
Abstract
Urbanization has profound effects on the environment at
local, regional, and global scales. Effective detection of urban
change using remote sensing data will be an essential compo-
nent of global environmental change research, regional plan-
ning, and natural resource management. This paper presents
results from an ARTMAP neural network to detect urban
change with Landsat TM images from two periods. Classifica-
tion of urban change, and, in particular, conversion of agri-
culture to urban, was statistically more accurate with ARTMAP
than with a more conventional technique, the Bayesian
maximum-likelihood classifier (MLC). The effect of different
levels of class aggregation on the performance of change de-
tection was also explored with ARTMAP and MLC. Because
ARTMAP explicitly allows “many-to-one” mapping, classifica-
tion using coarse class resolution and fine class resolution
training data generated similar results. Together, these results
suggest that ARTMAP can reduce labor and computational
costs associated with assembling training data while concur-
rently generating more accurate urban change-detection
results.

Introduction
The world is undergoing an urban transformation unprece-
dented in human history. Human settlements, which for tens
of thousands of years were mainly rural, are becoming in-
creasingly urban. Globally, urban agglomerations have ex-
panded into the countryside, transforming natural ecosys-
tems, converting agricultural land, and enveloping agrarian
communities. Although urban areas cover less than 2 percent
of the Earth’s total land surface (Grübler, 1994), half of the
world’s population reside in urban regions, and, according to
recent United Nations estimates, 60 percent of global popula-
tion will reside in urban areas by 2030 (United Nations, 2001).
This urban revolution has profound environmental impacts at
multiple scales, including local and regional climate change,
loss of wildlife habitat and biodiversity, and increases in pres-
sure on water, energy, and agricultural resources. From the
provision of clean drinking water to the construction of trans-
portation infrastructure, every aspect of the urbanization
process presents huge environmental challenges. Successful
monitoring of temporal and spatial patterns of urban change
will be imperative to anticipate—and hopefully mitigate—
negative environmental, social, and economic impacts of
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urban development. There is a need to monitor not only urban
expansion, but also changes within built-up areas, such as in-
tensification of land use within urban regions. Therefore, the
use of remote sensing to detect both expansion and intensifi-
cation of urban areas will be an essential component of global
environmental change research, regional planning, and nat-
ural resource management.

Among the myriad studies that have assessed urban land-
use change with remote sensing (Barnsley and Barr, 1996;
Ridd and Liu, 1998; Zhang and Foody, 1998; Jensen and
Cowen, 1999; Masek et al., 2000; Ji et al., 2001; Lopez et al.,
2001; Stefanov et al., 2001; Yeh and Li, 2001; Seto et al.,
2002), three common issues emerge. First, the detection of
urban change often is confounded with variations in vegeta-
tion and ground reflectance associated with the agricultural
crop cycle of planting, growth, and harvesting. This confusion
is pervasive throughout tropical and subtropical regions, in
areas with multi-crop fields, and in places where agricultural
plot size is small. Fallow or barren fields confound the classi-
fication of urban areas or urban change. Accurate estimates of
agricultural land loss to urban expansion are vital, yet diffi-
cult to acquire, even through annual compendium (Seto et al.,
2000). Because agriculture by definition is diverse and in-
cludes a variety of crops and cropping patterns, it can be
easily misclassified as urban change. In Asia, where a majority
of the urban growth in the 21st century will occur, multi-crop
fields, agricultural terracing, and small field sizes produce
textures and tones that can be difficult to differentiate from
patches of urban expansion. Separation of urban change
from agricultural phenology has been achieved with the use
of synthetic aperture radar (SAR) and fusion techniques
(Henderson and Xia, 1997; Kuplich et al., 2000; Dell’Acqua
and Gamba, 2001), but there has been limited success using
only optical data.

Second, the spatial and temporal patterns of urban fea-
tures are difficult to characterize. Urban land use occurs along
a continuum and is manifested in different shapes, sizes,
styles, and trajectories. As such, there is no sole archetype for
urban change. Inter- and intra-class spectral and land-cover
variability of urban and agriculture types limit the success of
a single approach to urban change mapping. For example,
urban development in the western United States often in-
volves the complete removal of existing land cover and re-
placement with concrete (Jensen and Cowen, 1999). This sub-
urban model of urban change usually occurs along roads and
other infrastructure development. In contrast, urbanization in
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developing countries may not be temporally linear or spatially
adjacent. In east and southeast Asian countries, the urbaniza-
tion experience has been largely defined by desakota, or the
intensive mixture of agricultural and non-agricultural land
uses in a pattern of patch-like mosaics across the landscape
(McGee, 1991). It has been argued that the Asian urban growth
process is inherently different from the western experience
because the former is regionally based while the latter is city-
based (Webster, 2001).

Third, urban change may constitute only a small fraction
of the total study area, but may be the dominant class of inter-
est. For supervised classification, training data must be a rep-
resentative sample across all land-cover classes in the study
area. For example, given N number of land-cover classes, if all
possible combinations of change are possible, the total num-
ber of unidirectional change classes is N(N � 1)�2. In cases
where bi-directional change can occur (e.g., forest to agricul-
ture and agriculture to forest), the total number of change
classes is N(N � 1). A large number of land-cover categories
increases the amount of training data required and yet urban
change classes may comprise only a small portion. Because
broad, aggregated class definitions (e.g., agriculture) are com-
prised of more detailed classes (e.g., irrigated paddy, winter
wheat), class definition and the level of aggregation impact
both the labor costs for training data collection and classifica-
tion accuracy. If classes are very aggregated, this lends itself to
“many-to-one” mapping, or the presence of many spectral cat-
egories for any single map class. For example, a single agricul-
ture map class must encompass all spectral variations inher-
ent in the suite of possible crop types. The “many-to-one”
mapping can complicate classification, because, for each
“from” class, there are multiple “change to” classes. 

The urgent need for efficient and accurate mapping of
urban change at local, regional, and global scales necessitates
reliable change detection algorithms that address the afore-
mentioned issues. In this paper, we evaluate an artificial
neural network, ARTMAP, to evaluate the following questions:
(1) how effective is ARTMAP at identifying urban change from
agricultural phenology? (2) how does class resolution affect
classification accuracies of urban change? and (3) how does
ARTMAP compare to a more conventional technique, the
Bayesian maximum-likelihood classifier?

ARTMAP Neural Network
In the last decade, artificial neural networks (ANNs) have
gained momentum in remote sensing due to numerous suc-
cessful applications (Paola and Schowengerdt, 1995; Atkinson
and Tatnall, 1997). Neural network models have two impor-
tant properties: the ability to “learn” from input data and to
generalize and predict unseen patterns based on the data
source, rather than on any particular a priori model. Com-
monly used neural network models in remote sensing include
multilayer perceptron (MLP) (Benediktsson et al., 1990;
Benediktsson et al., 1993; Foody, 1997), ARTMAP (Carpenter
et al., 1997; Carpenter et al., 1999; Gopal et al., 1999), radial
basis function (Rollet et al., 1998), and learning vector quanti-
zation (Ito and Omatu, 1999). Results from studies that use
MLP models for land-cover change detection indicate that the
MLP neural network generates more accurate results than does
a traditional maximum-likelihood classifier (Gopal and Wood-
cock, 1996; Dai and Khorram, 1999). However, the MLP with
the backpropagation training algorithm has several limita-
tions, such as finding sub-optimal solutions by getting trapped
in a local minima, overfitting, and difficult selection of proper
parameters (Foody, 1997). An alternative neural network,
ARTMAP, has been used in remote sensing applications for spa-
tial data mining (Gopal et al., 2001; Liu et al., 2001), land-
cover mapping (Gopal et al., 1999), and change detection

(Gopal et al., 1994). Direct comparisons between ARTMAP and
MLP show that the former generates more accurate results than
does the latter (Carpenter et al., 1997; Gopal et al., 1999).

The Adaptive Resonance Theory (ART) family of pattern
recognition algorithms was developed by Carpenter and
Grossberg (Carpenter et al., 1991a; Carpenter et al., 1991b).
ART is a match-based learning system, the major feature of
which is its ability to solve the “stability-plasticity dilemma”
or “serial learning problem,” where successive training of a
network interferes with previously acquired knowledge. That
is, learning a new pattern usually involves replacing or modi-
fying the existing information base. The modification of train-
ing data can be done with relative ease if the network can
learn all existing patterns in the training data. However, the
real world environment likely is more complex and dynamic
than the training data. Training data are supposed to represent
the possible range of variability within and among land-cover
types, but rarely do because they usually only include “pure”
archetypes. ART networks maintain the stability of keeping
previously learned patterns, while simultaneously being flexi-
ble, or plastic, enough to master new patterns.

Among the ART family models, fuzzy ARTMAP is a super-
vised learning system that has been used widely in many
fields. A comprehensive description of the model is detailed
in Carpenter and Grossberg (1992) and Carpenter et al. (1995)
from which the synopsis of the basic architecture of the fuzzy
ARTMAP model is drawn (Figure 1). It consists of a pair of
fuzzy ART modules, ARTa and ARTb, connected by an associa-
tive learning network called a map field. The architecture uses
a learning rule that minimizes the predictive error while con-
currently maximizing the predictive generalization – or the
ability to predict previously unseen patterns. The “hidden
units” in ARTa and ARTb are called F2 nodes, which represent
learned recognition categories. Each category, or F2 node, ex-
tracts and generates common spectral properties from input
training data.

During the training phase, the ARTa and ARTb modules are
given input data ap and desired output pairs bp. As the two
modules classify the ap and bp vectors into various map cate-
gories, the map field makes the association between ARTa and
ARTb categories. If there is a discrepancy between the observed
and predicted values of bp, a memory search occurs in the
ARTa module. The match tracking component within the
module increases the sensitivity of the ARTa vigilance para-
meter, �a, to activate a memory search. A new memory search
increases the probability that an ARTa category will generate a
better predicted value of bp. If none of the existing categories
can minimize the predictive error or match the statistics of
the input vector, a new category is generated. This allows

982 September  2003 PHOTOGRAMMETR IC ENGINEER ING & REMOTE SENS ING

Figure 1. The architecture of fuzzy ARTMAP
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intra-class variability to be captured through the creation of
new categories. Alternatively, if there is a match, the spectral
characteristics of the new input vector will be incorporated to
redefine the attributes of the category. This weighting function
in effect generalizes the category. Thus, an important attribute
of fuzzy ARTMAP is that it can capture both intra- and inter-
class variability, facilitating “many-to-one” mapping. 

Class Resolution
We define class resolution as the level at which the physical
environment is disaggregated into component units. Fine
class resolution separates the landscape into detailed, precise
categories while coarse class resolution provides broad,
sweeping generalizations. In the most extreme example of a
map with coarse class resolution, the world could be sepa-
rated into only two categories: water and land. The process
of classification often is an exercise in disaggregation, one in
which desired final map categories are disaggregated into
their constitutive spectral manifestations. The disaggregation
of spectral classes into increasingly finer classes (thereby
increasing class resolution) is aimed at capturing the spectral
variability inherent in land cover. After classification at fine
class resolution, the spectral classes can be aggregated back
into the desired map classes. Accuracy assessments usually
are performed on final map classes, not spectral classes, and
we expect classification accuracy to be higher with coarser
map classes than with more detailed map categories. 

Study Area and Data
Based on fieldwork and visual interpretation of the images,
we identified 809 sites divided among 6240 training and 1567
testing pixels. These pixels were extracted from two Landsat
TM scenes of southern China acquired on 10 December 1988
and 03 March 1996. Located between 21°N and 23°N and
crossed by the Tropic of Cancer, the region is characterized by
a dry season, November through April, and a rainy season,
May through October. Persistent cloud cover during the rainy
season precludes acquisition of imagery during the summer
months. The region is semi-tropical, and evergreen trees are
common. Therefore, although the images were acquired dur-
ing the dry season, there is limited variation in the phenology
during the summer months. Class labels for each site were
identified by an analyst who visited the study area twice and
was familiar with the region.

The images were co-registered using a first-order warping
function and were radiometrically corrected using a simple
empirical technique that matches the 1996 image to the 1988
image (Song et al., 2001). Prior work in the region revealed that
differentiating urban change from agricultural phenology is
difficult (Seto et al., 2002). Agricultural plot sizes in southern
China are relatively small, usually less than an acre (0.4 ha).
The combination of small plots, multi-crops within plots,
and varying crop calendars creates complex heterogeneous
surfaces that can easily be confounded with urban change. Par-
ticularly difficult to differentiate are harvested rice paddies
from cleared land for building construction; they are spectrally
similar because both are bare plots of soil. As such, southern
China provides an exemplary case study to test the efficacy of
the ARTMAP neural network for distinguishing urban change
from agricultural phenology.

The data were divided among 23 categories, comprised
of six stable and 17 change classes (Table 1). Nine of the
17 change classes involve urban change. Recognizing that
urban change occurs along a gradient, we define two urban-
related classes. The transition class represents land in two
early stages of urbanization: (1) areas that have been cleared or
leveled and are ready for construction, or (2) areas on which

building frames or foundations have been constructed. The
transition class should not be confused with bare or fallow
land, but rather are areas in the early stages of urbanization.
The other urban class includes built-up areas, which we define
as urban. Sites that were not transition in 1988 but are transi-
tion in 1996 are labeled as one of the nine urban change
classes. The transition to urban class represents changes in
urban density or urban structure, and is aimed to capture
urban intensification. The stable agriculture class is comprised
of a variety of crops, including citrus orchards, rice fields, and
field crops.

Methodology
We aggregated the 23 classes into ten to compare the effects of
class resolution on accuracy (Table 2). Forest and shrub were
aggregated into a new class called natural vegetation, and the
urban and transition classes were merged into a single urban
class. The original nine urban change classes were aggregated
into four: water to urban, agriculture to urban, fish pond to
transition, and vegetation to urban. Because our interest is
urban change, the remaining six non-urban change classes
were aggregated into a single mixed change class. We will
refer to the 23 classes as fine class resolution and the ten
classes as coarse resolution.

To evaluate the effect of class resolution on the ability to
detect urban change and to assess the accuracy of ARTMAP com-
pared to a more conventional classifier, we conducted four sets
of analyses. In the first analysis, the fine resolution (23 classes)
data were classified using ARTMAP and the Bayesian maximum-
likelihood classifier (MLC) and the results were compared. In
the second analysis, the ARTMAP and MLC results from the fine
resolution classification were aggregated into the ten coarse
classes, and error matrices were constructed. In the third
analysis, we classified the coarse resolution data (ten classes)
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TABLE 1. DEFINITION OF FINE CLASS RESOLUTION, TWENTY-THREE CLASSES

Class ID Class Name Class ID Class Name

1 Shrub to Urban 13 Agriculture to Water
2 Water 14 Agriculture to Urban
3 Forest 15 Agriculture to Transition
4 Agriculture 16 Agriculture to Fish pond
5 Urban 17 Fish pond to Transition
6 Fish pond 18 Transition to Urban
7 Transition 19 Shrub to Transition
8 Shrub 20 Shrub to Water
9 Water to Agriculture 21 Forest to Transition

10 Water to Urban 22 Forest to Water
11 Water to Fish pond 23 Forest to Urban
12 Water to Transition

TABLE 2. DEFINITION OF COARSE CLASS RESOLUTION, TEN CLASSES

Class ID Class Description

1 Other change classes
2 Water
3 Natural vegetation (Forest � Shrub)
4 Agriculture
5 Urban (Urban � Transition � Transition to Urban)
6 Fish pond
7 Water to Urban (Water to Urban � Water to

Transition)
8 Agriculture to Urban (Agriculture to Urban �

Agriculture to Transition)
9 Fish pond to Transition

10 Vegetation to Urban (Forest to Urban � Forest to
Transition � Shrub to Transition)
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using ARTMAP and MLC. We then compared the results between
the second and third analyses to assess if there was a difference
in classification accuracies between classifying fine resolution
data and aggregating the results into coarse classes, or directly
classifying coarse resolution data. For both ARTMAP and MLC,
the classification accuracies were compared using overall and
individual class accuracies.

The ARTMAP and MLC methods’ classification accuracies
were evaluated three ways. First, we compared the overall ac-
curacy of the two methods by evaluating the percentage of the
testing data that were classified correctly. Next, we compared
the percentage classified correctly for individual classes. Be-
cause we are concerned about the quality of the results from
the perspective of the user, not the producer, of the map, this
was done using the user’s accuracy. Lastly, we calculated
Z-statistics using the user’s and overall accuracies to test the
statistical significance of differences in results between
ARTMAP and the MLC. The Z-statistic was calculated as follows:

Z �
(1)

where pA is the overall or individual class accuracy of
ARTMAP, pM is the overall or individual class accuracy of the
MLC, pM is the pooled accuracy of the two results, and nA and
nM are the sample sizes for the ARTMAP and MLC classifica-
tions, respectively. The Z-statistic tests the null hypothesis
that, for a particular class, the accuracy of the ARTMAP classifi-
cation is equal to the accuracy using the MLC. Values of Z that
exceed the critical threshold indicate that the accuracies are

pA � pM���

�pAM(1� � pAM�)�
n
1
A
� �� �

n
1
M
��

984 September  2003 PHOTOGRAMMETR IC ENGINEER ING & REMOTE SENS ING

Figure 2. Plots of mean, minimum, and maximum DN values for ten classes (coarse resolu-
tion). On the X-axes are TM bands 1-5, and 7 of the 1988 image, and TM bands 1-5, and 7 of
the 1996 image. DN values are shown on the Y-axis. 

different. The more accurate classification is identified by
the sign on Z. A positive sign indicates that results from the
ARTMAP classification are more accurate than results from
the MLC. The ARTMAP algorithm was written in C and imple-
mented with the Image Processing Workbench (IPW) software
program.

Results
Plots of the mean, minimum, and maximum spectral character-
istics for the coarse resolution data are shown in Figure 2. Each
plot shows the range in digital number (DN) values of a training
sample across the six reflective TM bands for the two images.
The plots indicate that the urban, agriculture, and agriculture
to urban classes have the largest intra-class variance. The large
within-class variability in the agriculture class effectively
causes a large inter-class variability between agriculture and
urban. This indicates that conversion of agriculture to urban
will be difficult to classify due to the large spectral variability
inherent in both classes.

Error matrices were generated with results from the
ARTMAP neural network and MLC based on the fine resolution,
23 class data set (Tables 3a and 3b). Z-statistics were calculated
on the user’s and overall accuracies to evaluate statistically the
difference between the ARTMAP and MLC results (Table 4). The
overall accuracy of the ARTMAP approach (84.43 percent) is
significantly higher (Z � 6.0, p � 0.01) than that for the MLC
method (75.88 percent). In terms of user’s accuracy for individ-
ual classes, the ARTMAP approach was more accurate (p � 0.10)
for six out of the nine urban change classes, and significantly
higher (p � 0.05) for the agriculture to urban (85.51 percent
versus 58 percent, Z � 3.808, p � 0.01) and agriculture to
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transition (85.71 percent versus 67.83 percent, Z � 3.049,
p � 0.01) classes. It is apparent from the error matrices that the
majority of misclassification was caused by agriculture and
agricultural change samples.

Three results from the fine resolution analysis are particu-
larly noteworthy. First, ARTMAP was able to differentiate the
conversion from transition to urban with greater accuracy
than did the MLC (Z � 1.976, p � 0.05). This implies that
ARTMAP is a promising method for identifying not only urban
expansion, but also changes in urban structure and differenti-
ating between older buildings and newer construction. Sec-
ond, the MLC classified stable urban more accurately than
did ARTMAP (96 percent versus 84.13 percent, Z � �2.035, 
p � 0.05). This suggests that the MLC method may be more
appropriate for applications that aim to identify urban areas
and not urban change. Third, both techniques generated simi-
lar accuracy with regard to distinguishing stable agriculture
(84.95 percent for ARTMAP versus 83.06 percent for MLC, 
Z � 0.523). This last result is surprising. The agriculture class
has the largest intra-class spectral variability. Because ARTMAP
does not assume normality in the data, it was expected to
generate more accurate results than the MLC at classifying
agriculture.

The results from the fine resolution analysis were aggre-
gated into ten coarse classes (Tables 5 and 6). As expected, the
differences in accuracy between the two methodologies were
heightened once the results were merged. The overall accuracy
of the ARTMAP model (89.92 percent) is still statistically differ-
ent (Z � 3.855, p � 0.01) from the MLC method (85.39 percent),
although aggregation of the results improved the overall accu-
racy for MLC (9.51 percent) more than for ARTMAP (5.49 per-
cent). The ARTMAP approach was expected to, and did, pro-
duce more accurate results than the MLC for the agriculture to
urban class (Z � 3.109, p � 0.01), which was a combination of
the agriculture to urban and agriculture to transition classes
from the fine resolution analysis.

For the coarse-resolution, ten-class data set, error matri-
ces and Z-statistics (Tables 7 and 8) show that ARTMAP also
generated significantly more accurate classification results
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TABLE 4. COMPARISON OF FINE RESOLUTION (TWENTY-THREE CLASSES) ARTMAP
AND MLC USER’S ACCURACIES

User’s Accuracy

Class ARTMAP MLC Z-statistic

Shrub to urban 76.19% 72.31% 0.502
Water 96.08% 72.13% 3.363***
Forest 100.00% 91.46% 2.503**
Agriculture 84.94% 83.06% 0.523
Urban 84.13% 96.00% �2.035**
Fish pond 73.44% 81.82% �1.088
Transition 86.89% 85.19% 0.263
Shrub 72.55% 67.62% 0.774
Water to agriculture 91.38% 92.24% �0.239
Water to urban 89.66% 82.46% 1.115
Water to fish pond 100.00% 100.00% 0
Water to transition 73.08% 37.50% 2.701***
Agriculture to water 81.82% 79.25% 0.376
Agriculture to urban 85.51% 58.00% 3.808***
Agriculture to transition 85.71% 67.83% 3.049***
Agriculture to fish pond 90.28% 72.00% 2.821***
Fish pond to transition 88.24% 100.00% �1.877*
Transition to urban 94.87% 80.43% 1.976**
Shrub to transition 67.86% 74.42% �0.944
Shrub to water 100.00% 25.00% 3.098***
Forest to transition 84.88% 90.00% �0.951
Forest to water 83.33% 68.97% 1.297
Forest to urban 70.83% 44.74% 2.011**
Overall accuracy 84.43% 75.88% 6.001***

***Statistically significant at p � 0.01
**Statistically significant at p � 0.05
*Statistically significant at p � 0.10

TABLE 5. ERROR MATRICES COMPARING AGGREGATED FINE RESOLUTION (TWENTY-THREE TO TEN CLASSES) ARTMAP AND MLC CLASSIFICATION
RESULTS WITH REFERENCE CATEGORIES

Reference Categories

ARTMAP Results 1 2 3 4 5 6 7 8 9 10 Total User’s Accuracy

1 321 0 0 6 0 0 7 2 0 0 336 94.72%
2 2 49 0 0 0 0 0 0 0 0 51 96.08%
3 0 0 152 20 0 0 0 0 0 0 172 87.79%
4 7 0 2 203 2 6 0 5 0 14 239 84.81%
5 0 0 8 2 146 0 0 7 0 0 163 90.12%
6 4 8 0 5 0 47 0 0 0 0 64 74.29%
7 0 1 0 0 0 0 75 3 5 0 84 88.37%
8 0 1 0 0 5 0 0 151 0 10 167 84.27%
9 1 0 0 0 1 0 2 0 30 0 34 88.57%

10 0 0 0 10 0 0 0 12 0 235 257 90.21%

Totals 1567 89.92%

Reference Categories

MLC Results 1 2 3 4 5 6 7 8 9 10 Total User’s Accuracy

1 312 1 0 15 2 2 0 7 0 1 340 91.76%
2 7 44 0 6 0 4 0 0 0 0 61 72.13%
3 0 0 150 34 0 0 0 0 0 3 187 80.21%
4 3 11 4 152 2 2 0 4 0 5 183 83.06%
5 0 0 8 1 140 0 0 1 0 0 150 93.33%
6 2 3 0 5 0 45 0 0 0 0 55 81.82%
7 0 0 0 0 0 0 84 1 4 0 89 94.38%
8 11 0 0 20 10 0 0 152 3 19 215 70.70%
9 0 0 0 0 0 0 0 0 28 0 28 100.00%

10 0 0 0 13 0 0 0 15 0 231 259 89.19%

Totals 1567 85.39%
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TABLE 7. ERROR MATRICES COMPARING COARSE RESOLUTION (TEN CLASSES) ARTMAP AND MLC CLASSIFICATION RESULTS WITH REFERENCE CATEGORIES

Reference Categories

ARTMAP Results 1 2 3 4 5 6 7 8 9 10 Total User’s Accuracy

1 327 14 0 8 0 0 3 4 0 0 356 91.85%
2 1 34 0 0 0 0 0 0 0 0 35 97.14%
3 0 0 150 20 0 0 0 0 0 0 170 88.24%
4 0 0 4 204 2 7 0 1 0 8 226 90.27%
5 0 0 8 0 145 0 0 6 0 0 159 91.19%
6 6 9 0 3 0 46 0 0 0 0 64 71.88%
7 1 2 0 0 0 0 80 3 4 0 90 88.89%
8 0 0 0 0 6 0 0 151 0 12 169 89.35%
9 0 0 0 0 1 0 1 0 31 0 33 93.94%

10 0 0 0 11 0 0 0 15 0 239 265 90.19%

Totals 1567 89.79%

Reference Categories

MLC Results 1 2 3 4 5 6 7 8 9 10 Total User’s Accuracy

1 288 16 1 13 0 1 1 0 0 4 324 88.89%
2 3 33 0 2 0 1 0 0 0 0 39 84.62%
3 0 0 149 36 0 0 0 0 0 4 189 78.84%
4 22 10 4 175 4 3 0 12 0 4 234 74.79%
5 5 0 8 3 144 0 0 5 0 0 165 87.27%
6 2 0 0 5 0 48 0 0 0 0 55 87.27%
7 1 0 0 0 0 0 83 3 4 0 91 91.21%
8 13 0 0 4 5 0 0 133 2 12 169 78.70%
9 0 0 0 0 0 0 0 0 29 0 29 100.00%

10 1 0 0 8 1 0 0 27 0 235 272 86.40%

Totals 1567 84.05%

than did the MLC in terms of overall accuracy (Z � 4.768,
p � 0.01). Perhaps the most important result from the coarse
resolution analysis is that the ARTMAP model has significantly
higher accuracies than does the MLC approach for the agricul-
ture (89.35 percent versus 78.7 percent, Z � 4.357, p � 0.01)
and agriculture to urban (90.27 percent versus 78.7 percent,
Z � 2.672, p � 0.01) classes.

To assess the effects of class resolution on urban change
detection, we compared the classification results from the
aggregated and coarse resolution data (Table 9). In terms of
overall accuracies, the results indicate that there is no signifi-
cant difference between using fine or coarse resolution classes
for either the ARTMAP or MLC approach. One interesting result
is that, for the agriculture class, the ARTMAP approach gener-
ated more accurate (p � 0.10) results with coarse class resolu-

tion training data (90.27 percent) than with the fine resolution
training data (84.81 percent). One possible explanation is that
the ability of ARTMAP to distinguish both intra- and inter-class
variability means that it can assess spectral differences with
greater precision than an analyst who divides the data set.
The reverse is true for the classification of agriculture using
the MLC method, where the fine resolution training data pro-
duced more accurate (p � 0.05) results (83.06 percent) than
did the coarse classes (74.79 percent).

Finally, an assessment of the F2 categories generated from
ARTMAP indicates that the neural network produces more
spectral categories when given fine resolution data than with
coarse resolution data (Table 10). ARTMAP neural network
trained with 23 classes created more categories than did the
network trained with only ten classes. For example, 40 F2
nodes were generated for class 8 (agriculture to urban) using
coarse resolution data, but 61 categories were generated using
fine resolution classes. Although ARTMAP generated fewer cat-
egories with coarse resolution data, the overall accuracy was
not statistically different from classification with fine resolu-
tion data (Table 9). Indeed, in the only case (agriculture)
where the accuracy was statistically different (p < 0.10) be-
tween the two resolutions of input data, there was little differ-
ence between the number of F2 categories generated (28 ver-
sus 29). This suggests that ARTMAP can automatically find the
patterns of categories regardless of the class resolution of the
input data. Because the computational cost of ARTMAP is pro-
portional to the number of F2 categories, use of coarse class
resolution data can increase computational efficiency with
very little cost to accuracy.

Discussion
Taken together, the results from this research reveal several
trends. First, ARTMAP consistently identifies urban change
with greater accuracy than does the MLC approach. This

TABLE 6. COMPARISON OF AGGREGATED ARTMAP AND MLC USER’S ACCURACIES

User’s Accuracy

Class ARTMAP MLC Z-statistic

Other change 94.72% 91.76% 1.530
Water 96.08% 72.13% 3.363***
Natural vegetation 87.79% 80.21% 1.949*
Agriculture 84.81% 83.06% 0.487
Urban/Transition 90.12% 93.33% �1.026
Fish pond 74.29% 81.82% �0.985
Water to urban 88.37% 94.38% �1.414
Agriculture to urban 84.27% 70.70% 3.109***
Fish pond to urban 88.57% 100.00% �1.848*
Vegetation to urban 90.21% 89.19% 0.382
Overall accuracy 89.92% 85.39% 3.855***

***Statistically significant at p � 0.01
**Statistically significant at p � 0.05
*Statistically significant at p � 0.10
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was true for the fine resolution, coarse resolution, and aggre-
gated data. The ARTMAP approach was able to classify various
urban land-use changes with 84 to 90 percent accuracy. In our
study area, the most complex urban change category is the
agriculture to urban class. In all cases, the ARTMAP approach
was able to successfully differentiate urban change from agri-
cultural phenology and it also produced more accurate classi-
fications than did the maximum-likelihood classifier. One
possible explanation is that the MLC approach assumes nor-
mality in the data, while ARTMAP does not, allowing ARTMAP
to better characterize the data set. The large spectral variance
within the agriculture to urban class generates confusion be-
tween it and the agriculture class, making accurate characteri-
zation difficult. Nonetheless, ARTMAP was able to classify agri-
culture to urban with 84 to 89 percent accuracy. Using the
more conventional MLC approach, the accuracies for this class
varied between 71 and 79 percent.

One of the strengths of the ARTMAP neural network model
is that it explicitly allows for “many-to-one” mapping. This
feature is especially suitable for data with large intra- and
inter-class variance, such as change from agriculture to urban.
In these cases, the large intra-class variance forces ARTMAP to
generate additional new categories, all of which are associ-
ated with one class. Detailed analysis of the internal structure
of ARTMAP indicates that the ability to represent a single class
through multiple manifestations can minimize misclassifica-
tions (Gopal et al., 2001). For example, if the observed and
predicted values of bp do not match, several new categories
will be generated. ARTMAP can then separate the confused,
or mixed, categories from categories that are created using
“pure” training data. This learning mechanism ensures
that only mixed samples will be classified into a mixed
category. Pure samples will have very low probability of
misclassification.

We anticipated that classification would be more accurate
with coarse class resolution than with fine class resolution.
Yet, one unexpected result is that class resolution, as defined
for our study area and data, does not appear to affect the
overall and individual classification accuracies. This was
especially the case using the ARTMAP approach, where there
were no statistical differences between the classification
accuracies using the fine or coarse resolution data. Applying
the ARTMAP neural network to coarser class resolution data
has two main advantages. First, with coarser data, ARTMAP
generates fewer categories. This reduces the computation time
required for classification. Second, collection of training data,
especially fieldwork, is labor intensive. Hence, the use of
coarser resolution training data can reduce both computa-
tional and labor costs. Finally, the methodologies tested in
this paper were applied only to training data, not the entire
image. Further tests will be required to evaluate whether the
methodology performs as well when pixels are not as “pure”
as the training data.

Conclusions
Efficient and accurate mapping of urban change at multiple
scales will be an important component of global environmen-
tal change research. Currently, one of the biggest challenges
to urban remote sensing is the generation of reliable urban
change estimates. Due to intra- and inter-class variability,
urban change and urban change from agriculture are difficult
to characterize. The main objectives of this research were to
evaluate and compare the efficacy of ARTMAP at identifying
urban change, and to assess the effects of class resolution on
classification accuracy. The most important result from this
research is that ARTMAP generated more accurate classifica-
tions of urban change and, in particular, urban change from
agriculture, than did the Bayesian maximum-likelihood

TABLE 8. COMPARISON OF COARSE RESOLUTION ARTMAP AND MLC
USER’S ACCURACIES

User’s Accuracy

Class ARTMAP MLC Z-statistic

Other change 91.85% 88.89% 1.313
Water 97.14% 84.62% 1.838*
Natural vegetation 88.24% 78.84% 2.383***
Agriculture 90.27% 74.79% 4.357***
Urban/Transition 91.19% 87.27% 1.137
Fish pond 71.88% 87.27% �2.056**
Water to urban 88.89% 91.21% �0.521
Agriculture to urban 89.35% 78.70% 2.672***
Fish pond to urban 93.94% 100.00% �1.348
Vegetation to urban 90.19% 86.40% 1.365
Overall accuracy 89.79% 84.05% 4.768***

***Statistically significant at p � 0.01
**Statistically significant at p � 0.05
*Statistically significant at p � 0.10

TABLE 9. COMPARISON OF CLASSIFICATION ACCURACIES FROM DIFFERENT
CLASS RESOLUTIONS

User’s Accuracy

Aggregated Coarse
(23 to Resolution

Class 10 classes) (10 classes) Z-statistics

ARTMAP Other change 94.72% 91.85% 1.502
Water 96.08% 97.14% �0.264
Natural vegetation 87.79% 88.24% �0.127
Agriculture 84.81% 90.27% �1.776*
Urban/Transition 90.12% 91.19% �0.330
Fish pond 74.29% 71.88% 0.307
Water to Urban 88.37% 88.89% �0.107
Agriculture to 84.27% 89.35% �1.376

Urban
Fish pond to 88.57% 93.94% �0.776

Urban
Vegetation to 90.21% 90.19% 0.009

Urban
Overall accuracy 89.92% 89.79% 0.118

MLC Other change 91.76% 88.89% 1.260
Water 72.13% 84.62% �1.450
Natural vegetation 80.21% 78.84% 0.330
Agriculture 83.06% 74.79% 2.040**
Urban/Transition 93.33% 87.27% 1.800
Fish pond 81.82% 87.27% �0.790
Water to Urban 94.38% 91.21% 0.820
Agriculture to 70.70% 78.70% �1.780*

Urban
Fish pond to 100.00% 100.00% 0.000

Urban
Vegetation to 89.19% 86.40% 0.980

Urban
Overall accuracy 85.39% 84.05% 1.040

***Statistically significant at p � 0.01
**Statistically significant at p � 0.05
*Statistically significant at p � 0.10

TABLE 10. NUMBER OF ARTMAP F2 CATEGORIES GENERATED FOR DIFFERENT
CLASS RESOLUTIONS

Class Label

1 2 3 4 5 6 7 8 9 10 Total

10 classes 14 5 12 28 9 4 5 40 4 39 160
23 classes 52 6 38 29 14 5 9 61 3 47 264
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classifier. The overall and individual user’s accuracies from
the two approaches were statistically different, suggesting that
ARTMAP is a superior method for identifying urban change and
intensification of urban areas.

The results also indicate that ARTMAP can achieve similar
accuracies for urban change using either coarse or fine resolu-
tion data. This indicates that the use of coarser resolution
training data may increase computational efficiency without
compromising accuracy. However, this finding should be
taken with caution, because the results are dependent on the
study area and definition of classes. Further analysis is re-
quired to investigate the extent to which these findings hold
true in other regions and for different class definitions. 
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