
Software Testability� The New Veri�cation�

Je�rey M� Voas Keith W� Miller

Reliable Software Technologies Corp� Department of Computer Science

Suite ��� Health Sciences Building ���

����� Sunset Hills Road Sangamon State University

Reston� VA ���	� Spring
eld� IL ���	�

���� ��������
���� ��������

jmvoas�isse�gmu�edu miller�eagle�sangamon�edu

fax�
���� ����	���

Abstract

Software veri�cation encompasses a wide range of techniques and activities that are geared towards

demonstrating that software is reliable� Veri�cation techniques such as testing provide a way to

assess the likelihood that software will fail during use� This paper introduces a di�erent type of ver�

i�cation that shows how likely it is that an incorrect program will not fail� Our veri�cation applies

fault�injection methods to predict where actual faults are more likely to hide� This veri�cation can

be combined with software testing to assess a con�dence that the code is not hiding faults�

Code that hides faults is di�cult to test� In order to minimize the problem of hidden faults�

we seek methods for identifying and isolating source code that is likely to hide faults� We also

introduce the notion of �information loss�� a characteristic that can be measured during the early

phases of design to suggest where the planned software is likely to harbor faults that will be di�cult

to uncover during testing�

Keywords

Software testing� software testability� fault� failure� reliability� probability of failure� software design�

for�testability�

�Supported in part by a National Research Council Nasa�Langley Resident Research Associateship and NASA
Grant NAG�������

�

� Introduction

Software veri�cation is often the last defense against disasters caused by faulty software develop�

ment� When lives and fortunes depend on software� software quality and its veri�cation demand

increased attention� As computer software begins to replace human decision makers� a fundamental

concern is whether a machine will be able to perform the tasks with the same level of precision as

a skilled person� If not� a catastrophe may be caused by an automated system that is less reliable

than a manual system� Therefore we must have a means of assessing that critical automated sys�

tems are acceptably safe and reliable� In this paper� we concentrate on a veri�cation technique for

assessing reliability�

The IEEE Standard Glossary of Software Engineering Terminology 	�

�� de�nes software ver�

i�cation to be the

�process of evaluating a system or component to determine whether the products of a

given development phase satisfy the conditions imposed at the start of that phase��

Restated� software veri�cation is the process that assesses the degree of �acceptability� of the

software� where acceptability is judged according to the speci�cation� Software veri�cation is

broadly divided into two classes
 dynamic software testing and formal veri�cation 	which typically

involves some level of static theorem proving�� Dynamic software testing is the process of executing

the software repeatedly until a con�dence is gained that either 	�� the software is correct and has

no more defects� which is commonly referred to as probable correctness ���� or 	�� the software

has a high enough level of acceptability� Testing can alternatively be subdivided into two main

classes
 white�box and black�box� White�box testing bases its selection of test cases on the code

itself� black�box testing bases its selection on some description of the legal input domain�

Static theorem proving is the mathematical process of showing that the function computed by

a program matches the function that is speci�ed� No program executions occur in this process�

and the end result is a binary value
 either the function computed by the program matches the

speci�cation or it does not� Problems arise in this rigorous process� because of questions concerning

program termination and the correctness of the rigorous process itself 	Who will prove the proof���

Furthermore� the process of completing such a proof can be more di�cult than writing the program

itself�

In this paper we describe a di�erent type of veri�cation that can complement both dynamic

testing and static theorem proving� This new type of veri�cation� which we will call �software

testability�� focuses on the probability that a fault in a program will be revealed by testing� We

de�ne software testability as the probability that a piece of software will fail on its next execution

during testing 	with a particular assumed input distribution� if the software includes a fault�

�

Veri�cation� by the standard IEEE de�nition� is a way of assessing whether the input�output

pairs are correct� Testability examines a di�erent behavioral characteristic
 the likelihood that the

code can fail if something in the code is incorrect� Computer science researchers have spent years

developing software reliability models to answer the question
 �what is the probability that this code

will fail�� Our testability asks a di�erent question
 �what is the probably this code will fail if it is

faulty�� Musa labels a similar measurement as the fault exposure ratio� K� in his reliability formulae

���� The empirical methods for estimating testability are distinct from Musa�s techniques� however�

Our research has emphasized random testing� because of its attractive statistical properties�

However� in full generality� software testability could be de�ned for di�erent types of testing 	e�g�

data �ow testing� mutation testing� etc��� The IEEE Standard Glossary of Software Engineering

Terminology 	�

�� de�nes testability as

���� the degree to which a system or component facilitates the establishment of test

criteria and the performance of tests to determine whether those criteria have been met�

and ��� the degree to which a requirement is stated in terms that permit establishment

of test criteria and performance of tests to determine whether those criteria have been

met��

Note here that in order to determine �the degree� you must have a �test criteria�� and hence

testability is simply a measure of how hard it is to satisfy a particular testing goal� Examples

of testing goals include coverage and complete fault eradication� Testability requires an input

distribution 	commonly called a user pro	le�� but this requirement is not unique to testability� any

statistical prediction of semantic behavior during software operation must include an assumption

about the distributions of inputs during operation ����

The reader should note that our de�nition of software testability di�ers from earlier de�nitions

of testability such as the IEEE de�nition above� In the past� software testability has been used

informally to discuss the ease with which some input selection criteria can be satis�ed during

testing� For example� if a tester desired full branch coverage during testing and found it di�cult

to select inputs that cover more than ��� of the branches� then the software would be classi�ed as

having poor testability� Our de�nition di�ers signi�cantly� because we are not just trying to �nd

sets of inputs that satisfy coverage goals� we are quantifying the probability that a particular type

of testing will cause failure� We focus our de�nition of testability on the semantics of the software�

how it will behave when it contains a fault� This is di�erent from asking whether it facilitates

coverage or is correct�

Software testability analysis is related to but distinct from both software testing and formal

veri�cation� Like software testing� testability analysis requires empirical work to create estimates�

Unlike testing� testability analysis does not require an oracle� Thus testing and testability are

�

complementary
 testing can reveal faults 	testability cannot� but testability can suggest locations

where faults can hide from testing 	something testing cannot do�� The next section explores how

testability analysis can be used in conjunction with testing and formal methods to give a clearer

view of developing software�

� Three Pieces of a Puzzle

Software testability� software testing� and formal veri�cation are three pieces in a puzzle
 the puzzle

is whether the software that we have has a high enough true reliability�� If we are lucky enough

to have a piece of software that 	�� has undergone enormous amounts of successful testing� 	��

has undergone formal veri�cation� and 	�� has high testability� then we have three pieces that �t

together to suggest that the puzzle is solved�high reliability is achieved��

Software testing� formal veri�cation� and software testability all o�er information about the

quality of a piece of software� Each technique supplies a unique perspective� di�erent evidence

that the analyst must take into account� Even with these three �clues�� the analyst is still making

guesses� but having all three clues is better than having only two�

As a hypothetical example of how the three analyses can work together� consider a system

that has �� modules� Each of the modules is tested with ��� random tests� and 	in their current

versions� all modules pass these tests� In addition� the system passed ��� random tests� Ten of

the modules� judged the most intricate and critical� are subjected to formal veri�cation at various

points in their development� Testability analysis reveals that � of the modules are highly insensitive

to testing� i�e�� testing is unlikely to �nd faults in these modules if faults exist� Only one of these

� modules has been formally veri�ed� At this point� veri�cation resources should concentrate on

the � modules that have low testability and have not been formally veri�ed� they are the most

vulnerable to hidden faults�

As another example� consider a system built entirely of formally veri�ed modules� Using a

development approach inspired by cleanroom� the analysts wait until after system integration to

do random system testing� During this testing� some faults are discovered and the code is repaired�

Regression testing and new random tests reveal no more failures� but testability analysis identi�es

several places in the code where testing is highly unlikely to reveal faults� These pieces of code are

subjected to further formal analysis and non�random tests are devised to exercise these sections

more extensively�

�Every system has a true �or �xed� reliability which is generally unknown� hence we try to estimate that value
through reliability modeling�

�There is no widely accepted threshold for when software changes from being reliable to being 	highly
 reliable�
however many use the ���� failures in a ��
hour �ight as that threshold� knowing that testing alone can never
demonstrate this degree of precision ����

�

These examples illustrate that testability information cannot replace testing and formal veri�ca�

tion� but they also suggest that testing and formal veri�cation should not be relied upon exclusively

either� Our view of software development and veri�cation is inclusive� The most e�ective software

practitioners will take advantage of all available information in order to build and assess quality

software� In the rest of this paper� we focus on software testability� but this discussion is always in

the context of a technique that is complementary to testing and formal veri�cation�

The remainder of this paper elaborates on three topics
 software testability� designing for testa�

bility� and sensitivity analysis� In the next section we describe in more detail how testability relates

to testing and formal analysis� Then we look at the mechanics of predicting testability at an early

stage of development� We describe the concept of �information loss�� a characteristic that can be

predicted from an initial design description of the function to be programmed� The information loss

characteristic provides insights that can be used to improve testability by basing software design�

for�testability heuristics on it� We will describe �sensitivity analysis�� a technique that quanti�es

behavioral information about the likelihood of faults hiding� Sensitivity analysis is dynamic and

empirical� relying on repeated executions of the original and mutations of its source code and data

states� Sensitivity analysis allows us to assess how much testability has been achieved by applying

design�for�testability schemes� The �nal section shows how the predictions of sensitivity analysis

can be included in estimates of software reliability�

� Software Testability� The Big Picture

To better provide a understanding of what we mean by software testability� consider two simple

analogies�

If software faults were gold� then software testing would be gold mining� Software testability

would be a geologist�s survey done before mining takes place� It is not the geologist�s job to dig

for gold� Instead� the geologist establishes the likelihood that digging at a particular spot would

be rewarding� A geologist might say� �This valley may or may not have gold� but if there is gold�

it will be in the top �� feet� and it will be all over this valley�� At another location� the geologist

might say� �Unless you �nd gold in the �rst �� feet on this plateau� there is no gold� However� on

the next plateau you will have to dig ��� feet before you can be sure there is no gold��

When software testing begins� such an initial survey has obvious advantages over testing blind�

Testability suggests the testing intensity� whereas the geologist gives the digging depth� Testability

provides the degree of di�culty which will be incurred during testing of a particular location to

detect a fault� If after testing to the degree speci�ed by testability we observe no failures� then we

�

can be reasonably sure that our program is correct��

In a second analogy� we illustrate how fewer tests can yield an equivalent con�dence in correct�

ness if we are sure the software will not hide faults
 imagine that you are writing a program for

scanning black and white satellite photos� looking for evidence of a large barge� If you are sure that

the barge will appear as a black rectangle� and that any barge will cover at least a �� by �� pixel

area in an image� then the program can use techniques that could not be used if the barge size were

not established beforehand� For example� assume that the original image has been subsampled so

that each pixel in the new image is the average of a �ve by �ve square of pixels in the original

image� This subsampled image could be scanned �� times more quickly than the original� with the

barge size guaranteed to be large enough� any barge would still be detectable in the lower resolution

image� 	The shape of a suspected barge could be determined by more detailed examination of the

original image at higher resolution�� But if a barge might exist in the image as a smaller rectan�

gle� then the low resolution image might hide the barge inside of one of its averaged pixels� The

lower bound on barge size makes the lower resolution image su�cient for locating barges� There

is a direct relationship between the minimum barge size and the amount of speed�up that can be

accomplished by subsampling�

Looking for a barge in the image is analogous to looking for faults in a program� instead of

examining groups of pixels� we examine the output from test case executions� If a fault always

will cause a larger proportion of inputs to fail during testing 	this is analogous to a bigger barge��

then fewer random tests will be required to reveal the fault 	a coarser grid can be used to locate

the barge�� If we can guarantee that any fault in a program will cause the program to fail for

a su�ciently large proportion of tests� then we can reduce the number of tests necessary to be

con�dent that no faults exist� These two analogies indicate why testability information is a useful

strategy complementary to testing� In the next section we discuss how to design testability into

your system�

� Designing for Testability� An Ounce of Prevention

Our goal is to assess software quality accurately enough to demonstrate whether or not is has high

quality� If we use black�box testing alone to assess software� an intractable amount of testing is

required to establish a very small probability of failure� 	We will use the variable � to represent

the true probability of failure�� To assess a probability of failure that is less than ���� 	i�e�� � �

���� failures�test� with

� con�dence� it can be shown that approximately ��� billion successful

executions 	tests according to the input distribution� are needed� Even when a foolproof automated

�By 	reasonably sure
 we suggest a colloquial con�dence rather than statistical con�dence� We discuss more
precise quanti�cations in a later section

�

oracle is available� the practical problems of such testing are clear� Furthermore� if during random

black�box testing the software does fail� then the software must be �xed and random black�box

testing must completely restart 	i�e�� we must ignore all previous successful executions and redo the

testing�� 	Statistics have shown that as much as ��� of all new code contains new faults�� Clearly�

we need to seek new methods that increase the e�ectiveness of testing�

To reduce the number of required tests to a more tractable number� one of two techniques are

available

�� Select tests that have a greater ability to reveal faults� Research into test coverages and

mutation adequate test sets seeks to �nd more e�ective individual tests and sets of tests�

�� Design software that has a greater ability to fail when faults do exist�

Designing programs to �fail big� when they have faults means that we must create programs that

	�� are likely to have larger proportions of the code exercised for each input� 	�� contain program

constructs that are likely to cause the state of the program to become incorrect if the constructs

are themselves incorrect� 	�� propagate incorrect program states into software failure� Software

design�for�testability addresses the issue of developing code that �fails�big�� this topic is the focus

of this section�

A problem with code�based veri�cation techniques is that they are applied late in the software

life cycle� If the code that exists at this point is �awed from incorrect or ine�cient design decisions�

then often little can be done during veri�cation to undo the mistakes without enormous additional

costs� This same problem exists for viewing testability only after the code is produced� But

testability can be addressed much earlier in the life�cycle�

In integrated circuit design� testability has long been viewed as a required characteristic� Inte�

grated circuit design engineers have a notion termed �observability�� a notion that is closely related

to software testability� Observability is the ability to view the value of a particular node that is

embedded in a circuit� In software� when modules contain local variables� you lose the ability to see

information in the local variables during functional testing�� In this sense� having local variables

in software is analogous to lowering observability in circuits�

Discussing the observability of integrated circuits� ��� states that the principal obstacle in testing

large�scale integrated circuits is the inaccessibility of the internal signals� One method used for

increasing observability in integrated circuits design is to increase the pin count of a chip� allowing

the extra pins to carry out additional internal signals that can be checked during testing� These

output pins increase observability by increasing the range of potential bit strings from the chip�

�We feel that this will become an issue in functional testing of object�oriented systems�

�

We can apply a similar notion to increasing the pin count during software testing � increasing the

amount of data state information that is checked during unit testing�

Information loss occurs when internal information computed by a program during execution

is not communicated in the program�s output� Information loss increases the potential for the

cancellation of data state errors and therefore decreases software testability� We divide information

loss into two broad classes
 implicit information loss and explicit information loss�

Explicit information loss occurs when variables are not validated either during execution 	by a

self�test� or at execution termination as output� Explicit information loss can be observed using a

technique such as static data �ow analysis� Explicit information loss frequently occurs as a result of

information hiding� although there are other factors that can contribute to it� Information hiding

is a design philosophy that does not allow information to leave modules that could potentially be

misused by other modules� Information hiding is widely accepted as good structured programming

practice� which we advocate� However� hiding internal information is not good for testability at

the system level� because the data in the local variables are then not available for revealing faults�

Implicit information loss occurs when two or more di�erent incoming parameters are presented

to a user�de�ned function or a built�in operator and produce the same result� As an example of this

at the operator level� consider the integer division computation a �� a div �� here� two di�erent

incoming values for a� � and �� both result in a being assigned �� Consider a user�de�ned function

that takes in two integer parameters and produces one boolean parameter� here� many di�erent

integer ��tuples are possible� while only ��� or ��� result� Now consider the computation a �� a �

� in which there is no implicit information loss� In these two examples� the potential for implicit

information loss occurring can be observed by statically analyzing the code� If a speci�cation

states that ten �oating�point variables are input to an implementation� and � boolean variables

contain the implementation�s output� then we know that implicit information loss will occur in an

implementation of this speci�cation� If they are written with enough information concerning their

domain and ranges� speci�cations can be used to estimate the degree of the implicit information

loss that will occur when the speci�cation is implemented�

��� The Domain�Range Ratio

Clues suggesting some degree of the implicit information loss that may occur during execution

may be visible from the program�s speci�cation� we use a speci�cation metric termed the �do�

main�range ratio� for suggesting a degree of implicit information loss� Recall that in the example

we were also able to observe implicit information loss by code inspection� Therefore� a speci�ca�

tion�s domain�range ratio only suggests a portion of the implicit information loss that may occur�

code inspection can give additional information concerning implicit information loss�

�

The domain
range ratio 	DRR� of a speci�cation is the ratio between the cardinality of the

domain of the speci�cation and the cardinality of the range of the speci�cation� We denote a DRR

by �
 �� where � is the cardinality of the domain� and � is the cardinality of the range� As

previously stated� this ratio will not always be discernible from a speci�cation� However� when the

DRR can be estimated� it gives important information about possible testability problems in the

code required to implement the speci�cation�

DRRs roughly predict a degree of implicit information loss� Generally as the DRR increases

for a speci�cation� the potential for implicit information loss occurring within the implementation

increases� When � is greater than �� previous research has suggested that faults are more likely

to remain undetected 	if any exist� during testing than when � � �� When implicit information

loss occurs� you run the risk that the lost information may have included evidence of incorrect data

states� Since such evidence is not visible in the output� the probability of observing a failure during

testing is somewhat reduced� The degree to which it is reduced depends on whether the incorrect

information is isolated to bits in the data state that are not lost and are eventually released as

output� As the probability of observing a failure decreases� the probability of undetected faults

increases�

Another research report that presents a similar conclusion concerning the relationship between

faults remaining undetected and the type of function containing the fault is ���� While performing

mutation testing experiments with boolean functions� Marick ��� noted that faults in boolean func�

tions 	where the cardinality of the range is �� were more apt to be undetected than faults in other

types of functions� Boolean functions typically have a great degree of implicit information loss�

This result supports the idea that testability and the DRR are correlated� Additional evidence

that correlation exists between implicit information loss and testability is currently being collected�

����� Correlating Implicit Information Loss and the DRR

Implicit information loss is common in many of the built�in operators of modern programming

languages� Operators such as div� mod� and trunc have high DRRs� Table � contains a set of

functions with generalized degrees of implicit information loss and DRRs� A function classi�ed as

having a yes for implicit information loss in Table � is more likely to receive an altered incoming

parameter and still produce identical output as if the original incoming parameter were used� a

function classi�ed as having no implicit information loss in Table � is one that if given an altered

incoming parameter would produce altered output� A yes in Table � suggests data state error

cancellation would occur� a no suggests data state error cancellation would not occur� In Table ��

all references to b assume it is a constant for simplicity� The in�nities in the table are mathematical

entities� but for any computer environment they will represent the cardinality of �xed length number

1 result16 results

100

98 89

67
75

95

70

72

a / b a div b

Domain A

Domain B

a b a b

Figure �
 There are four potential values for variable a and four potential values for variable b�
for a total of �� pairs of potential inputs� Notice that for these �� inputs� integer division always
produces the same output 	��� and real division produces �� unique outputs�

representations of �nite size�

Figure � illustrates the relationship between implicit information loss and the DRR� In Figure

�� we have �� 	a�b� input pairs that are presented to � functions
 one performs real division� the

other performs integer division� For the real division function there are �� unique outputs� and for

the integer division function there is one output� This example shows how the di�erences in the

DRRs of these two forms of division are correlated to di�erent amounts of information loss�

��� Explicit Information Loss� Harder to Find Early

Explicit information loss is not predicted by a DRR� Recall that explicit information loss is observed

through static code inspection� whereas the potential for implicit information loss can be predicted

from functional descriptions or code inspection� Explicit information loss may also be observable

from a design document depending on its level of detail� Explicit information loss is more dependent

on how the software is designed� and less dependent on the speci�cation�s 	input� output� pairs�

��

Function Implicit Information Loss DRR Comment

� f�a� �

�
� if a � �
a otherwise

yes �I ��I�� a is integer

� f�a� � a� � no �I ��I a is integer
� f�a� � a mod b yes �I � b testability decreases

as b decreases	 b �� �

 f�a� � a div b yes �I ��I�b testability decreases

as b increases	 b �� �
� f�a� � trunc�a� yes �R ��I a is real
� f�a� � round�a� yes �R ��I a is real

 f�a� � sqr�a� no � � �R ��R a is real
� f�a� � sqrt�a� no �R ��R a is real	 a � �
� f�a� � a�b no �R ��R a is real	 b �� �
�� f�a� � a� � no �I ��I a is integer
�� f�a� � even�a� yes �I � � a is integer
�� f�a� � sin�a� yes �I � ��� a is integer �degrees�	

a � �
�� f�a� � odd�a� yes �I � � a is integer
�
 f�a� � not�a� no � � � a is boolean
�� f�a� b� � �a�or�b� yes
 � � a	 b are boolean

Table �
 DRRs and implicit information loss of various functions� �I is the cardinality of the
integers� �R is the cardinality of the reals�

��� Design Heuristics

We now present several strategies for reducing the detrimental e�ects that information loss has on

testability�

����� Speci�cation Decomposition� Isolating Implicit Information Loss

A major advantage of using the DRR to guide development is that it is available very early in the

life�cycle� Although the DRR of a speci�cation is 	xed and cannot be modi�ed without changing

the speci�cation itself� there are ways of decomposing a speci�cation to reduce the potential of

data state error cancellation occurring across modules� During speci�cation decomposition� you

have hands�on control of the DRR of each subfunction� With this� you gain an intuitive feeling

	before a subfunction is implemented� for the degree of testing needed for a particular con�dence

that a module is propagating data state errors� The rule�of�thumb that guides this intuitive feeling

is
 �the greater the DRR� the more testing needed to overcome the potential for data state error

cancellation��

During a design� a speci�cation can be decomposed in a manner such that the program�s modules

are designed to either have a high DRR or a low DRR� By isolating modules that are more likely to

propagate incoming data state errors through them during program testing 	low DRR�� testing and

analysis resources can be shifted during module testing to modules that are less likely to propagate

��

incoming data state errors across them�

����� Minimizing Variable Reuse� Reducing Implicit Information Loss

One method for decreasing implicit information loss is to minimize the reuse of variables� For

instance� as we have already seen� a computation such as a �� sqr	a
 destroys the original value

of a� and although you can take the square root after this computation and retrieve the absolute

value that a had� you have lost the sign� Minimizing variable reuse is one attempt to decrease the

amount of implicit information loss�

Minimizing variable reuse requires either creating more complex expressions or declaring more

variables� If the number of variables is increased� memory requirements are also increased during

execution� If complex expressions are used� we reduce the testability when a single expression

represents what were previously many intermediate values� Although some literature supports

programming languages based on few or no variables� programs written in such languages will

almost certainly su�er from low testabilities� We advocate using more variables� and then making

more variables available during testing�

����� Increasing Out�Parameters� Reducing Explicit Information Loss

Consider the analogy where modules are integrated circuits and local variables are internal signals

in integrated circuits� This analogy allows us to see how explicit information loss caused by local

variables parallels the notion of low observability in integrated circuits� Since explicit information

loss suggests lower testabilities� we prefer� when possible� to lessen the amount of explicit informa�

tion loss that occurs during testing� And if limiting the amount of explicit information loss is not

possible� we at least have the bene�t of knowing where the modules with greater data state error

cancellation potential are before validation begins�

One approach to limiting the amount of explicit information loss is to insert write statements

to print internal information� This information must then be checked for correctness during each

test� A second approach is increasing the amount of output that these subspeci�cations return by

treating local variables as out�parameters during testing� A third approach inserts self�tests 	or

�assertions�� that are executed to check internal information during computation� Our research has

suggested that assertions are particularly useful for testability analysis� not only can assertions be

used to assure that a particular variable is correct or in range at some point during execution� but

a failed assertion also suggests the possibility that previous computations 	on which the variable

de�nition depends� might be erroneous� In this approach� messages concerning incorrect internal

computations are subsequently produced� so in terms of testability� the likelihood of fault hiding is

reduced�

��

These three approaches both produce two important results

�� The people formalizing the speci�cation are forced to produce detailed information about

the states of the internal computations� This should increase the likelihood that the code is

written correctly� and it forces the code to test itself�

�� The dimensionality of the range of the intended function is increased� which may increase the

cardinality of the range� thus reducing information loss�

These two approaches simulate the idea previously mentioned that is used in integrated circuits�

increasing the observability of internal signals ���� In advocating these approaches� we are not repu�

diating the practice of information hiding during design� However� when writing software such as

safety�critical software� there is a competing imperative
 to enhance testability� Information that

is not available during testing encourages undetected faults� and increased output discourages un�

detected faults� Perhaps an answer is to pattern software testing more closely on hardware testing

we should specify special output variables 	pins� that are speci�ed and implemented speci�cally

and exclusively for testing�

A disadvantage to these approaches is that for the approaches to be bene�cial� they all need

additional speci�ed information concerning the internal computations� Maybe the real message

of this research is that until we make the e�ort to better specify what must occur� even at the

intermediate computation level� testabilities and our assessed reliabilities will remain low� The

unfortunate conclusion of our design�for�testability research is that we must validate more internal

information if we hope to increase software testability� To validate more internal information�

we must have some way of checking this additional internal information� This requires that more

information be described in the speci�cation and requirements phase� If we are not willing to specify

these details at some point� we cannot expect to substantially improve reliability assessments�

� Sensitivity Analysis

The previous section described how we can improve software testability� But a question remains

�How can we measure the increase in testability�� This section brie�y presents a model for quan�

tifying software testability that is described in more detail in �����

Sensitivity analysis is based on separating software failure into three phases
 execution of a

software fault� creation of an incorrect data state� and propagation of this incorrect data state to a

discernible output� This three part model of software failure is referred to as PIE� for Propagation�

Infection� and Execution� There is a separate algorithm for each part of the PIEmodel
 	E�xecution

��

Analyzer� 	I�nfection Analyzer� and 	P�ropagation Analyzer��

In the rest of this section we give a brief outline of the three phases of sensitivity analysis�

For more details� see ����� To simplify explanations� we will describe each phase separately� but

in a production analysis system� processing for the phases would overlap� As with the analysis of

random testing� the accuracy of the sensitivity analysis depends in part on a good estimate of the

input distribution that will drive the software when it is in use�

Before a fault can cause a failure� it must be executed� In this paper we will concentrate

on faults that can be isolated at a single location in a program� A location can be de�ned as a

single high level language statement� one machine code instruction� or some intermediate amount

of computation� Our experiments thus far have de�ned a location as a piece of source code that

can change the data state 	including input and output �les and the program counter�� Thus an

assignment statement and an if statement de�ne a location� and a statement read	a�b
 de�nes

two locations� The probability of execution for each location is determined by repeated executions

of the code with inputs selected at random from the input distribution� The execution analyzer

estimates these execution probabilities�

If a location contains a fault� and if the location is executed� the data state of the execution may

or may not be changed adversely by the fault� If the fault does change the data state into a data

state that is incorrect for this input� we say the data state is infected� To estimate the probability

of infection� the second phase of sensitivity analysis performs a series of syntactic mutations on

each location� After each mutation� the program is re�executed with random inputs� each time the

monitored location is executed� the data state is immediately compared with the data state of the

original 	unmutated� program at that same point in the execution� If the state di�ers� infection

has taken place� The infection analyzer estimates the infection probability�

The third phase of the analysis estimates propagation� Again the location in question is mon�

itored during random tests� After the location is executed� the resulting data state is changed by

assigning a random value to one data item using a predetermined distribution� 	Research is ongoing

as to the best distribution to use for this random selection�� After the data state is changed� the

program continues executing until an output results� The output that results from the changed

data state is compared to the output that would have resulted without the change� If the outputs

di�er� propagation has occurred and a propagation probability can be estimated� The propagation

analyzer estimates these propagation probabilities�

Sensitivity analysis is a fault simulation�injection�based method that relies on the two assump�

tions which are admittedly �awed
 single fault and simple fault� The single fault assumption

says that the program contains a single fault� not multiple faults distributed throughout the pro�

�The acronym is PIE because EIP doesn�t spell anything� The authors regret any confusion this may cause�

��

gram� The simple fault assumption says that the fault exists in a single location� not distributed

throughout the program� Without these assumptions� the combinatorics of simulating classes of

distributed or multiple faults becomes intractable� Hence the fault classes that we simulate are

arti�cially restricted� Despite this theoretical weakness� in practice the empirical techniques have

yielded impressive experimental results 	see ������

Each phase of sensitivity analysis produces a probability estimate based on the number of trials

divided by the number of events that occurred 	either execution� infection� or propagation�� For

a random test to reveal a fault� execution� infection� and propagation must occur to result in a

failure� Thus the product of the mean of these estimates yields an estimate of the probability of

failure that would result if this location had a fault� If we instead take the minimum over all three

estimates and then obtain a product� we have a bound on the minimum probability of failure that

would result if this location had a fault�

Sensitivity analysis is a new� empirical technique� pilot experiments in the early �

�s were

done using hand coded syntactic mutations and only semi�automated data state mutations� The

complexity of the processing required for sensitivity analysis is quadratic in the number of code

locations� and therefore requires considerable bookkeeping and execution time� Since sensitivity

analysis does not require an oracle� it can be completely automated for programs of any size

although processing time can be a practical limit for large programs analyzed in a single block�

A fully automated and commercialized sensitivity analysis tool� PiSCES ��� has been built and

has been applied to systems as large as ���K SLOC� The tool can operate on larger systems� but

to our knowledge has not� The value of sensitivity analysis is generally two�fold
 	�� determining

how much system level testing is needed to gain a con�dence that faults are not hiding� and 	�� for

identifying those regions of the code of extreme low testability� where additional unit testing or other

V V resources should be applied� Additional bene�ts can be realized with slight modi�cations to

the senstivity analysis algorithms� For example� we have elsewhere described how to modify the

algorithms to increase fault�tolerance and improve software safety assessment� These and other

applications are outside of the scope of this paper�

In summary� we contend that the results of experiments in sensitivity analysis are su�cient to

motivate additional research and use with this technique� successful experiments have been shown

in ���� ��� We cannot guarantee that this new technique will make it possible to assess reliability

to the precisions required for life�critical software� However� we do think it is premature to declare

such an assessment impossible� The following sections argue that if software testability produces

accurate predictions� then it will be possible to combine random black�box testing with sensitivity

analysis to assess reliability more precisely than is possible with black�box testing alone�

��

� The �Squeeze Play�

Both random black�box testing and sensitivity analysis gather information about possible prob�

ability of failure estimates for a program� However� the two techniques generate information in

distinct ways
 random testing treats the program as a single monolithic black�box but sensitivity

analysis examines the source code location by location� random testing requires an oracle to deter�

mine correctness but sensitivity analysis requires no oracle because it does not judge correctness�

random testing includes analysis of the possibility of no faults but sensitivity analysis focuses on

the assumption that one fault exists� Thus� the two techniques give di�erent kinds of predictions

about the probability of failure�

Although the true probability of failure of a particular program 	conditioned on an input distri�

bution� is a single �xed value� this exact value is unknown to us� We therefore treat the probability

of failure as a random variable !� We then use black�box random testing to estimate a probability

density function 	pdf� for ! conditioned on an input distribution� We also predict a pdf for ! us�

ing sensitivity analysis� this prediction is conditioned on the same input distribution as the testing

pdf� but the pdf predicted using sensitivity analysis is also conditioned on the assumption that the

program contains exactly one fault� and that this fault is equally likely to be at any location in the

program�� The assumption of this single� randomly located error is a variation on the competent

programmer hypothesis�

Figures �	A� and �	B� show examples of two possible approximated ! pdf�s� For each horizontal

location �� the height of the curve indicates the estimated probability that the true probability of

failure of the program has value � �� The curve in Figure �	A� is an example of an estimated

pdf derived from random black�box testing� we assume that the testing has uncovered no failures�

As we test more and more� we expect those probabilities of failure near ��� to be more likely and

those closer to ��� to be less likely� Of course after only one test that produces the correct output�

Pr	� � ���� � ���� Details about deriving an estimated pdf for ! given many random tests are

given in ����

The curve in Figure �	B� is an example of an estimated pdf for ! that might be derived from

sensitivity analysis� Sensitivity analysis estimates at each location the probability of failure that

would be induced in the program by a single fault at that location� This pdf is conditioned on the

assumed input distribution� on the assumption that the program contains exactly one fault� and

on the assumption that each location is equally likely to contain that fault�

We have marked interval estimates for each estimated pdf� If the interval marked between

��� and "� includes
�� of the area under the estimated pdf in Figure �	A�� then according to

����� formalizes the method employed to �nd a predicted probability of failure from sensitivity analysis�

��

γ

θ

(B)

(A)

0 1

10

Figure �
 	A� The mean of the estimated pdf curve� "�� is an estimate of the probability of failure�
	B� "� is an prediction of the minimum probability of failure using sensitivity analysis�

random testing the actual probability of failure is less than "� with a con�dence of
��� Similarly�

if the interval in Figure �	B� includes ��� of the area under the estimated pdf� then according to

sensitivity analysis� if there exists a fault� then it will imply a probability of failure that is greater

than "� with con�dence of
���

If there exists a fault and it induces a near�zero probability of failure� testing is unlikely to

�nd that error� Locations that have sensitivity estimates very close to zero are troubling in an

ultra�reliable application� However� a �fault� that induces a probability of failure 	pof� of exactly

� is technically not a fault at all � no failures will be observed with such a fault� If there are no

faults in a program� then the true probability of failure is � 	i�e�� � � ����� and ultra�reliability 	or

�correctness�� has been achieved� Figure �	A� suggests that if there is a fault� it is likely to induce

a small probability of failure� Figure �	B� suggests that tiny impact faults 	meaning those that

cause the program to fail with probabilities that are less that "�� are unlikely� We now attempt to

quantify the meaning of the two estimated pdfs taken together�

Hamlet has derived an equation to determine what he calls �probable correctness� ���� When

��

T tests have been executed and no failures have occurred� then

C � Pr	� � "�� � �� 	�� "��T 	��

where C is probable correctness� � is the true pof� "� is some approximation of �� and � � "� � ���

� �C is the likelihood that � � "�� meaning that we have been fooled into thinking that � � "��

when really � � "�� Let � represent the impact caused to the true pof by the smallest fault in the

program� then � is the smallest possible non�zero pof for the program if all other independent faults

were removed� If there are other faults� � � �� � is assumed to be unknown to us� Let "� represent

the prediction of � from sensitivity analysis according to our code� the testing distribution� D� and

the fault classes that sensitivity analysis simulated� Note that one of the following situations is

true� but we cannot know which it is
 "� � � or � � "�� After using T � test cases to �nd "�� we have

con�dence C�

C � � Pr	� � "�� � �� �e��T
�
�
�

	��

"� is obtained by subtracting a small fudge factor � to the numerical estimate of � found via

sensitivity analysis using T � test cases� Given that actual pofs in the interval 	��"�� are unlikely� our

con�dence that � � ��� is just

Pr	� � ���� � �� �	�� C�� # Pr	� � "���� 	��

where Pr	� � "�� is the probability that we failed to correctly assess the minimum pof induced by

any fault in our program from the fault classes that we simulated�� This probability is a function

of the fault classes that were simulated and the sample size of test cases from D that were used

during sensitivity analysis� Realize that there could be a fault in our program 	from a fault class

not simulated� that has a smaller impact on � than the fault classes that we did consider�

To better explain equation �� assume that we have tested T times and found no errors� Assume

further that sensitivity analysis has selected "� as the smallest pof induced by any of the faults it

simulated� We will use "� as a reference point for establishing a con�dence in this software� Trivially�

� � Pr	� � �� # Pr	� � � � "�� # Pr	� � "�� �� Pr	� � ��

�� Pr	� � � � "��� Pr	� � "��

�Hamlet calls C a measure of probable correctness� but it would be called a con�dence in correctness if the
equations were cast in a traditional hypothesis test�

�Assessing Pr�� � ��� is out of the scope of this paper� To do so requires two additional probabilities� ��� the
probability of an actual fault causing a lower impact to the actual failure probability than ��� and ��� the probability
that the order of magnitude of �� is too precise for the number of input values used in determining ��� which is a
statistical approximation error� The second of these problems is partially formalized in ����

��

Thus we can estimate the probability that the program is correct by estimating Pr	� � � � "�� by

sensitivity analysis and by estimating Pr	� � "�� using Hamlet�s probable correctness equation and

T �

The goal of the �Squeeze Play� model is to push "� towards "� in Figure � when T is �xed

and con�dence is high ���� As "� approaches or exceeds "� we can be increasingly con�dent that

the software is correct� As an example of equation �� suppose that we have a program with

three independent faults� with impacts to � of
 ������� �������� and ��������� In this situation�

� � ��������� and � � ��������� Suppose that "� � ��������� In this situation� "� � �� but � � "��

If C� is �xed close to ��� 	meaning that the T � we will try is large enough with respect to "��� then

the likelihood that the program will fail at least once in T tests is also close to ���� and hence

we are unlikely to be able to apply equation � since a failure should occur� Now suppose that

we remove the faults with pofs of ������ and ������� after observing one or more failures� and

when we reperform sensitivity analysis on the modi�ed program� "� is still ���������� Again we

will test this code T � times in order to �x C � close to ���� Since � � "�� Pr	� � "�� � ��� and

Pr	� � ���� � ���� Given that we cannot know the probability of a true fault causing a lower

impact to the actual failure probability than "� 	without knowing where all of the faults are�� the

best that we can say about a con�dence in absolute correctness 	based on T successful tests and

"�� is that we have con�dence C�� that the true probability of failure is ��� where

C��
� �� Pr	� � � � "��� Pr	� � "�� � �� ��e��T

��� # 	�� "��T � 	��

In this section we have shown one method for combining testability analysis with testing results

to sharpen an estimate of the true pof� This use of testability measurement here is essentially

a clean�up operation� a method of assessing whether or not software has achieved a desired level

of reliability� We believe that testability assessment is more useful earlier in the development of

software� This idea is dramatized in Table � which gives you a feeling for how expensive testing to

di�erent levels of con�dence is given di�erent degrees of testability�

	 Conclusions

Our research suggests that software testability clari�es a characteristic of programs that has been

largely ignored� We think that testability o�ers signi�cant insights that are useful during design�

testing� and reliability assessment� In conjunction with existing testing and formal veri�cation

methods� testability holds promise for quantitative improvement in statistically veri�ed software

quality�

�In this program� we now have a single fault� so � � � � ���������

�

T "� C�

� ��� ���
�� ��� ��

��� ���� ��

�
� ���� ��
�

������� ���� ��

��������

 ���� ��

�
��������� ���� ���
�����������
� ���� ��

��

��������� ���� ��
�

Table �
 Various T s� "�s� and C�s�

We are particularly interested in designing software to increase its testability� Ideally� a design

process begins with a 	functional description� input distribution� pair that speci�es the intended

software� It may be that a theoretical upper bound exists on the testability that can be achieved for

a given 	functional description� input distribution� pair� If we can change the functional description

to include more internal information� we should be able to increase that upper bound� Although

the existence of an upper bound on testability is mentioned solely as conjecture� our research using

sensitivity analysis and studying software�s tendency to not reveal faults during testing suggests

that such exists� We challenge software testing researchers to consider this conjecture�

A given piece of software will or will not hide a given fault from testing� We have found that

it is possible to examine this code characteristic without knowing if a particular fault exists in

that software� and without reference to correctness� Since it does not rely on correctness� this

characteristic� software testability� gives a new perspective on code development�

We have brie�y described one dynamic technique� software sensitivity analysis� for predicting

software testability� Sensitivity analysis has yielded promising results in several experiments �����

research and practical application of this technique continues� Perhaps other more e�ective or

more e�cient testability measurement techniques will be discovered in the future� but whatever

techniques are employed to measure testability� we are convinced that this inherent software char�

acteristic will become an important factor to consider during software development and assessment�

References

��� NEIL C� BERGLUND� Level�Sensitive Scan Design Tests Chips� Boards� System� Electronics�

March �� �
�
�

��� R� BUTLER AND G� FINELLI� The infeasibility of experimental quanti�cation of life�critical

software reliability� Proceedings of SIGSOFT ���
 Software for Critical Systems 	December

��

���� �

��� New Orleans� LA�� ������

��� RICHARD G� HAMLET� Probable Correctness Theory� Information Processing Letters� ��	��
���

��� April� �
���

��� R� HAMLET AND J� VOAS� Faults on Its Sleeve
 Amplifying Software Reliability Assessment� In

Proc� of ACM SIGSOFT ISSTA����� pages �
�
�� Cambridge� MA� June �

��

��� BRIANMARICK� Two Experiments in Software Testing� Technical Report UIUCDCS�R�
�������

University of Illinois at Urbana�Champaign� Department of Computer Science� November �

��

��� JOHN D� MUSA� ANTHONY IANNINO� AND KAZUHIRA OKUMOTO� Software Reliability Measurement

Prediction Application� McGraw�Hill� �
���

��� K� MILLER� L� MORELL� R� NOONAN� S� PARK� D� NICOL� B� MURRILL� AND J� VOAS� Estimat�

ing the Probability of Failure When Testing Reveals No Failures� IEEE Trans� on Software

Engineering� ��	��
������ January �

��

��� J� VOAS� K� MILLER� AND J� PAYNE� A Comparison of a Dynamic Software Testability Metric to

Static Cyclomatic Complexity� In Proc� of �nd Int�l� Conf� on Software Quality Management�

Edinburgh� Scotland� July �

��

�
� J� VOAS� C� MICHAEL� K� MILLER� Con�dently Assessing a Zero Probability of Software

Failure� In Proc� of the ��th International Conf� on Computer Safety� Reliability� and Security�

October ����
� �

�� Poznan� Poland�

���� J� VOAS� PIE
 A Dynamic Failure�Based Technique� IEEE Trans� on Software Engineering�

��	��
�������� August �

��

��

