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Fractional calculus is allowing integrals and derivatives of any positive order (the term fractional
is kept only for historical reasons). It can be considered a branch of mathematical physics that deals
with integro-differential equations, where integrals are of convolution type and exhibit mainly singular
kernels of power law or logarithm type.

It is a subject that has gained considerably popularity and importance in the past few decades
in diverse fields of science and engineering. Efficient analytical and numerical methods have been
developed but still need particular attention.

The purpose of this Special Issue is to establish a collection of articles that reflect the latest
mathematical and conceptual developments in the field of fractional calculus and explore the scope for
applications in applied sciences.

The papers in this Special Issue can be divided according to the following scheme considering
their main purposes:

(1) Analytical Theory
(2) Numerical Methods
(3) Applications

1. Analytical Theory

We start with a brief note by the Guest Editor Francesco Mainardi [1]: A Note on the Equivalence of
Fractional Relaxation Equations to Differential Equations with Varying Coefficients. This equivalence
is indeed shown for the simple fractional relaxation equation for which the solution in terms of the
Mittag–Leffler function is known. This simple argument may lead to the equivalence of more general
processes governed by evolution equations of fractional order with constant coefficients to processes
governed by differential equations of integer order but with varying coefficients. Our main motivation
is to solicit researchers to extend this approach to other areas of applied science to have a deeper
knowledge of certain phenomena, both deterministic and stochastic ones, investigated nowadays with
the techniques of fractional calculus.

Then, we consider two notes about the fractional Marchaud derivative from different perspectives
that surely constitute a novelty in the actual literature of fractional calculus.

In the paper by Fausto Ferrari [2]: Weyl and Marchaud Derivatives: A Forgotten History,
the author recalls the contribution given by Hermann Weyl and André Marchaud to the notion
of fractional derivative. In addition, he discusses some relationships between the fractional Laplace
operator and Marchaud derivative in the perspective to generalize these objects to different fields of
the mathematics.

The aim of the paper by Sergei Rogosin and Maryna Dubatovskaya [3]: Letnikov vs. Marchaud:
A Survey on Two Proinent Constructions of Fractional Derivatives, is to present the essence of
two important approaches in Fractional Calculus, namely, those developed by Letnikov (or by
Grünwald and Letnikov) and by Marchaud. The authors collect here the most important results
for the corresponding fractional derivatives, compare these constructions and highlight their role in
Fractional Calculus and its applications.
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In the paper by Trifce Sandev [4]: Generalized Langevin Equation and the Prabhakar Derivative,
the generalized Langevin equation is considered with regularized Prabhakar derivative operator.
The author analyzes the mean square displacement, time-dependent diffusion coefficient and velocity
autocorrelation function. Further, he introduces the so-called tempered regularized Prabhakar
derivative and analyzes the corresponding generalized Langevin equation with friction term
represented through the tempered derivative.

In the paper by Roberto Garra, Enzo Orsingher and Federico Polito [5]: A Note on Hadamard
Fractional Differential Equations with Varying Coefficients and Their Applications in Probability,
the authors establish a connection between some generalizations of the COM–Poisson distributions
and integro-differential equations with time-varying coefficients involving Hadamard integrals
or derivatives. Moreover, they suggest a new interesting application in probability of a recently
introduced generalized Le Roy function (see [6]).

In the paper by Yuri Luchko [7]: On Some New Properties of the Fundamental Solution to the
Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation, the Mellin–Barnes integrals
technique is employed to deduce some new analytical properties of solutions to the multi-dimensional
space- and time-fractional diffusion-wave equation. Indeed, some new closed-form formulas for
particular cases of the fundamental solution are derived. In particular, the author solves the open
problem of the representation of the fundamental solution to the two-dimensional neutral-fractional
diffusion-wave equation in terms of the known special functions.

In the paper by Khadidja and Lamine Nisse [8]: An Iterative Method for Solving a Class
of Fractional Functional Differential Equations with “Maxima”, the authors deal with nonlinear
fractional differential equations with “maxima” and deviating arguments. The nonlinear part of
the problem under consideration depends on the maximum values of the unknown function taken
in time-dependent intervals. Proceeding by an iterative approach, they obtain the existence and
uniqueness of the solution, in a context that does not fit within the framework of fixed-point theory
methods for the self-mappings, frequently used in the study of such problems. An example illustrating
their main result is also given.

2. Numerical Methods

The paper “Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial”
by Roberto Garrappa [9] aims to provide a tutorial for the numerical solution of fractional differential
equations (FDEs). In particular, numerical methods for solving systems of FDEs, as well as of multi-order
type (i.e., in which each equation has a different order), and multi-term FDEs (i.e., equations in which
derivatives of different order appears in the same equation), are presented. Some aspects related to the
efficient implementation of the methods are discussed and the corresponding MATLAB routines are made
freely available.

The paper “Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix
Mittag–Leffler Functions” by Marina Popolizio [10] focuses on a numerical approach to solve Multiterm
Fractional Differential Equations (MTFDEs), that is, equations involving derivatives of different orders.
They are very common to model many important processes, particularly for multi-rate systems.
The analyzed approach is based on the possibility to equivalently write MTFDEs in terms of a linear
system of Fractional Differential Equations of the same order; the,n the solution is computed by means
of the Mittag-Leffler function evaluated in the coefficient matrix by means of very recent tools [11].
This matrix approach turns out to be very accurate and fast, also in comparison with other numerical
methods, as shown by several numerical tests presented in the paper.

The paper by Vladimir D. Zakharchenko and Ilya G. Kovalenko [12]: Best Approximation of
the Fractional Semi-Derivative Operator by Exponential Series, considers the implementation of
a fractional-differentiating filter of the order of 1/2 by a set of automation astatic transfer elements,
which greatly simplifies practical implementation. Real technical devices have the ultimate time delay,
albeit small in comparison with the duration of the signal. As a result, the real filter will process
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the signal with some error. In accordance with this, this paper introduces and uses the concept
of a “pre-derivative” of 1/2 of magnitude. An optimal algorithm for realizing the structure of the
filter is proposed based on the criterion of minimum mean square error. Relations are obtained for
the quadrature coefficients that determine the structure of the filter. This technique is shown to be
useful for a significant reduction in the time required to obtain an estimate of the mean frequency of
the spectrum of Doppler signals when seeking to measure the instantaneous velocity of dangerous
near-Earth cosmic objects.

3. Applications

Among the many interesting applications of fractional calculus to physical systems, in this Special
Issue, we find the paper devoted to the fractional viscoelasticity.

In the paper “Storage and Dissipation of Energy in Prabhakar Viscoelasticity” by Ivano Colombaro,
Andrea Giusti and Silvia Vitali [13], the authors clarify some aspects of the attenuation processes
emerging in a Fractional Maxwell model of viscoelasticity involving Prabhakar derivatives. On this
topic we refer the reader to A. Giusti and I. Colombaro [14].

A further application related to fractional calculus is devoted to the free electron laser (FEL)
and carried out by a group led by a well-known specialist on this topic (Prof. Dattoli). In the paper
“Fractional Derivatives, Memory Kernels and Solution of a Free Electron Laser Volterra Type Equation”
by Marcello Artioli, Giuseppe Dattoli, Silvia Licciardi and Simonetta Pagnutti [15], the authors recall
that the high gain FEL equation is a Volterra type integro-differential equation amenable for analytical
solutions in a limited number of cases. In this note, a novel technique, based on an expansion employing
a family of two variable Hermite polynomials, is shown to provide straightforward analytical solutions
for cases hardly solvable with conventional means. The possibility of extending the method by the use
of expansion using different polynomials (such as two variable Legendre) expansion is also discussed.

The paper “Application of Tempered-Stable Time Fractional-Derivative Model to Upscale
Subdiffusion for Pollutant Transport in Field-Scale Discrete Fracture Networks” by Bingqing Lu,
Yong Zhang, Donald M. Reeves, HongGuang Sun and Chunmiao Zheng [16] aims to explore the
relationship between real-world aquifer properties and non-Fickian transport dynamics. According to
the authors, the fractional partial differential equations built upon fractional calculus can be reliably
applied with appropriate hydro-geologic interpretations. They use the Monte Carlo approach to
generate field-scale multiple discrete fracture network (DFN) flow and transport scenarios where
the fracture properties change systematically, and then to simulate groundwater flow and pollutant
transport through the complex DFNs. For a point source located initially in the mobile phase or fracture,
the late-time behavior for the pollutant breakthrough curves (BTCs) simulated by the Monte Carlo
approach is then explained by the tempered–stable time fractional advection–dispersion equation.
The relationship between medium heterogeneity and transport dynamics through the combination of
numerical experiments and stochastic analysis is built.

In the paper by Guoxing Lin [17]: Analysis of PFG Anomalous Diffusion via Real-Space and
Phase-Space Approaches, two significantly different methods are proposed to analyze the pulsed-field
gradient (PFG) anomalous diffusion: the effective phase-shift diffusion equation (EPSDE) method
and a method based on observing the signal intensity at the origin. The EPSDE method describes the
phase evolution in virtual phase space, while the method to observe the signal intensity at the origin
describes the magnetization evolution in real space. However, these two approaches give the same
general PFG signal attenuation including the finite gradient pulse width (FGPW) effect, which can
be numerically evaluated by a direct integration method. The direct integration method is fast and
without overflow. It is a convenient numerical evaluation method for Mittag–Leffler function-type PFG
signal attenuation. The methods here provide a clear view of spin evolution under a field gradient,
and their results will help the analysis of PFG anomalous diffusion.
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