
analytical model. We obtain the parameters needed by the model from the FDTD simulation in
section 4. In section 5, the modeling results are compared with those of the simulation. Section
6 is the discussions on the numerical issues and the implication of our model for ultrashort
applications. Section 7 is the summary.

2. The Fabry-Pérot-like resonance and modulated light transmission at early stage

Consider a subwavelength slit perforated in a PEC film, as shown in Fig. 1. The slit width 2s is
40 nm and the film thickness h will vary. A p-polarized wave source of wavelength λ0 = 560
nm is located at a distance of one wavelength away (d = λ0) to illuminate the film. The light
period is T = λ0/c0 = 1.87 fs, where c0 is the light speed in vacuum.
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Fig. 1. Schematic of the simulated structure. A p-polarized wave with its wavelength of
λ0 = 560 nm is generated at a distance of one λ0 away from the top of the PEC. The slit
width 2s is 40 nm while the film thickness h will vary. In the model, the space is divided
into three areas of a, b, and c.

In the FDTD simulation, the cell size of both directions is 5 nm, and the time-step is 0.005T .
Perfectly matched layers (PMLs) are used as the boundary condition. The PEC is simulated
by the Drude model with a sufficiently high plasma frequency ωp (= 1.0× 1030 Hz) and the
damping coefficient set to be zero.

The time dependence of the source is given as sin(ω0t) at y = h+ d, where ω0 is the an-
gular frequency. Hence, the electric field of the incident plane wave is in the x-direction and
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taken as the imaginary part of the complex electric field, i.e., ei
x(x,y, t) = Im{E0ei(k0y′+ω0t)}=

E0 sin(k0y′+ω0t), where y′ = y− (h+d) , k0 is the wave number in vacuum, and E0 is the am-
plitude normalized to unity. The magnetic field in the z-direction is hi

z(x,y, t) = ei
x(x,y, t)/η0,

where η0 is the impedance of vacuum, which is also normalized to unity.
When the incident wave propagates to the film, it will be transmitted through the slit and

diffracted as a cylindrical wave. At an observation location (x = 0,y) far from the slit in region
c , we can define the normalized transmitted energy flux as

P(ω0) =
π|y|

sE2
0 T

∫ t f

t f−T
ex(0,y, t)hz(0,y, t)dt, (1)

where ex(0,y, t) and hz(0,y, t) are the simulated electric and magnetic fields, respectively, and
t f = 40T is the FDTD simulation time to ensure the time-harmonic oscillation of the fields; in
the definition, the transmitted energy flux is the time-averaged Ponyting vector multiplying π|y|
while the incident energy flux is 2s( 1

2 E2
0 ) = sE2

0 . Figure 2 shows the obtained P(ω0) at y=−λ0,
where h varies from 50 nm to 800 nm in a step of 5 nm. The energy flux varies periodically
because of Fabry-Pérot-like resonance [19, 20]. At optimized transmission, the corresponding
film thicknesses h’s are 205 nm, 470 nm, and 730 nm, and the obtained energy fluxes are 4.28,
4.26, and 4.28, respectively.
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Fig. 2. Normalized energy flux as a function of the film thickness h (a), and as a function
of wavelength when h = 205 nm (b), 470 nm (c), and 730 nm (d), respectively, where the
blue solid curve is from the sinusoidal pulse of one light period, and the red dots are from
the monochromatic sources.

To examine the transmission spectrum for the three optimized film thicknesses, we use a
sinusoidal wave field of one light period as the incident pulse:

ei
x(x,y, t) = rect(

t−0.5T
T

)E0 sin(k0y′+ω0t), (2)

where rect is the rectangular function. The normalized transmitted energy flux can be defined
as

P(ω) =
π|y|
2s

Re{[Ex(0,y,ω)]∗Hz(0,y,ω)}
Re{[E i

x(0,y,ω)]∗H i
z(0,y,ω)}

, (3)
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where the Fourier transform
F(ω) =

∫ t f

0
f (t)exp−iωt dt (4)

is used for the simulated and incident fields. The obtained energy flux P(ω) as a function of
wavelength λ is shown in Fig. 2(b), 2(c), and 2(d) for h = 205 nm, 470 nm, and 730 nm,
respectively. The wavelengths yielded at corresponding peak transmission are 569 nm, 564
nm, and 560 nm, respectively. At λ = λ0, the normalized energy fluxes are 4.28, 4.27, and
4.28, respectively, which are in good agreement with those obtained in Fig. 2(a). To verify the
spectra, we also use monochromatic sources with its wavelength λ from 400 nm to 700 nm
in a step of 10 nm to obtain the normalized energy flux. The results are shown in Fig. 2; they
coincide with those from the incident pulse.

We further show in Fig. 3 the history of the transmitted electric fields observed at the location
(0,−λ0) for the three optimized film thicknesses from the monochromatic source of wavelength
λ0. We find that when h = 205 nm, the amplitude is monotonically increased to a constant
within a few periods; when the film is thicker, the field is periodically modulated, and it takes
a longer time to saturate. For h = 470 nm and 730 nm, the modulation periods are 2T and
3T , respectively, while the amplitudes at saturation are similar. We believe that the monotonic
increment and periodical modulation in the transmitted fields result from the Fabry-Pérot-like
resonance.
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Fig. 3. The history of the electric fields at (0,−λ0) from the simulation (solid blue curve)
and the modeling result of M = 20 and N = 10 (dashed red curve), where h = 205 nm (a),
470 nm (b), and 730 nm (c), respectively.

3. Analytical model based on Fabry-Pérot-like resonance

Despite the fact that it is a continuous wave source, we discretize the wave field generated in
each light period as an individual unit. The electric field in the x-direction of the m’th wave unit
at the source location (x,h+d) is given as

em
x (t) = E0rect(

t− tm
T

)sin(ω0t), (5)

where m is a positive integer, and tm = (2m−1)T/2 is the middle time of the m’th unit.
Each wave unit propagates to the film surface in the time of d/c0 after generated. It is partially

transmitted through the slit entrance interface. The unit peak is delayed and amplified due to the
accumulation of the surface charges to draw adjacent energy into the slit as the so-called funnel
effect [18, 24]. When the transmission coefficient is τab, the time-delay and the amplification
ratio are [arg(τab)/(2π)]T and |τab|, respectively. The transmitted unit propagates to the slit
exit in the time of (h/λs)T , where λs = 0.94λ0 is the wavelength in the slit measured from
our FDTD simulation (the wavelength shift will be discussed later). Then, it will be partially
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transmitted out through the exit interface as the first subunit, n = 1, where n is the index of
subunit. The charge accumulation at the exit surface delays the peak by [arg(τbc)/(2π)]T and
amplifies the subunit by a ratio of |τbc|, where τbc is the transmission coefficient at the exit.
After exiting the slit, the subunit diffracts as a cylindrical wave in the area c and reaches the
observation location (0,y) in the time of |y|/c0. Thus, the middle time for the n = 1 subunit
to propagate from the source location to the observation location is tm1 = tm + d/c0 + ts +
|y|/c0, and its amplitude is Em1(y) = α(y)E0|τabτbc|, where ts = [arg(τab)/(2π)]T +(h/λs)T +
[arg(τbc)/(2π)]T and α(y) is the decay coefficient of the field due to diffraction.

Besides exiting from the slit, the unit is partially reflected at the exit interface and trav-
els back. Then, it is reflected at the entrance interface and propagates toward the exit again.
The corresponding time-delay and amplitude decay due to reflection are [arg(ρabc)/(2π)]T and
|ρabc|, respectively, where ρabc is the coefficient of the two reflections. The time of the round
trip is estimated as trt = (2h/λs)T +[arg(ρabc)/(2π)]T . Then, the unit will be partially trans-
mitted through the exit interface as the second subunit (i.e., n = 2) and partially reflected again
at the exit interface. The middle time for the n = 2 subunit to arrive at the observation location
is thus tm2 = tm + d/c0 + ts + trt + |y|/c0, and the amplitude is Em2(y) = α(y)E0|τabρabcτbc|.
This process repeats when the wave unit delivers more subunits, which is similar to what is
considered in the Fabry-Pérot-like resonance [18, 19].

The middle time of the n’th subunit to arrive at the observation location is

tmn = tm +d/c0 + ts +(n−1)trt + |y|/c0, (6)

while the amplitude is
Emn(y) = α(y)E0|τabρ

n−1
abc τbc|. (7)

We assume that the field of the subunit maintains the ideal sinusoidal shape of one light period.
Thus, the electric field of the n’th subunit of the m’th wave unit is given as

emn
x (y, t) = rect(

t− tmn

T
)Emn(y)sin[ω0(t− tmn +T/2)]. (8)

According to the superposition principle, the field of subunits produced by each wave unit can
be summed. Therefore, the observed electric field is

ex(y, t) =
M

∑
m=1

N

∑
n=1

emn
x (y, t), (9)

where M (N) is the maximum number of the wave unit (subunit) included.
The decay coefficient α(y) can be obtained from the energy conservation after the wave

amplitude is saturated. The time-averaged Poynting vector in the y-direction at the location
(0,y) is

S(y) =
E2(y)
|Z(y)|

1
T

∫ t f

t f−T
sin(ω0t)sin{ω0t− arg[Z(y)]}dt, (10)

where E(y) is the amplitude of the observed field in Eq. (9), and Z(y) is the complex
impedance. The energy flux propagating through the slit should be equal to that through the
semi-circumference π|y| at y� 0. Thus, we have

2sS(0) = π|y|S(y). (11)

Therefore, the decay coefficient by the definition is

α(y)≡ E(y)
E(0)

=

√
2s

π|y|
|Z(y)|
|Z(0)|

cos{arg[Z(0)]}
cos{arg[Z(y)]}

. (12)
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Note that Eq. (12) is valid only for y� 0.
The interference between exiting wave units in our model is similar to the multiple scatte-

ring formalism [25]. However, our model is an initial value problem in time domain while the
multiple scattering is a boundary value problem in spatial domain.

4. Model parameters obtained from FDTD simulation

A slit in a film of thickness h = 10 µm is simulated to obtain the parameters needed by the
model. Figures 4(a) shows the history of the simulated electric field at the entrance center of the
slit. Because d = λ0, the phase zero of the first unit arrives at t = T . However, the observation
is made at the arriving time of the field peak (i.e., the phase π/2). Since the phase π/2 and
the peak is 0.25T after the phase zero, the peak arrives at 1.25T . With the film presented, we
observe that the arriving time of the peak is 1.31T , as listed in Table 1. Hence, the phase shift is
arg(τab) = (1.31T −1.25T )× (2π/T ) = 0.12π . The transmission time-delay remains constant
for all wave units.
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Fig. 4. The history of the simulated electric field at the centers of the entrance (a) and the
exit (b) from the simulation of h = 10 µm.

Table 1. The time of first five peaks arriving at the centers of the entrance and the exit as
well as their corresponding electric field amplitudes obtained from the simulation of h = 10
µm.

At entrance center At exit center
m t (T ) amplitude t (T ) amplitude
1 1.31 1.38 20.31 2.42
2 2.31 1.32 21.31 2.16
3 3.31 1.32 22.32 2.14
4 4.31 1.32 23.31 2.13
5 5.31 1.32 24.31 2.13

The first amplitude is larger than unity, as shown in Fig. 4. Then, the following amplitudes
are slightly decreased and remain constant. The amplitude at steady is used to calculate the
amplification ratio. As listed in Table 1, we obtain |τab|= 1.32.

Figure 4(b) shows the electric field at the exit. The first peak arrives at t = 20.31T , as listed
in Table 1. Hence, the phase shift at the exit interface is arg(τbc) = [20.31T −d/c0−(h/λs)T −
0.25T ]× (2π/T )− arg(τab)' 0.01π .

Compared with that at the entrance, the electric field is further increased at the exit. The
amplitude at steady is used to calculate the amplification ratio, i.e., |τbc|= 2.13/|τab|= 1.61.

The simulation shows that the magnetic field peak arrives 0.17T before the peak of the elec-
tric field, and the steady amplitude is 1.10 (not shown). The impedance at the exit is thus
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estimated to be Z(0) = (2.13/1.10)exp[i(−0.17)× 2π] = 1.94exp(−i0.34π). The impedance
at the observation location is Z(−λ0) = 1.01exp(−i0.06π).

The reflected wave cannot be easily separated from the incident wave because of the inter-
ference. For the case of h = 205 nm, the transmitted electric field amplitude at the early stage
is monotonically increased due to the constructive interference condition trt = T and tmn = tm′n′
if m+n = m′+n′, where m′ and n′ are positive integers. Since

trt =
2h
λs

+
arg(ρabc)

2π
= 1, (13)

we obtain arg(ρabc)' 0.44π . The peak at y = 0 yielded from Eq. (9) for M� 1 can be simpli-
fied as

ex(0, tM1−T/4) = α(0)E0|τabτbc|(1+ |ρ1
abc|+ |ρ2

abc|+ · · ·+ |ρM−1
abc |), (14)

where α(0) = 1 by the definition. The peak value obtained from the simulation is 4.12 for
M = 10 (not shown) so that |ρabc| ' 0.48.

5. Modeling results and comparison with simulation

The results yielded from Eq. (9) for the m = 1 wave unit and N = 10 are shown in Fig. 5,
where h is selected for optimizing the transmission. All their round-trip times are close to a
multiple of T . For the h = 205 nm case, ts ' 0.46T , t11 = t1 + d/c0 + ts + |y|/c0 ' 2.96T ,
t1n = t11 +(n− 1)trt , where y = −λ0 and trt = T . In this case, the end of the n = 1 subunit
coincides with the beginning of the n = 2 subunit which just finishes a round trip; but, the
amplitude of the later is decreased by the factor of |ρabc|. At the end of the n = 2 subunit, the
n = 3 subunit begins, and its amplitude is further decreased by one more factor of |ρabc|. This
repeats till it fades out, as shown in Fig. 5(a).
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Fig. 5. The history of the electric field at (0,−λ0) of the wave unit m = 1 obtained from
the model, where N = 10, h = 205 nm (trt = T ) (a), 470 nm (trt ' 2T ) (b), and 730 nm
(trt ' 3T ) (c), respectively. The grey curves show the history of the electric field from
the sinusoidal pulse of one light period, while the colored curves are from a continuous
sinusoidal wave source.

For the h = 470nm case, ts ' 0.96T , t11 ' 3.46T , and trt ' 2T because h is almost 0.5λs
thicker than 205 nm. As shown in Fig. 5(b), after the n = 1 subunit ends, there is a gap of about
one T because the n = 2 subunit is still in its round trip. Then, it arrives with the middle time
t12 ' 5.46T . The n = 3 subunit arrives with the middle time t13 ' 7.46T . This also repeats till
the field fades out. For the h = 730 nm case, ts, t11, and trt are further increased approximately
to 1.46T , 3.96T , and 3T , respectively, while the gap width is about 2T , as shown in Fig. 5(c).
In these two later cases, the fading time is longer than the first case of h = 205 nm. The history
of the simulated electric fields from the sinusoidal pulse of one light period passing through
these films are shown in Fig. 5. The simulation results (e.g., the repeating subunits) generally
agree with those from the modeling.
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For a continuous source, the (m+ 1)’th wave unit is one T later than the m’th unit, and so
are their subunits. The observed electric field is from the superposition of all units. For all these
cases, the n = 1 subunit of the m = 1 unit is the first and only one that arrives at the observation
location, as shown in Fig. 3. For the h = 205 nm case shown in Fig. 3(a), t21 = t12 because
trt = T . The second arriving period of the observed field is from the in-phase interference
between the m = 2, n = 1 subunit and the m = 1, n = 2 subunit. The amplitude is thus increased
by |ρabc|. Then, the m = 3, n = 1 subunit arrives at the next period, i.e., t31 = t22 = t13. Since
the amplitudes of the subunit of the m = 2 and m = 1 units have decayed by |ρabc| and |ρabc|2,
respectively, the observed field amplitude has been increased by |ρabc|+ |ρabc|2. The in-phase
interference continues till the amplitude saturates.

For the h = 470 nm (i.e., trt ' 2T ) case shown in Fig. 3(b), the m = 2, n = 1 subunit with
the same amplitude as the m = 1,n = 1 subunit fills the first temporal gap after the later’s end
while there is no overlapping with other subunits. This makes the first modulation period of 2T .
At the third period of the observed field, the m = 1, n = 2 subunit, the first gap of the m = 2
unit, and the m = 3, n = 1 subunit overlap; that is, t31 = t12. While, at the forth period, the
second gap of the m = 1 unit, the m = 2, n = 2 subunit, the first gap of the m = 3 unit, and the
m = 4, n = 1 subunit overlap; that is, t41 = t22. Both resultant amplitudes of the observed field
are increased by |ρabc| and has the second modulation period of 2T . The amplitude of the third
2T modulation is further increased by |ρabc|2 because t51 = t32 = t13 and t61 = t42 = t23. The
increment occurs at every 2T till the amplitude saturates. As for the h = 730 nm case whose
trt ' 3T , as shown in Fig. 3(c), the modulation period is 3T due to the similar reason. In fact,
we can further obtain the relation that tmn = tm′n′ if m+ pn = m′+ pn′, where p is the number of
wave period in one round trip and also the resultant modulation period, e.g., p = 1 for h = 205
nm, p = 2 for h = 470 nm, and so on. The modeling results agree well with the corresponding
FDTD simulation results, as shown in Fig. 3.

6. Discussion

The wavelength in the slit λs shifted from λ0 is a numerical issue in FDTD simulation. In our
case, λs = 0.94λ0, 0.97λ0, and 0.98λ0 when the cell sizes are 5 nm, 2.5 nm, and 1.25 nm,
respectively. The difference (λ0−λs) is much greater than the cell size resolution. Although it
could vanish if the cell size approached to zero, the wavelength shift is inevitable since the cell
size is always finite. We are currently developing a new numerical scheme; but, this is beyond
the scope of this article. Nevertheless, this wavelength shift does not affect the physical issues
of concern here because the resultant shifts of all relevant quantities (e.g., v, h, t−1

s , or t−1
rt ) in

the model are linearly dependent on λs so that their effects are canceled.
We have shown that the modeling results from the m = 1 wave unit generally agree with

those from the simulation of the single sinusoidal pulse in Fig. 5. Therefore, this study could
be applied to the photonics of ultrashort pulse lasers. Suppose that the temporal full-width at
half-maximum of its intensity is defined as ∆t. When ∆t ≥ trt , the subunits partially overlap so
that the temporal width of the observed field is effectively increased to be larger than that of the
incident pulse [22]. When ∆t is short enough (e.g., ∆t� trt ), the whole pulse could be seen as
a wave unit, and the subunits can barely interfere with each other. Therefore, the observed field
will be a train of pulses with decaying amplitude, as implied in Fig. 5.

In structured PEC, spoof SPs could lead to wave dispersion [14]. For a real metal, SPs can be
excited, and the plasmonic effect including both structural parameters and frequency-dependent
dielectric functions can disperse the wave [26]. However, since similar Fabry-Pérot-like reso-
nance exists in the case of real metal [18], we believe that the key physics revealed by our
modeling should still be valid.
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7. Summary

In summary, we have verified Fabry-Pérot-like resonance for the single slit configuration by
demonstrating the periodical variation of the transmitted energy as a function of thickness and
transmission spectra with the monochromatic or pulse sources. A new analytical model was
proposed to study the modulated light transmission through a subwavelength slit at early stage,
as obtained by our FDTD simulation. Each wave unit in the model produces a train of subunits
with decaying amplitudes. The temporal gap between the subunits depends on the round-trip
time of the wave traveling in the slit, which are verified by the simulation of the incident si-
nusoidal pulse. When the wave units are continuous, the observed field amplitude of the trans-
mitted light is monotonically increased till saturation while the round-trip time is equal to one
light period as determined by the film thickness. When the round-trip time is a multiple of one
light period, the temporal gap is filled by the following wave unit(s) to form the modulation.
The modulation period is equal to the round-trip time while the gap time is one light period
less. The modeling results agree well with those obtained from the FDTD simulation. The re-
sultant shifts of all relevant quantities in the model due to the wavelength shift does not affect
the physical issues of concern here. Possible applications for those with pulsed laser and the
plasmonic effect are discussed.
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