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Abstract: Neural structures of interaction between thinking and language are unknown. This paper suggests a possible 
architecture motivated by neural and mathematical considerations. A mathematical requirement of computability imposes 
significant constraints on possible architectures consistent with brain neural structure and with a wealth of psychological 
knowledge. How language interacts with cognition. Do we think with words, or is thinking independent from language 
with words being just labels for decisions? Why is language learned by the age of 5 or 7, but acquisition of knowledge 
represented by learning to use this language knowledge takes a lifetime? This paper discusses hierarchical aspects of 
language and thought and argues that high level abstract thinking is impossible without language. We discuss a 
mathematical technique that can model the joint language-thought architecture, while overcoming previously encountered 
difficulties of computability. This architecture explains a contradiction between human ability for rational thoughtful 
decisions and irrationality of human thinking revealed by Tversky and Kahneman; a crucial role in this contradiction 
might be played by language. The proposed model resolves long-standing issues: how the brain learns correct words-
object associations; why animals do not talk and think like people. We propose the role played by language emotionality 
in its interaction with thought. We relate the mathematical model to Humboldt’s “firmness” of languages; and discuss 
possible influence of language grammar on its emotionality. Psychological and brain imaging experiments related to the 
proposed model are discussed. Future theoretical and experimental research is outlined. 
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LANGUAGE AND THOUGHT 

 Language and thought are so closely related that it is 
difficult to imagine what one without the other would be. 
Scientific progress beginning in the 1950s toward 
understanding of language was based on Chomsky’s idea [1] 
that language is independent of thought. It explained several 
mysteries about language, e.g. why learning language takes 
few years, but learning to think takes a lifetime. Yet 
Chomskyan linguistics did not result in a mathematical 
theory. Many linguists rejected the idea of complete 
separation between language and cognition in Chomsky’s 
theories. Decades of effort by cognitive linguists and 
evolutionary linguists did not, however, lead to a 
mathematical theory unifying language and thought [2-6]. 
Evolutionary linguistics considered the process in which 
language is transferred from one generation to the next one. 
[7-9]. This transferring process was demonstrated to be a 
“bottleneck,” a process-mechanism that selected or “formed” 
compositional properties of language. Evolu-tionary 
linguistic approach demonstrated mathematically that indeed 
this bottleneck leads to compositional property of language. 
Under certain conditions a small number of sounds 
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(phonemes, letters) are aggregated into a large number of 
words. Brighton et al. [10] demonstrated emergence of a 
compositional language due to this bottleneck mechanism. 
Yet, this development lacks in two fundamental aspects. 
First, its mathematical apparatus leads to computational 
difficulty (incomputable combinatorial complexity, CC), 
which cannot be scaled up to a realistic complexity of 
language. And second, objects of thoughts are supposed to 
be known; evolutionary linguistics has not been able so far to 
demonstrate how thoughts emerge in interaction with 
language [11]. 

 This article aims at overcoming existing difficulties. We 
investigate a hypothesis of joint emergence of language and 
thought [11-15]. Neural mechanisms integrating language 
and thoughts are not known, and we concentrate on 
combining existing knowledge about neural brain 
architecture, with plausible neural hypotheses, and with 
mathematical models capable of overcoming CC. Existing 
knowledge does not allow to predict detailed neural 
mechanisms. Our hypotheses proposes a brain architecture. 
We discuss neural mechanisms necessary for supporting the 
proposed architecture while discovering of these 
mechanisms remains a challenge for future research. Our 
hypothesis of joint emergence of language and thought in 
mutual interaction relates to a growth of an individual as 
well as emergence of language and thought in cultural 
evolution. Perception of objects does not require language. 
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This ability exists in animals lacking human language. Yet, 
abstract thoughts cannot emerge without language. The 
reason is that learning requires grounding, as it was 
recognized by the field of artificial intelligence a while ago. 
Learning without grounding could easily go wrong causing 
learned or invented representations to correspond to nothing 
real or useful [16]. The problem of grounding in learning of 
language and in cognition was discussed in [17-20]. At the 
lower levels in the hierarchy of thought learning is grounded 
in direct perception of the world. Learning is grounded in 
real objects. At higher levels, however, learning of abstract 
cognitive representations has no ground. Abstract thoughts 
are called abstract exactly for this reason, they cannot be 
directly perceived. Language acquisition by an individual, on 
the opposite, is grounded in the language, which is spoken 
around; this grounding exists at every level (sounds, words, 
syntax, phrases, etc.). There is a popular idea that abstract 
thoughts are learned as useful combinations of simpler 
objects. Mathematical analysis, however, reveals that this 
idea is naïve. It is mathematically impossible to learn useful 
combinations of objects among many more useless ones, 
because the number of combinations is too large. In every 
situation there are hundreds of objects, most of which are not 
relevant to this particular situation, and we learn to ignore 
them. Combinations of just 100 objects are 100100, an 
astronomical number exceeding all elementary interactions 
in the Universe in its entire lifetime. So, how is this learning 
possible? Learning which combinations are useful and which 
are useless is not possible during an individual lifetime. We 
propose a hypothesis that learning abstract ideas is only 
possible due to language, which accumulates millennial 
cultural wisdom. The speed of accumulation of knowledge in 
cultural evolution, likely, is combinatorially fast [21], so one 
CC cancels the other, which makes language emergence 
mathematically possible in cultural evolution. Individual 
language learning, as discussed, is grounded in surrounding 
language. We learn words, phrases, and general abstract 
ideas ready-made from surrounding language. Mathematical 
models of this process are considered in the following 
sections. 

 Thought as well as language has a hierarchical structure, 
illustrated in a simplified way in Fig. (1). This hierarchy is 
not strict, feedbacks among multiple levels play important 
role in language and thinking mechanisms. The fundamental 
aspect of these mechanisms is an interaction of bottom-up 
and top-down signals between adjacent levels, also called 
afferent and efferent signals [22]. Consider first thought and 
language processes separately. At every level, neural 
representations of concept-ideas, or internal mind models in 
mathematical language, project top-down signals to a lower 
level. Thinking or recognition processes consist in matching 
top-down signals to patterns in bottom-up signals coming 
from the lower level. A successful match results in 
recognition of an object, a situation, or emergence of a 
thought. The corresponding model is excited and sends a 
neural signal up the hierarchy; this is a source of bottom-up 
signals. At the very bottom of the hierarchy the source of 
bottom-up signals are sensory organs. 

 The following sections consider interacting bottom-up 
and top-down signals and a biological drive for this process. 
Then we consider mathematical models of these interactions, 

followed by models of interaction between thought and 
language.  

 
 
Fig. (1). Parallel hierarchies of thought and language. 

THE KNOWLEDGE INSTINCT 

 Matching bottom-up and top-down signals, as mentioned, 
constitutes the essence of perception and cognition 
processes. Models stored in memory as representations of 
past experiences never exactly match current objects and 
situations. Therefore thinking and even simple perception 
always require modifying existing models; otherwise an 
organism will not be able to perceive the surroundings and 
will not be able to survive. Therefore humans and higher 
animals have an inborn drive to fit top-down and bottom-up 
signals. We call this mechanism the knowledge instinct, KI 
[13,23-25]. This mechanism is similar to other instincts [13, 
26]) in that our mind has a sensor-like mechanism that 
measures a similarity between top-down and bottom-up 
signals, between concept-models and sensory percepts. Brain 
areas participating in the knowledge instinct were discussed 
in [27]. As discussed in that publication, biologists 
considered similar mechanisms since the 1950s; without a 
mathematical formulation, however, its fundamental role in 
cognition was difficult to discern. All learning algorithms 
have some models of this instinct, maximizing 
correspondence between sensory input and an algorithm 
internal structure (knowledge in a wide sense). According to 
[26] instinct-emotion theory, satisfaction or dissatisfaction of 
every instinct is communicated to other brain areas by 
emotional neural signals. We feel these emotional signals as 
harmony or disharmony between our knowledge-models and 
the world. At lower levels of everyday object recognition 
these emotions are usually below the threshold of 
consciousness; at higher levels of abstract and general 
concepts this feeling of harmony or disharmony could be 
strong, as discussed in [13,28] it is a foundation of human 
higher mental abilities.  

 Mathematical models of matching bottom-up and top-
down signals have been developed for decades. This 
development met with mathematical difficulty of CC. This 
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CC is related to the fact that in every concrete situation 
objects are encountered in different color, angle, lighting…, 
but in addition, objects are encountered in different 
combinations. As discussed, every situation is a collection of 
many objects. Most of them are irrelevant to recognition of 
this situation and separating relevant from irrelevant objects 
leads to CC. The same is true about language. Every phrase 
is a collection of words, and only some of these words are 
essential for understanding the phrase. This problem is even 
more complex for understanding paragraphs or larger chunks 
of texts. Learning language also requires overcoming CC. 
Mathematically, CC is related to formal logic, which turned 
out to be used by most mathematical procedures, even by 
those specifically designed to overcome logic limitations, 
such as neural networks and fuzzy logic [25,29-31,64]. The 
mathematics capable of overcoming CC, dynamic logic 
(DL), which models the process of satisfaction of KI, while 
overcoming CC has been developed in [13,23-25,32-34]. In 
several cases it was mathematically proved that DL achieves 
the best possible performance [35-38]. The next section 
describes extension of DL applicable to the hierarchical 
architectures. Here we discuss DL conceptually. 

 The fundamental property of DL, which enables it to 
overcome CC, is a process “from vague-to-crisp” [25, 
30,31]. In this process vague representations-models evolve 
into crisp ones, matching patterns in bottom-up signals 
without CC. The DL process mathematically models actual 
neural processes in the brain. This can be illustrated, based 
on current knowledge of the brain neural architecture, with a 
simple experiment. Just close your eyes and imagine an 
object in front of you. The imagined object is vague-fuzzy, 
not as crisp as a perception with opened eyes. We know that 
this imagination is a top-down projection of models-
representations onto the visual cortex. This demonstrates that 
models-representations are vague, similar to models in the 
initial state of the DL process. When you open your eyes, 
these vague models interact with bottom-up signals projected 
onto the visual cortex from retinas. In this interaction vague 
models turn into crisp perceptions as in the DL process. 
Note, that with opened eyes it is virtually impossible to 
recollect vague images perceived with closed eyes; during 
usual perception with opened eyes, we are unconscious 
about the DL-process from vague to crisp. It is our 
hypothesis that vague representations are virtually 
inaccessible to consciousness; this hypothesis is similar to 
Grossberg’s [22] suggestion that only representations 
matching bottom-up signals in the state of resonance are 
accessible to consciousness. 

 Similar experiments were conducted in much more 
details using neuro-imaging technology [39]. They 
confirmed that the initial state of representations is vague. 
The process from vague-to-crisp, in which vague models 
match patterns in retinal signals takes about 160 ms. This 
process is unconscious. Only the final state of the process, a 
crisp perception of an object is conscious. Authors also 
identified brain modules participating in this perception 
process. 

 It is our hypothesis that not only perception, but all 
thought processes at all levels in the hierarchy proceed 
according to DL, the process from vague-to-crisp. These are 
processes, in which new thoughts are born, when vague 

thoughts-representations, results of previous thought 
processes, interact with current reality. These processes of 
creating new thoughts are driven by an inborn mechanism, a 
striving to match thoughts to reality. This mechanism has 
been called a need for knowledge, curiosity, cognitive 
dissonance, or KI [25,40-42]. Mathematical modeling of 
perception and thinking revealed fundamental nature of this 
instinct: all mathematical algorithms for learning have some 
variation of this process, matching bottom-up and top-down 
signals. Without matching previous models to the current 
reality we will not perceive objects, or abstract ideas, or 
make plans. This process involves learning-related emotions 
evaluating satisfaction of KI [25,26,28,43]. 

 Bar et al. [39] demonstrated neural mechanisms of DL in 
visual perception. Demonstrating neural mechanisms of DL 
for higher cognitive levels, for language, and for joint 
operations of learning and cognition is a challenge for future 
research and we hope that mathematical theory proposed in 
this paper will help identifying experimental approaches. 

 This process of creating new knowledge however is not 
the only way of decision making. Most of the time, most 
people do not use KI and do not create new knowledge 
corresponding to their circumstances. More often people rely 
on ready-made rules, heuristics, even if they only 
approximately correspond to concrete individual situations. 
This preference for rules, heuristics, instead of original 
thinking is the content of Tversky and Kahneman [44,45] 
theory that received Nobel Prize in 2002. This reliance on 
heuristics, even in cases when correct decisions are easily 
within grasp of one’s thinking, psychologists often call basic 
irrationality of human thought [27,46]. After discussing the 
DL model of combining language and thinking driven by KI, 
we discuss a possible role of language in thinking according 
to irrational heuristics.  

DYNAMIC LOGIC 

Mathematical Formulation 

 We summarize now a mathematical theory combining the 
discussed mechanisms of language and thinking as 
interaction between top-down and bottom-up signals at a 
single layer in multi-layer hierarchical system following 
[13,47,48]. Although language and cognition are not strict 
hierarchies and interactions across several hierarchical levels 
are present, for simplicity we will use the word hierarchy. 
The knowledge instinct maximizes a similarity measure L 
between top-down signals M and bottom-up signals X, 

L({X},{M}) = 
n N h H

l(n|m).           (1) 

 Here curved brackets indicate that there are sets of top-
down and bottom-up signals; l(n|m) is a shortened notation 
for l(Xn|Mm), a partial similarity of a bottom-up signal in 
pixel n given that it originated from model h. Similarity L 
accounts for all combinations of signals n coming from any 
model m, hence the huge number of items MN in eq.(1); this 
is a basic reason for CC of most algorithms. Models depend 
on unknown parameter values S, Mm(S). 

 The learning instinct demands maximizing the similarity 
L over model parameters S. Dynamic logic maximizes 
similarity L while matching vagueness or fuzziness of 
similarity measures to the uncertainty of models. It starts 
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with any unknown values of parameters S and defines 
association variables f(m|n), 

f(m|n) = l(n|m) /
Mm '

 l(n|m').        (2) 

 Initially, parameter values are not known, and uncertainty 
of partial similarities is high. So the fuzziness of the 
association variables is high. In the process of learning, 
models become more accurate, and association variables 
more crisp, as the value of the similarity increases. Dynamic 
logic process always converges as proven in [25]. 

 Earlier formulations of using dynamic logic for learning 
language were considered in [49-52]. Here we consider a 
more powerful model. We consider a model of interaction 
between two adjacent levels. For concreteness, we discuss a 
child learning to recognize situations (upper level), assuming 
that objects constituting situations (lower level) are known. 
This is a simplification, in real life multiple hierarchical 
levels are learned in parallel We use this simplification for 
an ease of presentation, it is not essential for the 
mathematical method. For the hierarchical system of 
cognition or language the partial similarities are defined 
according to [48] using binomial distribution, 

l(n|m) = 
=

Do

i 1

pmi
xni(1 – pmi)

(1-xni) .        (3) 

 Here, Do is the total number of objects that the child can 
recognize; n is the index of an observed situation 
encountered by the child; m is the index of a model (of a 
state in the child’s brain); and i is the index of an object; pmi 
are model parameters, they are probabilities that object i is 
present in situation-model m; xni are data indicating presence 
(x=1) or absence (x=0) of object i in observed situation n. In 
every situation the child perceives Dp objects. This is a much 
smaller number compared to Do. Each situation is also 
characterized by the presence of Ds objects essential for this 
situation (Ds < Dp). Normally nonessential objects are 
present and Ds is therefore less than Dp. There are situations 
important for learning (Ds>0) and many clutter situations, 
composed of random collections of objects, which the child 
should learn to ignore. 

 The DL process is an iterative estimation of the model 
parameters, pmi. First it starts with all probabilities set 
randomly within a narrow range around 0.5; this corresponds 
to a vague initial state, in which all objects have 
approximately equal probabilities of belonging to any 
situation-model. The iterative DL process is defined as 
follows. Second, association variables f(m|n) are defined 
according to (2). Third, parameter values are updated 
according to ([47]) 

pmi = n N  f(m|n) xni / n ' N  f(m|n’).          (4) 

 An intuitive meaning of this equation is that probabilities 
are weighted averages of the data. Upon convergence, 
associations f(m|n) converge to 0 or 1, and probabilities for 
each situation are average values of data for this situation. 
The DL iterations are defined by repeating the second and 
third steps until convergence, which is illustrated below.  

 

Simulation Examples 

 We set the total number of objects to Do=100; the 
number of objects observed in a situation Dp = 10; in 
situations important for learning there are 5 objects 
characteristical of this situation, Ds = 5; in clutter situations, 
Ds = 0. There are total of 10 important situations, each is 
simulated 25 times; in each simulation Ds = 5 characteristic 
objects are repeated and the other 5 selected randomly. This 
yields total of 250 situations. We also generated 250 clutter 
situations, in which all objects are randomly selected. This 
data is illustrated in Fig. (2). The objects present in a 
situation (x=1) are shown in white and absent, x=0, are 
shown in black. In this figure objects are along the vertical 
axes and situations are along the horizontal axes; situations 
are sorted, so that the same situations are repeated. This 
results in horizontal white lines for characteristic objects for 
the first 10 situations. 

 
Fig. (2). The objects present in a situation (x=1) are shown in white 
and absent objects (x=0) are shown in black. In this figure objects 
are along the vertical axes and situations are along the horizontal 
axes; situations are sorted, so that the same situations are repeated. 
This results in horizontal white lines for characteristic objects for 
the first 10 situations (each repeated 25 times). 

 
 In real life situations are not encountered sorted. A more 
realistic situation is shown in Fig. (3), in which the same 
data are shown with situations occurring randomly. 

 
Fig. (3). Same data as in Fig. (2, with situations occurring randomly). 

 
 The DL iterations are initiated as described in the 
previous section. The number of model is unknown and was 
set arbitrarily to 20. It is possible to modify DL iterations so 
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that situations are initiated as needed but it would be difficult 
to present such results in the paper. Even so the total number 
of models was set incorrectly, DL converged fast, with 10 
models converging to the important models and the rest 
converging to clutter models. The convergence results are 
shown in Fig. (4), illustrating the initial vague models and 
their changes at iterations 1, 2, and 10. 

 
Fig. (4). The convergence results are shown in 5 columns; the first 
one illustrates the initial vague models and the following show 
model changes at iterations it = 1, 2, and 10. Each column here 
illustrates all 20 models, along the horizontal axes, and objects are 
shown along the vertical axes as in previous figures. The last 
column (10*) shows iteration 10 sorted along the horizontal axes, 
so that the 10 models most similar to the true ones are shown first. 
One can see that the left part of the figure contains models with 
bright pixels (characteristic objects) and the right part of the figure 
is dark (clutter models). 

 
 Each column here illustrates all 20 models, along the 
horizontal axes, and objects are shown along the vertical 
axes as in previous figures. The last column (10*) shows 
iteration 10 resorted along the horizontal axes, so that the 10 
models most similar to the true ones are shown first. One can 
see that the left part of the figure contains models with bright 
pixels (characteristic objects) and the right part of the figure 
is dark (clutter models). In the next section we illustrate this 
fast convergence numerically, along with studying the 
language effect. 

Effect of Language 

 In the above simulations, if objects are substituted with 
words and situations with phrases, the result will be learning 
which phrases are typical in this language. Also, we did not 
consider relations among objects specifically; nevertheless 
our DL formalization does not exclude relations from a list 
of objects. A complete consideration in future will include 
relations and markers, indicating which objects and in which 
way are related; these relations, markers and their learning 
are not different mathematically from objects. In case of 
language, relations and markers would address syntax. 

 The next step would be joint learning of language and 
cognition, and demonstrating that such learning is more 
powerful than cognitive learning alone. A step toward joint 
language and cognition learning could be to repeat the above 
learning cases in a cross-situational learning; that is when 
phrases corresponding to situations are presented along with 
multiple situations, as in real life, so that correspondences 

among words-phrases and objects-situations are uncertain 
and have to be learned. This project will be presented in the 
following publication. Here we study a first step toward this 
goal of combining language and cognition. When presenting 
situations for learning, one of the important situations 
(among 25 repetitions) is presented with a word-label for this 
situation. As expected, this leads to better learning illustrated 
in Fig. (5). In this figure lines with black dots illustrate 
performance of the case considered in the previous section 
without language effects. Convergence is measured using the 
total similarity between the data and models (lower part of 
the figure) and using errors between the model probability 
and data (the upper part of the figure; for every situation the 
best matching model is selected). Lines with open circle 
indicate performance with language supervision: for each 
situation, 1 of the 25 simulations came with a word-label, so 
that important situations were easier to separate from one 
another and from random clutter situations. 

JOINT LANGUAGE AND THOUGHT 

 DL described in the previous section has overcome CC of 
learning situations and phrases. The simulation examples 
illustrated fast convergence. However the problem of joint 
learning of language and though was not addressed. This 
would require architecture capable of learning two parallel 
hierarchies of Fig. (1) for two cases, first, individual learning 
from surrounding language, and second, emergence of 
language and thought in cultural evolution.  

 We propose a hypothesis that integration of language and 
cognition is accomplished by a dual model. Every model in 
the human brain is not separately cognitive or linguistic, and 
still cognitive and linguistic contents are separate to a 
significant extent. Every concept-model M

m 
has two parts, 

linguistic ML
m

 and cognitive M
C

m
: 

M
m

 = { M
C

m
 , ML

m
 };         (5) 

 

 

 

 

 

 

 

 

Fig. (5). Lines with black dots illustrate performance of the case 
considered in the previous section without language effects. 
Convergence is measured using the total similarity between the data 
and models (lower part of the figure) and using errors between the 
model probability and data (the upper part of the figure; for every 
situation the best matching model is selected). Lines with open 
circle indicate performance with language supervision. In each case 
convergence is attained within few iterations, and language 
supervision improved performance, as expected. 
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 This dual-model equation suggests that connection 
between language and cognitive models is inborn. In a 
newborn mind both types of models are vague mostly empty 
placeholders for future cognitive and language contents. An 
image, say of a chair, and sound “chair” do not exist in a 
newborn mind. Mathematically this corresponds to 
probabilities, pC

mi and pL
mi, being near 0.5, so that every 

visual or hearing perception has a probability of belonging to 
every concept (object, situation, etc.). But the neural 
connections between the two types of models are inborn; the 
brain does not have to learn which concrete word goes with 
which concrete object. Future simulations would 
demonstrate that as models acquire specific contents in the 
process of growing up and learning, linguistic and cognitive 
contents are always staying properly connected. While 
babies learn language models at the level of objects or 
situations, the corresponding models become crisper and less 
vague (the corresponding probabilities, pC

mi and pL
mi, 

become closer to 0 or 1).  

 Language models become less vague and more specific 
much faster than the corresponding cognitive models for the 
reason that they are acquired ready-made from surrounding 
language. This is especially true about contents of abstract 
models, which cannot be directly perceived by the senses, 
such as “law,” “abstractness,” “rationality.” This explains 
how it is possible that kids by the age of five can talk about 
most of contents of the surrounding culture but cannot 
function like adults: language models are acquired ready-
made from the surrounding language, but cognitive models 
remain vague and gradually acquire concrete contents 
throughout life. According to the dual-model hypothesis, this 
is an important aspect of the mechanism of what is 
colloquially called “acquiring experience.” It would be 
important in future research first, to identify detailed neural 
mechanisms of models, second, the neural mechanism of 
connections between language and cognitive models, and 
third, to correlate the suggested mechanism (of cognitive 
models becoming crisper) with currently known maturation 
mechanism of myelination, reaching into adulthood. Here we 
emphasize what could the reason be for significant 
differences in speeds of learning language and cognitive 
models. 

 This dual-model hypothesis also suggests that the inborn 
neural connection between cognitive brain modules and 
language brain modules (evolving over thousands or millions 
of years of evolution) is sufficient to set humans on an 
evolutionary path separating us from animal kingdom. 

 Human learning of cognitive models continues through 
the lifetime and is guided by language models. Here we 
would like to remind the experiment with closed eyes 
described in section 1. It is virtually impossible to remember 
imagined perceptions when eyes are opened. Similarly, 
language plays a role of eyes for abstract thoughts. On one 
hand, abstract thoughts are only possible due to language, on 
the other, language “blinds” our mind to vagueness of 
abstract thoughts. Whenever one can talk about an abstract 
topic, he (or she) might think that the thought is clear and 
conscious in his mind. But the above discussion suggests that 
we are conscious about language models of the dual 
hierarchy. Cognitive models in most cases may remain 
vague and unconscious. The higher up in the hierarchy the 

vaguer are contents of abstract thoughts, while due to 
crispness of language models we may remain convinced of 
clear conscious thoughts. 

 We suggest that basic human irrationality (which 
discovery was initiated in works of Tversky and Kahneman 
[44,45]; leading to 2002 Nobel Prize), discussed in section 1, 
originates from this dichotomy between cognition and 
language. Language is significantly crisp in the human brain, 
while cognition might be vague. Using the KI mechanisms to 
arrive at rational decisions (to make cognitive models crisp) 
requires special effort and training. Language accumulates 
millennial cultural wisdom and it might be to one’s 
advantage to rely on heuristics formulated in language. This 
suggestion is a scientific hypothesis that can be and should 
be verified experimentally. In this future verification it is 
necessary to carefully consider the role of emotions. It was 
suggested that irrational heuristic decision making vs. KI-
deliberate analysis activates amygdala stronger than the 
cortex [27]. So that emotions may play a larger role in 
irrational decision making. Two words of caution are due. 
First, emotional decision making could be perfectly rational 
[53] and not necessarily related preferentially to amygdala). 
Second, these rational emotions might be different from 
specific language emotions considered in the next section. 

LANGUAGE EMOTIONALITY, OR EMOTIONAL 
SAPIR-WHORF HYPOTHESIS 

 The knowledge instinct drives the human brain to 
develop more specific, concrete and conscious cognitive 
models by accumulating experience throughout life in 
correspondence with language models. For this process to 
remain active brains have to maintain “motivation” to do it. 
This motivation is not automatic. We suggest a hypothesis 
that there are specific emotions related to language [54]. 
Origin of language required freeing vocalization from 
uncontrolled emotional influences. Initial undifferentiated 
unity of emotional, conceptual, and behavioral-(including 
voicing) mechanisms had to separate-differentiate into 
partially independent systems. Voicing separated from 
emotional control due to a separate emotional center in 
cortex which controls larynx muscles, and which is partially 
under volitional control [55,56]. Evolution of this volitional 
emotional mechanism possibly paralleled evolution of 
language computational mechanisms. In contemporary 
languages the conceptual and emotional mechanisms are 
significantly differentiated, as compared to animal 
vocalizations. The languages evolved toward conceptual 
contents, while their emotional contents were reduced. 
Cognition, or understanding of the world, is due to 
mechanisms of concepts, which we refer to as internal 
representations or models. Barsalou calls this mechanism 
situated simulation [57]. 

 Language and voice started separating from ancient 
emotional centers possibly millions of years ago. 
Nevertheless, emotions are present in contemporary 
languages [54]. Emotionality of languages is carried in 
language sounds, what linguists call prosody or melody of 
speech. Emotions in language sounds may affect ancient 
emotional centers of the brain. This ability of human voice to 
affect us emotionally is most pronounced in songs. Songs 
and music, however, is a separate topic [58,59] not addressed 
in this paper. 
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 Everyday speech is low in emotions, unless affectivity is 
specifically intended. We may not notice emotionality of 
everyday “non-affective” speech. Nevertheless, “the right 
level” of emotionality is crucial for developing cognitive 
parts of models. If language parts of models were highly 
emotional, any discourse would immediately resort to blows 
and there would be no room for language development (as 
among primates). If language parts of models were non-
emotional at all, there would be no motivational force to 
engage into conversations, to develop cognitive models. The 
motivation for developing higher cognitive models would 
possibly be reduced. Lower cognitive models, say for object 
perception, would be developed because they are imperative 
for survival and because they can be developed 
independently from language, based on direct sensory 
perceptions, like in animals. But models of situations and 
higher cognition, as we discussed) are developed based on 
language models. As discussed later, this requires emotional 
connections between cognitive and language models.  

 Primordial fused language-cognition-emotional models, 
as discussed, have differentiated long ago. The involuntary 
connections between voice-emotion-cognition have 
dissolved with emergence of language. They have been 
replaced with habitual connections. Sounds of all languages 
have changed and, it seems, sound-emotion-meaning 
connections in languages should have severed. Nevertheless, 
if the sounds of a language change slowly, connections 
between sounds and meanings persist and consequently the 
emotion-meaning connections persist. This persistence is a 
foundation of meanings because meanings imply 
motivations. If the sounds of a language change too fast, the 
cognitive models are severed from motivations, and 
meanings disappear. If the sounds change too slowly the 
meanings are nailed emotionally to the old ways, and culture 
stagnates. 

 This statement is a controversial issue, and indeed, it may 
sound puzzling. Doesn’t culture direct language changes or 
is the language the driving force of cultural evolution? Direct 
experimental evidence is limited; it will have to be addressed 
by future research. Theoretical considerations suggest no 
neural or mathematical mechanism for culture directing 
evolution of language through generations; just the opposite, 
most of cultural contents are transmitted through language. 
Cognitive models contain cultural meanings separate from 
language [11], but transmission of cognitive models from 
generation to generation is mostly facilitated by language. 
Cultural habits and visual arts can preserve and transfer 
meanings, but they contain a minor part of cultural wisdom 
and meanings comparative to those transmitted through the 
language. Language models are major containers of cultural 
knowledge shared among individual minds and collective 
culture. 

 The arguments in the previous two paragraphs suggest 
that an important step toward understanding cultural 
evolution is to identify mechanisms determining changes of 
the language sounds. As discussed below, changes in the 
language sounds are controlled by grammar. In inflectional 
languages, affixes, endings, and other inflectional devices 
are fused with sounds of word roots. Pronunciation-sounds 
of affixes are controlled by few rules, which persist over 
thousands of words. These few rules are manifest in every 

phrase. Therefore every child learns to pronounce them 
correctly. Positions of vocal tract and mouth muscles for 
pronunciation of affixes (etc.) are fixed throughout 
population and are conserved throughout generations. 
Correspondingly, pronunciation of whole words cannot vary 
too much, and language sound changes slowly. Inflections 
therefore play a role of “tail that wags the dog” as they 
anchor language sounds and preserve meanings. This, we 
suggest is what Humboldt [66] meant by “firmness” of 
inflectional languages. When inflections disappear, this 
anchor is no more and nothing prevents the sounds of 
language to become fluid and change with every generation.  

 This has happened with English language after transition 
from Middle English to Modern English [67], most of 
inflections have disappeared and sound of the language 
started changing within each generation with this process 
continuing today. English evolved into a powerful tool of 
cognition unencumbered by excessive emotionality. English 
language spreads democracy, science, and technology 
around the world. This has been made possible by 
conceptual differentiation empowered by language, which 
overtook emotional synthesis. But the loss of synthesis has 
also lead to ambiguity of meanings and values. Current 
English language cultures face internal crises, uncertainty 
about meanings and purposes. Many people cannot cope 
with diversity of life. Future research in psycholinguistics, 
anthropology, history, historical and comparative linguistics, 
and cultural studies will examine interactions between 
languages and cultures. Initial experimental evidence 
suggests emotional differences among languages consistent 
with our hypothesis[68,69].  

 Neural mechanisms of grammar, language sound, related 
emotions-motivations, and meanings hold a key to 
connecting neural mechanisms in the individual brains to 
evolution of cultures. Studying them experimentally is a 
challenge for future research. It is not even so much a 
challenge, because experimental methodologies are at hand; 
they just should be applied to these issues, and several 
research groups pursue these experiments. 

DISCUSSION AND FUTURE DIRECTIONS  

 In this paper we developed mathematical architecture 
based on DL for joint language and cognition. This includes 
parallel hierarchies, dual model, similarity measures suitable 
for every level in the hierarchy. Algorithms used in the past 
for selecting subsets according to a criterion, had to resort to 
sorting through combinations, and faced an impenetrable 
wall of CC. The proposed mathematics of DL is a 
fundamental development overcoming this CC difficulty 
encountered for decades.  

 This development is based on known brain mechanisms, 
and as discussed, is partially supported by neural evidence. 
The neural evidence for the basic mechanism of DL, a 
process from vague to crisp, was demonstrated in visual 
perception by Bar et al. ([39]). Experimental neural evidence 
for other proposed models, for the parallel hierarchies, the 
dual model, the role of emotions, as mentioned, is in the 
incipient stage. Neural mechanisms predicted by our 
mathematical formulation include similar mechanism for 
higher cognitive models, as well as for language models. 
Below we speculate about more specific neural predictions, 
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but we would emphasize that we welcome neuroscientists for 
joint discussions of what is likely and what is possible. 

 We predict mathematically-specific interactions in eq. (3) 
between bottom-up signals (xni) and model parameters (pmi). 
Collections of these model parameters constitute the model-
representation. How numerical values of these model 
parameters (between 0 and 1) are neurally represented? We 
predict that in the initial not-learned model state parameter 
values are about 0.5 (“vague”); how this “non-committed” 
state is represented neurally? It could be due to synapse 
values or due to randomness of timing of arriving signals. 
The model learning consists in establishing which 
parameters of the model reach low or high values (0 or 1) for 
the model to be excited. According to the standard neuronal 
model, the concept-representation-model can be realized by 
one neuron with excitatory and inhibitory synapses. This 
model-neuron is excited when a significant number of its 
excitatory synapses receive signals, while inhibitory 
synapses don’t. Learning consists in modification-selection 
of excitatory and inhibitory synapses. Maturation might 
consist in reducing the number of modifiable synapses 
(synapses corresponding to many black dots in Fig. 4 would 
die out, leaving only few to ensure some minimal 
adaptivity). This description constitutes a hypothesis about 
neural realization of eq.(3). We would be looking forward to 
discussing with neural scientists, which other realization 
might be possible and testable. Eq. (2) is a standard 
competitive neural organization, which implements 
competitions among models with input signals from eq.(3) 
models, which compete through feedback connections.  

 The dual model in particular proposes a testable neural 
prediction, neural connections between cognitive and 
language models. Quite possible that in neural terms this 
means myelination of fibers. The first experimental 
indication of neural mechanisms for the dual model has 
appeared in [65]. Those researchers demonstrated that 
categorical perception of color in prelinguistic infants is 
based in the right brain hemisphere. As language is acquired 
and access to lexical color codes becomes more automatic, 
categorical perception of color moves to the left hemisphere 
(between two and five years) and adult’s categorical 
perception of color is based in the left hemisphere (where 
language mechanisms are located).  

 This fast brain rewiring might be due to a different 
mechanism than learning cognitive categories, it looks like 
the opposite mechanism: cognition is blocked by language. 
In any case this provides evidence for neural connections 
between perception and language, a foundation of the dual 
model. Possibly it confirms that aspect of the dual model: the 
crisp and conscious language part of the model hides from 
our consciousness vaguer cognitive part of the model. This is 
similar to what we observed in the closed-open eye 
experiment: with opened eyes we are not conscious about 
vague imaginations-priming signals. Still, direct neural 
evidence for the dual model is for future research. 

 This paper suggest a hypotheses to answer some 
mysteries of language and its interaction with thought posed 
at the beginning. Language and thought are separate and 
closely related mechanisms of the mind. They evolve jointly 
in ontological development, learning, and possibly these 
abilities evolved jointly in evolution. This joint evolution of 

dual models from vague to more crisp content resolves the 
puzzle of associationism: there is no need to learn correct 
associations among combinatorially large number of possible 
associations, words and objects are associated all the time 
while their concrete contents emerge in the brain.  

 Even simple perception of objects that can be directly 
perceived by sensing according to the referenced 
experimental data, is affected by language. In more complex 
cognition of abstract ideas, which cannot be directly 
perceived by the senses, we conclude that language parts of 
models are more crisp and conscious; language models guide 
the development of the content of cognitive models. 
Language models also tend to hide cognitive contents from 
consciousness. It follows that in everyday life most thinking 
is accomplished by using language models, possibly with 
little engagement of cognitive contents. Possibly fusiform 
gyrus plays a role in cognition shadowed by language. More 
detailed discussion of possible brain regions involved in the 
knowledge instinct are discussed in [27]. This is a vast field 
for experimental psychological and neuro-imaging 
investigations. 

 The proposed models bear on fundamental discussions in 
psycholinguistics. Hauser, Chomsky, and Fitch [60] 
emphasized that “language is, fundamentally, a system of 
sound-meaning connections.” This connection is 
accomplished by a language faculty, which generates 
internal representations and maps them into the sensory-
motor interface, and into the conceptual-intentional interface. 
In this way sound and meaning are connected. They 
emphasized that the most important property of this 
mechanism is recursion. However, they did not propose 
specific mechanisms how recursion creates representations, 
nor how it maps representations into the sensory-motor or 
conceptual-intentional interfaces. 

 The current paper suggests that it might not be necessary 
to postulate recursion as a fundamental property of a 
language faculty. In terms of the mathematical model 
proposed here, recursion is accomplished by the hierarchy: a 
higher layer generates lower layer models, which accomplish 
recursive functions. We have demonstrated that the dual 
model is a necessary condition for the hierarchy of cognitive 
representations. It also might be a sufficient one. It is 
expected that the hierarchy is not a separate inborn 
mechanism; the hierarchy might emerge in operations of the 
dual model and dynamic logic in a society of interacting 
agents with intergenerational communications (along the 
lines of Brighton et al. [61]). What exactly are the inborn 
precursors necessary for the hierarchy’s ontological 
emergence, if any, is a challenge for the ongoing research. 
Anyway, reformulating the property of recursion in terms of 
a hierarchy, along with demonstrating that a hierarchy 
requires the dual model, the paper has suggested a new 
explanation that a single neurally-simple mechanism is 
unique for human language and cognitive abilities. Initial 
experimental evidence indicates a support for the dual 
model; still further experiments elucidating properties of the 
dual model are needed. 

 This paper also suggests that the mechanism of mapping 
between linguistic and cognitive representations is 
accomplished by the dual models. In previous sections we 
considered mathematical modeling of the “conceptual-
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intentional interface” for intentionality given by the 
knowledge and language instincts; in other words we 
considered only intentionalities related to language and 
knowledge. It would not be principally difficult to add other 
types of intentional drives following [26]. The current paper 
has not considered the “sensory-motor interface,” which of 
course is essential for language production and hearing. This 
can be accomplished by the same mechanism of the dual 
model, with addition of behavioral and sensorial models. 
This task is not trivial; still it does not present principal 
mathematical difficulties.  

 We would also like to challenge an established view that 
specific vocalization is “arbitrary in terms of its association 
with a particular context.” In animals, voice directly affects 
ancient emotional centers of the brain. In humans these 
affects are obvious in songs, still persist in language to 
certain extent. It follows that sound-intentional interface is 
different from language-cognition interface modeled by the 
dual model. The dual model frees language from emotional 
encumbrances and enables abstract cognitive development to 
some extent independent from primitive ancient emotions. 
Arbitrariness of vocalization (even to some extent) could 
only be a result of long evolution of vocalizations from 
primordial sounds [62]. Understanding evolutionary 
separation of cognition from direct emotional-motivational 
control from immediate behavioral connections are other 
challenges for future research, and we suggest that the 
remaining emotional connections are fundamental for 
continued cultural evolution. 

 The proposed architecture for language-thought 
interaction bears on several aspects of a long standing debate 
about the nature of representations of symbols in human 
symbolic thought (see [57]; and discussions therein). 
Specific discussion poles centered on perceptual vs. amodal 
symbols with distinguished scientific schools on each side. 
The dual model suggests that structure of cognitive models 
may implement the Barsalou outline for perceptual symbols; 
and their learning mechanism follows the procedure of 
section 3. The other side of human thinking, usually 
associated with amodal symbols, is represented to significant 
extent in language models.  

 Language is closer to logical thinking than cognitive 
mechanisms proposed here. Is language an amodal symbol 
system? To answer this question let us look into evolution of 
language from animal vocalizations [12, 13,59]. Animal 
vocalizations are much less differentiated than humans’; 
conceptual, emotional, and behavioral contents are not 
separated, they are unified. Vocalizations are not as 
voluntary (if at all) as humans’. Evolution of language 
required separation of conceptual, semantic contents from 
emotional ones, and from involuntary vocalizations.  

 Language evolution reduces its original emotionality and 
acquires an ability to approximate an amodal symbol system. 
This ability is important for evolution of high culture, 
science, technology. However, an amodal symbol system is 
not an “ideal” evolutionary goal of language. To have 
meaning, to support cognition, language must be unified 
with cognition into the dual hierarchy. As discussed, this 
involves the knowledge instinct and aesthetic emotions. 
Language without emotionality loses this ability to unify 
with cognition. Amodal symbols are logical constructs, and 

as we discussed throughout the paper, logic is not a 
fundamental mind mechanism, but is only a final result of 
dynamic logic, and likely involves only a tiny part of the 
mind operations. 

 While language was evolving to less emotional, more 
semantic ability that differentiated psyche, another part of 
primordial vocalization was evolving toward more 
emotional, less semantic ability that maintained a unity of 
psyche. This ability evolved into music [58]. Cultures with 
semantically rich languages also evolved emotionally rich 
music [59,62]. Songs affect us by unifying semantic contents 
of lyrics with emotional contents of sounds, which are 
perceived by ancient emotional brain centers. The same 
mechanism still exists to a lesser degree in languages; all 
existing languages retain some degree of emotionality in 
their sounds.  

 Existence of sign languages poses a separate set of 
questions not addressed here: how emotions are carried in 
sign languages? Do people without hearing face specific 
developmental problems related to language emotions? What 
science can suggest mitigating these problems?  

 Languages, while evolving amodal symbol abilities, still 
retain their vocal modalities, and otherwise they will not be 
able to support the process of cognitive and cultural 
evolution. Symbolic structures of the mind are 
mathematically described by dynamic logic; the mind 
symbols are not static categories, but the dynamic logic 
processes. Due to the dual model they combine cognition 
and language, and can approximate amodal properties. The 
dual model suggests experimentally testable neural 
mechanisms—neural connections—combining two modal 
(perceptual, voice) symbol systems with the amodal ability. 

 The dual model mechanism proposes a relatively 
minimal neural change from the animal to the human mind. 
Possibly it has emerged through combined cultural and 
genetic evolution and this cultural evolution most likely 
continues today. Dynamic logic resolves a long-standing 
mystery of how human language, thinking, and culture could 
have evolved in a seemingly single big step, too large for an 
evolutionary mutation, too fast and involving too many 
advances in language, thinking, and culture, happening 
almost momentarily around 50,000 years ago [55,56]. 
Dynamic logic along with the dual model explains how 
changes, which seem to involve improbable steps according 
to logical intuition, actually occur through continuous 
dynamics. The proposed theory provides a mathematical 
basis for concurrent emergence of hierarchical human 
language and cognition. The dual model is directly testable 
experimentally. Next steps would further develop this theory 
in multi-agent simulations, leading to more specific and 
experimentally testable predictions. 

 The proposed theory provides solutions to classical 
problems of conceptual relations, binding, and recursion 
through the mechanisms of the hierarchy; in addition it 
explains how language acquires meanings in connecting with 
cognition due to the mechanism of the dual model. The 
proposed solutions overcame combinatorial complexity of 
classical methods, the fundamental reason for their failures 
despite decades of development. Predictions in this paper are 
experimentally testable and several groups of psychologists 
and neuroscientists are working in these directions. 
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 Evolutionary linguistics and cognitive science have to 
face a challenge of studying and documenting how 
primordial fused model differentiated into several 
significantly-independent mechanisms. In animal minds 
emotion-motivation, conceptual understanding, and 
behavior-voicing have been undifferentiated unity, their 
differentiation is a hallmark of human evolution. Was this a 
single step, or could evolutionary anthropology document 
several steps, when different parts of the model 
differentiated from the primordial whole? 

 Future mathematical and experimental development 
should address ontological emergence of the hierarchy. Our 
mathematical model predicts a hierarchy of integrated 
language and cognitive models. Finding detailed neural 
mechanisms of the models, of the hierarchy, and neuronal 
connections corresponding to the dual model is a challenge 
for future experimental neural research. Lower hierarchical 
levels, below words and objects, should be developed 
theoretically, or better to say, dynamic logic should be 
integrated with ongoing development in this area (see [63]). 
Mathematical simulations of the proposed mechanisms 
should be extended to engineering developments of Internet 
search engines with elements of language understanding. 
The next step would be developing interactive environments, 
where computers will interact among themselves and with 
people, gradually evolving human language and cognitive 
abilities. Developing intelligent computers and understan-
ding the mind would continue to enrich each other.  

 We emphasize that the proposed approach of dynamic 
logic, the dual model, and parallel hierarchies is a step 
toward unification of basic approaches to knowledge, its 
evolution, and learning in modern cognitive and neural 
sciences. These addresses classic representational 
approaches based on logic, rule systems, and amodal 
symbols; statistical pattern recognition and learning; 
embodied approaches of classic empiricism, situated actions, 
and cognitive linguistics; evolutionary linguistics; 
connectionism and neural networks. This step toward 
unification outlines a wide field for future theoretical and 
experimental research. 
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