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Abstract: A convenient, asymmetric synthesis of (R)-homopipe-
colic acid methyl ester and an homochiral peptide nucleic acid
(PNA) monomer building block are described, starting from the or-
thogonally disubstituted (2E,7E)-nonadienedioate. The approach
involves stereoselective Michael monoaddition of (R)-N-benzyl-N-
a-methylbenzylamide to the unsaturated ester as the key step, and
subsequent transformation of the remaining double bond of the un-
saturated acid. 

Key words: b-amino acids, asymmetric synthesis, Michael addi-
tions, PNA, homopipecolic acid, orthogonally substituted diene-
dioate

Every synthetic route starts from a particular substrate that
lends itself to the retrosynthetic scheme planned. The ca-
pacity of a substrate to participate in a wide range of syn-
thetic pathways depends on the potential of their structure:
cycles, chains and functional groups. Molecules with
functional groups that react selectively are attractive from
this point of view: the better the chemical orthogonality of
the functional groups, the larger the spectrum of synthetic
transformations possible and, consequently, the range of
accessible targets.

Cyclic b-amino acids such as (R)-homopipecolic acid
(Scheme 1) have a number of interesting features that
have been used to develop synthons of natural products1

and key intermediates in b-lactam structures.2 Synthetic
oligonucleotides (Scheme 1; DNA/RNA) have been con-
sidered as potential gene-targeted therapeutic agents (an-
tisense and antigene).3 Peptide nucleic acids (PNAs) were
first reported in 1991 as DNA mimics3c and, since this
time, a vast number of studies have been reported cover-
ing their synthesis, properties and potential applications.
Among the known oligonucleotide analogues, acyclic N-
(2-aminoethyl)glycyl peptide nucleic acids (Scheme 1;
PNA I) or those derived from base-containing d-amino
acid derivatives4 (Scheme 1; PNA II), are found to be
very good mimics of DNA/RNA. Within this area, a
steadily growing group of analogues in which the sugar–
phosphate backbone is replaced by a polyamide back-
bone, is emerging, mainly as a consequence of the intrigu-
ing base-pairing properties of their prototype PNA. In this
context, we envisaged the synthesis of the amino acid
building block mononer 2 in PNA III. 

We have demonstrated5 the use of chiral lithium (a-meth-
ylbenzyl)benzylamide [(R)-3 or (S)-3] to initiate asym-
metric conjugate addition cyclisation of octa-2,6-
dienedioate and nona-2,7-dienedioate to generate chiral
cyclopentane and cyclohexane derivatives 4 and 5, re-
spectively.5b–e We have also developed strategies to stere-
oselectively obtain double- (7) and mono-addition (6, 8, 9
and 10) products5d (Scheme 2), where the Z-double bond
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plays a crucial role on the (Z,E)-dienedioate as a vehicle
for g-deprotonation. We have proposed 9 to be an inter-
mediate in an approach to 1.5a

Here, as shown in the retrosynthetic analysis (Scheme 3),
we focused on the potential of (2E,7E)-nonadienedioate
11 as an orthogonally functionalised starting material in
which the groups show differing reactivity towards lithi-
um (R)-N-benzyl-N-a-methylbenzylamide [(R)-3]. This
selectivity is exploited synthetically by modifying the re-
sidual functionality to give either homopipecolic acid me-
thyl ester (formerly synthesised using other protocols6) or
to construct a thymine long-chain b-amino acid PNA
monomer 2 for use in oligomerisation to form PNA. Both
goals were developed in an enantiocontrolled way.

Scheme 2 Reagents and conditions: (a) (R)-3 (1.2 equiv), THF,
–78 °C; (b) (R)-3 (3 equiv), THF, –78 °C; (c) t-BuOK, t-BuOH.

The synthesis of homopipecolic methyl ester (Scheme 4)
started with addition of lithium (R)-N-benzyl-N-a-meth-
ylbenzylamide [(R)-3] to the orthogonally functionalised
substrate 11, to provide adduct 12 (de >95%)7 stereoselec-
tively (vide infra) in good yield, in accordance with the lit-
erature.8 Acid salt generation enriches electron-density on
the conjugated olefin, averting nucleophilic attack at this
centre. The next step required ozonolysis of 12, however,
since reports in the literature recommended prior esterifi-
cation,9 12 was treated with TMSCHN2 to provide the cor-
responding diester 13.10 Attempts at ozonolysis of 13
were unsuccessful, leading instead to decomposition of
the starting material as a consequence of N-oxide

formation11 provoking a Cope elimination. However,
treatment of 13 with anhydrous HCl followed by ozono-
lysis and reduction with Me2S gave aldehyde 15. Finally,
hydrogenolytic debenzylation over Pearlmans catalyst in-
duced cyclisation to the imine, which underwent reduc-
tion to (R)-homopipecolic methyl ester in situ {[a]D

26 –3.6
(c 0.32, CHCl3); Lit.6c for the enantiomer [a]D

26 +3.9 (c
0.64, CHCl3)} in 50% overall yield. 
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acid and monomers 1 and 2 for PNA synthesis
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methylbenzylamine [(R)-3; 3.6 equiv], THF, –78 °C; (b) TMSCHN2,
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The route towards the PNA monomer started from 12
(Scheme 5). Reacting a mixture of 12, Boc2O and
Pearlmans catalyst in ethyl acetate for three days under
hydrogen (4 atm), accomplished a one-pot amine-deben-
zylation, Boc-reprotection and hydrogenation of the ole-
fin in 62% yield. Subsequent selective reduction of the
carboxylic acid with borane, followed by treatment with
CBr4/PPh3, and finally, treatment with thymine, K2CO3,
and TBAI in refluxing DMF12 provided the target com-
pound 2.13 However, the poor nucleophilicity of thymine
resulted in a relatively low yield in the final displacement
(38%). 

In summary, we have achieved the synthesis of two
valuable products as important building blocks: (R)-ho-
mopipecolic methyl ester and a PNA-monomer contain-
ing a long-chain b-amino acid backbone. Both products
were elaborated in a divergent fashion starting from
(2E,7E)-nonadienedioate monoester 11, which is a readily
accessible bifunctional substrate that exhibits orthogonal
behaviour towards aza-Michael stereocontrolled addition
of chiral lithium (a-methylbenzyl)benzylamide. The re-
sidual functionality can then undergo a range of possible
synthetic transformations, demonstrating the power of
this protocol.
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