
Abstract
The impact of intra-class spectral variability on the estima-
tion of sub-pixel land-cover class composition with a linear
mixture model is explored. It is shown that the nature of
intra-class variation present has a marked impact on the
accuracy of sub-pixel class composition estimation, as it
violates the assumption that a class can be represented by a
single spectral endmember. It is suggested that a distribution
of possible class compositions can be derived from pixels
instead of a single class composition prediction. This
distribution provides a richer indication of possible sub-
pixel class compositions and highlights a limitation for
super-resolution mapping. Moreover, the class composition
distribution information may be used to derive different
scenarios of changes when used in a post-classification
comparison type approach to change detection. This latter
issue is illustrated with an example of forest cover change in
Brazil from Landsat TM data.

Introduction
Remote sensing has been commonly used as a source of
information on land-cover and land-cover change. Unfortu-
nately, the accuracy of both land-cover mapping and
monitoring activities is often limited by the presence of
mixed pixels. A mixed pixel occurs when the area repre-
sented by the pixel encompasses more than one land-cover
class (Fisher, 1997). The proportion of image pixels that are
mixed can be large and generally increases with a coarsen-
ing of the spatial resolution of the sensor used to acquire 
the imagery. Thus, the mixed pixel problem occurs most
severely in coarse spatial resolution data sets. Unfortunately,
these data sets are widely used in the mapping and monitor-
ing of large areas, applications where remote sensing has
perhaps its greatest potential as a source of basic environ-
mental information. Since a mixed pixel represents an area
of more than one land-cover class, a mixed pixel cannot be
appropriately represented by a conventional hard approach
to image classification, and this can lead to substantial error
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in land-cover mapping from remotely sensed data. This error
may propagate into studies of land-cover dynamics, espe-
cially if based on post-classification comparison. The errors
arising from mixed pixels can be very large, with, for
example, Skole and Tucker (1993) reporting that deforesta-
tion may be over-estimated by approximately 50 percent if
coarse spatial resolution imagery are used. In order to derive
accurate land-cover information researchers need to address
the mixed pixel problem. One approach is to use fine spatial
resolution imagery, and so reduce the proportion of mixed
pixels. This can be a very effective approach but is far from
problem-free. The imagery may, for instance, be costly to
acquire and considerable pre-processing could be necessary
to inter-calibrate and mosaic the set of images required to
cover the study area. An alternative approach to addressing
the mixed pixel problem is to attempt to derive sub-pixel
scale information from the coarse spatial resolution imagery.

Sub-pixel scale land-cover information is typically
derived by unmixing the spectral response of mixed pixels
to indicate their class composition. A variety of methods
for estimating the class composition of mixed pixels have
been applied to remotely sensed data, including the linear
mixture model and soft or fuzzy classifications (e.g.,
Foody, 1996; Bateson et al., 2000; Small, 2004). The
output of these analyses is typically a set of fraction
images, one per-class, that indicate the estimated propor-
tion of the pixel’s area covered by a class. These fraction
images can yield accurate estimates of class composition.
They also open the door to the representation of environ-
mental continua and the detection of land-cover modifica-
tions and conversions when used in post-classification
analyses (Foody, 2001; Haertel et al., 2004). The sub-pixel
information also forms the basis of super-resolution
mapping, in which the geographical location of the
estimated class fractions is located within each pixel’s area
to yield a thematic map at a finer spatial resolution than
the imagery used in its derivation (Tatem et al., 2001;
Mertens et al., 2006; Muslim et al., 2006; Boucher and
Kyriakidis, 2006). Although sub-pixel land-cover composi-
tion estimation and analyses such as super-resolution
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mapping on which they are based can reduce some of the
problems associated with mixed pixels there are still
concerns. In particular, the accuracy of sub-pixel land-
cover composition estimation may often be low. For
example, in many studies there is a very large degree of
scatter around the regression line between the actual and
predicted class compositions (Carpenter et al., 1999; Jug et
al., 2003; Peterson and Stow, 2003; Liu and Wu, 2005;
Song, 2005). This is clearly a major limitation to studies
seeking to estimate class fractional cover and its change
over time or the sub-pixel scale spatial distribution of
classes in applications such as super-resolution mapping.

The interpretation and use of sub-pixel scale land-cover
information typically places great confidence on the estimated
class cover proportions. For example, in using a pair of soft
classifications for change detection the estimated class
proportions are typically compared directly (Foody, 2001;
Haertel et al., 2004). In super-resolution mapping, some
approaches strive to maintain the class proportion informa-
tion output from a soft classification (Tatem et al., 2001;
Muslim et al., 2006). This trust in the single set of class
proportion predictions may be unwise. In particular, this trust
often seems to be based on an implicit assumption that a
class can be represented by a single spectral endmember. This
is clearly unrealistic as classes typically display a degree of
spectral variability. Indeed, it is known that the level of intra-
class variation can impact negatively on unmixing analyses
(e.g., Petrou and Foschini, 1999; Rogers and Kearney, 2004)
and approaches to refine basic unmixing methods to accom-
modate for this have been developed (Bateson et al. 2000;
Song, 2005). However, it is still common to see basic
approaches to unmixing being used and the sub-pixel class
composition estimates derived used in a manner that places
great confidence in their accuracy. This paper aims to briefly
explore the impacts of class spectral variability on unmixing
and highlight its implications for analyses based on soft
classification outputs such as the detection of land-cover
change and super-resolution mapping.

Data and Methods
Two data sets were used. First, to control the analysis, a
simulated data set was used to illustrate and explore
the effect of class spectral variability on sub-pixel class
composition estimation. The data set comprised three
classes and, to accommodate for a dimensionality con-
straint in unmixing (Settle and Drake, 1993), four simu-
lated spectral wavebands. For simplicity, the spectral
response of each class was normally distributed in each
waveband. The spectral response of the classes was,
however, varied in the experiment to illustrate the impacts

of differences in intra-class variation, including co-varia-
tion, in spectral feature space on the accuracy of sub-pixel
class composition estimation and the key parameters
describing the data are summarized in Table 1. Here, the
linear mixture model (Settle and Drake, 1993) was used as
a convenient tool to derive the sub-pixel scale information
on class composition. For illustrative purposes, the data
were also subjected to a principal components analyses,
and the first two components that explained most of the
variation in the data set are used to display the classes in
feature space. The accuracy of the sub-pixel class composi-
tion predictions was assessed through the correlation with
the known class compositions and root mean squared error
(RMSE).

A series of analyses were undertaken with the simulated
data set. Initially, the class centroids were taken to define
the class endmember spectra. Although other means of
defining the endmembers exist, and it is well established
that endmember definition can be difficult (Theseira et al.,
2003; Small, 2004), the precise means of endmember
definition is not important. Irrespective of the means of its
derivation, the key concern is that a single spectrum is taken
to represent the class. Intra-class variation is, therefore,
essentially ignored. In later analyses, a multitude of linear
mixture models were applied. In this, every pixel in the
training set was used to provide the endmember spectrum
for the analysis. By unmixing the spectral response of a
pixel many times with different endmembers a series of sub-
pixel class composition estimates could be derived for a
pixel of any given spectral response. As a result of this it
was, therefore, possible to form a distribution of sub-pixel
estimates for each pixel.

To illustrate the impacts of intra-class spectral variation
on sub-pixel class composition estimation and explore its
implications some analyses of real remotely sensed data
were undertaken. Here attention focused on a common type
of analysis in a major environmental science context: the
assessment of tropical deforestation. Attention was focused
on a small region of Para in Brazil where forest clearance
had occurred. Two Landsat TM images of the region, before
and after the clearance, were acquired (Figure 1). In these
images the region cleared of forest cover is evident. These
TM images were classified into forest and non-forest visually
and used as the reference data for the analyses. The images
were then degraded spatially to 300 m spatial resolution
(Figure 2), comparable to the spatial resolution of medium
spatial resolution systems such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Medium Resolution
Imaging Spectrometer (MERIS). For each pixel in the spa-
tially degraded imagery, sub-pixel class composition esti-
mates were derived. These were derived using 90 training
sites to characterize each of the forest and non-forest
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TABLE 1. SUMMARY OF SIMULATED DATA

Variance-covariance matrix

Class Mean Small Variability Medium Variability Large Variability

A [380 490 300 320]

B [310 335 235 260]

C [250 410 180 390]

�1024 800 640 800
800 1600 720 1024
640 720 784 720
800 1024 720 1600

��64 50 40 50
50 100 45 64
40 45 49 45
50 64 45 100

��4 3 2 3
3 6 3 4
2 3 3 3
3 4 3 6

�
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Figure 1. The Landsat TM imagery used: (a) July 1984 and (b) July 1988.

Figure 2. The spatially degraded imagery: (a) 1984, and (b) 1988.

TABLE 2. CLASS DESCRIPTIONS FOR THE 1984 IMAGERY

Class Mean Variance-covariance Matrix

Forest [76.830 51.250 12.715]

Non-forest [71.883 96.635 34.554] �
37.197 �24.173 �11.818

�24.173 320.975 177.878
�11.818 177.878 100.546

�

�
11.503 6.033 1.251
6.033 5.885 1.408
1.251 1.408 0.362

�

classes, with endmembers defined initially as the class
centroids for input to a basic linear mixture model. The
centroids, however, do not fully describe the classes
spectrally; the spectral response of the classes in the two
images are summarized in Tables 2 and 3. The analyses
were then repeated many times with the spectral response
of the individual training pixels used to define the end-
member spectra so that a distribution of possible sub-pixel
class composition could be derived for each pixel in the
simulated coarse spatial resolution imagery. The distribu-
tional information could be used to indicate the variety of
possible class compositions with, for example, the inter-
quartile range or deciles used to summarise key characteristics.
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two class compositions highlighted in Figure 3. Indeed, for
any one point in feature space there are a variety of possible
class compositions that could be associated with the spectral
response linked with that location. The variety of possible
compositions will be a function of the degree of intra-class
variation and will impact on the accuracy of the sub-pixel
estimation using a conventional linear mixture model. This
is illustrated in Figure 4 in which the linear mixture model
used the classes defined in Table 1 as endmembers. Note,
that the scatter in the relationships between predicted and
actual class composition increases with an increase in the
degree of intra-class spectral variation, reducing the accu-
racy of the sub-pixel class composition estimates derived
(Table 4). The amount of scatter observed in the relation-
ships, even when the spectral intra-class variability was
large, is comparable to that reported in other studies (e.g.,
Carpenter et al., 1999; Jug et al., 2003; Peterson and Stow,
2003; Liu and Wu, 2005; Song, 2005).

From Figure 3 it is apparent that for any pixel extracted
from the imagery, a distribution of possible class composi-
tions could be derived. The nature of this distribution will
depend on the location of the pixel in feature space and the
degree of intra-class variation and class co-variation present.
Figure 5 shows the distribution of possible class composi-
tions for a series of pixels located in feature space for three
scenarios based on the class descriptions summarised in
Table 1. These scenarios were (a) the description repre-
sented the means and medium variability variance-covari-
ance matrix in Table 1, (b) the same general set of descrip-
tions but with a four-fold increase in the degree of
intra-class variability of class C, and (c) finally, the first
scenario repeated but with the distribution of class C
rotated, for illustrative purposes, 90° in feature space. Note
that for each location in feature space a distribution of
possible compositions is derived and that the shape of this
distribution is a function of the degree of intra-class varia-
tion (compare especially the distributions for transects iii
and v highlighted in Figure 5) and the degree of co-variation
(compare especially the distributions for transects iii, v, and
vi in Figure 5). Given these results and, especially the
impacts on sub-pixel class composition estimation accuracy
(e.g., Table 4), it seems unwise to place great trust on the
single class composition prediction for a pixel that is
conventionally derived in unmixing/soft classification
studies. Instead it would seem more sensible to recognise
that a distribution of compositions is possible and utilise
that in subsequent analyses.

To illustrate the impacts of intra-class spectral variation
on analyses of remotely sensed data attention turned to the
estimation of sub-pixel composition and change over time
from the Landsat TM data (Figure 2). The forest class and, in
particular, the more heterogeneous non-forest class both
exhibited a degree of variation in feature space (Figure 6).
Using the centroids of each class as endmembers, the class
composition of pixels was estimated using a linear mixture
model. The accuracy of the sub-pixel estimation was
evaluated and significant relationship between actual and
predicted class cover observed, albeit with a large degree of
scatter (Figure 7). Comparisons of the class composition
estimates derived from the two time periods were also
derived to estimate the sub-pixel scale change in class
composition in time (Figure 8).

As with the simulated data set, it was possible to
derive a distribution of class composition estimates for
each pixel. Comparison of the distributions derived at the
two time periods may result in a different interpretation to
that derived through comparison of the single class compo-
sition estimate derived from a standard sub-pixel analysis.
This is illustrated for seven pixels in Figure 9. The direct
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Figure 3. Location of the classes defined by Table 1
and three mixed class composition scenarios in the
feature space defined by the first two principal com-
ponents. The mixed compositions are defined in
terms of the percentage cover of class A:B:C. Note
the large area of overlap between the 33:33:33 and
30:30:40 mixtures.

TABLE 3. CLASS DESCRIPTIONS FOR THE 1988 IMAGERY

Class Mean Variance-covariance Matrix

Forest [72.232 51.792 9.730]

Non-forest [62.003 94.035 29.137] �
42.327 �32.492 �17.513

�32.492 159.129 80.585
�17.513 80.585 42.132

�

�
8.534 4.070 0.614
4.070 5.626 1.192
0.614 1.192 0.291

�

The outputs of the unmixing analyses were also used to derive
super-resolution maps using a Hopfield neural network (Tatem
et al., 2001).

Results and Discussion
Figure 3 shows the location of the classes defined by the
means and, what is termed here, the medium variability
variance co-variance matrix (as defined in Table 1) in the
feature space of the simulated data set. As expected, each
class occupies an area of the feature space. A class clearly
cannot be adequately represented by a single spectral
endmember, an implicit assumption in much unmixing
research. Note also that as a consequence of the intra-class
variation, pixels with a particular class composition would
also occupy an area of feature space. The distributions for
class composition mixtures shown in Figure 3 were derived
by using each training pixel’s spectrum as an endmember in
a series of linear mixture model analyses. More critically,
however, it is apparent from Figure 3 that any one point in
feature space could be associated with a variety of class
compositions. Note, for example the area of overlap between
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TABLE 4. ACCURACY OF PREDICTIONS DEPICTED IN

FIGURE 4 DERIVED WITH (a) LOW, (b) MEDIUM AND

(c) LARGE VARIANCE (TABLE 1)

Class r RMSE

(a) A 0.9994 0.0120
B 0.993 0.0133
C 0.998 0.0072

(b) A 0.9930 0.0407
B 0.9880 0.0533
C 0.9963 0.0310

(c) A 0.8723 0.1691
B 0.8621 0.1766
C 0.9588 0.1023

Figure 4. The impact of intra-class variability on the accuracy of unmixing. Note that the spread of the
data in the scatterplots increases with the degree of intra-class variation (left to right in the diagram).
The classes are defined in Table 1: (a) location of the classes in feature space, (b) relationship between
predicted and actual cover for class A, (c) relationship between predicted and actual cover for class B,
and (d) relationship between predicted and actual cover for class C.

comparison of the single predictions from a standard
unmixing analysis yields a single estimate of the amount of
sub-pixel land-cover change (Table 5). The apparent
precision of the estimated amount of change could be
problematic, leading potentially to misinterpretation and
error. For example, comparison of the class composition
distributions derived with a Kolmogorov-Smirnov test
highlights an instance in which an apparent 6.6 percent
cover change was associated with distributions that did not
differ significantly (Table 5). Moreover, the distributions of
class composition estimates provided a richer description
of the class composition that may allow the change to be
viewed from different perspectives. For example, the
danger in using the single prediction from a standard
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Figure 6. Location of the classes in feature space: (a) 1984, and (b) 1988.
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Figure 5. Class composition distributions from the mixing of the classes defined in the text. Histograms
show distribution of cover for a class at various locations in feature space and particularly along transects
running between the class centroids.

application of the linear mixture model could be recog-
nized and the distributions used to indicate change. This
could be taken from a range of perspectives. So rather than
directly compare single predictions (Figure 8c), one could,
for instance, focus on the upper and lower quartiles of the
distributions to derive what could be considered by some
to be a relatively optimistic (or good) and pessimistic (or
bad) case scenarios of change (Figure 10). This provides a

useful extension and qualification to the standard use of
single prediction estimates.

The inappropriateness of placing great confidence on
the single class composition prediction typically generated
in a soft classification for super-resolution mapping is
illustrated in Figure 11. A boundary line to separate the
forest from non-forest classes may be defined from a
classification output. For a hard classification, this line is
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Figure 7. Relationships between predicted and actual class proportional cover: (a) 1984, and (b) 1988.

fitted between pixels allocated to the different classes,
resulting in an unrealistically jagged boundary (Figure 11c).
A refinement on this representation is to produce a super-
resolution map based on the outputs of the soft classifica-
tion. Here, a Hopfield neural network (Tatem et al., 2001)
was used to derive a super-resolution representation (Figure
11d). Although the super-resolution approach yielded a
more accurate and appropriate representation, it quite rigidly
used the sub-pixel class composition estimates derived from
the conventional mixture model. In reality, since a distribu-
tion of possible class compositions may be derived for each
pixel, it may be preferable to be aware of the range of
possible boundary positions. To provide a guide to this,
Figure 11e shows the location of the boundary determined
using the 10th and 90th deciles of the class composition
distributions generated. This type of information could be
used to view the boundary from different perspectives (e.g.,
a conservative or perhaps a pessimistic viewpoint on forest
cover). Critically, Figure 11e highlights that a range of
possible boundary locations may be defined and that the
width of the zone containing its likely location may vary
along its length. As well as indicating a degree of uncer-
tainty in boundary location this result also indicates
potential problems for the derivation of estimates of class

extent and change that are dependent on the defined
boundary. Awareness of the distribution of class composi-
tion estimates for pixels may, therefore, allow a richer and
more qualified assessment of land-cover issues at a sub-
pixel scale.

Soft classification analyses have attracted considerable
attention as a means of reducing the mixed pixel problem
that is often encountered in remote sensing applications.
The standard output of a soft classification analysis for an
image pixel comprises an estimate of the sub-pixel class
composition in which there is a single predicted fractional
coverage for each class. The apparently precise estimated
coverage for a class may be mis-leading, as a variety of class
mixtures could be associated with a particular spectral
response. Thus, for each pixel, it may sometimes be more
appropriate to recognize that a distribution of possible
coverage may be derived for each class. The width of this
distribution is a function of the degree of intra-class
spectral variation present and will impact on the use of the
soft classification output. As illustrated in the example, the
nature of the distribution may impact on change detection
derived through post-classification analysis or on some
super-resolution mapping applications. Although the exact
nature of the results derived are a function of the classification
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algorithm and endmember definitions used the results
highlight a common problem in soft classification and later
analyses based upon it such as super-resolution mapping.

Summary and Conclusions
In much sub-pixel scale analysis in remote sensing an assump-
tion made implicitly is that the classes may be described by a
single endmember. Following from this assumption, great trust
is placed in the single class composition prediction made in
spectral unmixing. However, class spectral variability means

that no single spectrum can describe a class adequately. A
consequence of this is that a distribution of possible class
compositions exists for each pixel. It has been shown here that
the accuracy of sub-pixel class composition estimation is a
function of the degree and nature of intra-class spectral
variation present in the data set. In addition some implications
of this situation for later analyses such as change detection
and super-resolution have been illustrated. It is suggested that
the distribution of possible class composition predictions
could be used to provide a richer interpretation of sub-pixel
land-cover, change, and location.

Acknowledgments
We are grateful to the GLCF facility at the University of
Maryland for the Landsat sensor imagery and the Viet-
namese government for a scholarship to HTXD to study at
the University of Southampton while on leave from Hanoi
University of Mining and Geology. The research reported
was undertaken while GMF was at the University of
Southampton. We are grateful to the three referees for their
comments on the original manuscript.

References
Bateson, C.A., G.P. Asner, and C.A. Wessman, 2000. Endmember

bundles: A new approach to incorporating endmember variabil-
ity into spectral mixture analysis, IEEE Transactions on
Geoscience and Remote Sensing, 38:1083–1094.

Boucher, A., and P.C. Kyriakidis, 2006. Super-resolution land-cover
mapping with indicator geostatistics, Remote Sensing of
Environment, 104:264–282.

Figure 8. Sub-pixel estimates and change detection: (a) sub-pixel forest cover estimate 1984, (b) sub-
pixel forest cover estimate 1988, (c) Difference (1984–1988) in forest cover estimates, (d) change
assessed if sub-pixel estimates placed in classes of 0.1 (10 percent) cover width, (e) D value from
Kolmogorov-Smirnov test, and (f) actual change (1984–1988).

TABLE 5. SUMMARY OF CHANGES BASED ON ACTUAL AND SINGLE SUB-
PIXEL CLASS COMPOSITION ESTIMATES FROM A LINEAR MIXTURE MODEL

USING CLASS CENTROIDS AS ENDMEMBERS FOR THE CASES ILLUSTRATED IN

FIGURE 9. THE D VALUE WAS DERIVED FROM A KOLMOGOROV-SMIRNOV

TEST, WITH A CRITICAL VALUE OF 0.211 AT 95 PERCENT LEVEL OF

CONFIDENCE

Change Estimated

Case Ground Data Soft Classification D

a 0.00 0.026 0.189
b 0.00 0.046 0.244
c 0.00 0.066 0.211
d 0.05 0.102 0.322
e 0.62 0.371 0.878
f 0.41 0.506 0.856
g 0.84 0.751 0.978

SRS-4.qxd  7/10/07  2:59 PM  Page 930



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Augu s t  2007 931

Figure 9. Sub-pixel class composition distributions for seven pixels derived from 1984
and 1988 image together with a graphical comparison of their difference in cumulative
distributions. Summary statistics are given for each case in Table 5.

SRS-4.qxd  7/10/07  2:59 PM  Page 931



Carpenter, G.A., S. Gopal, S. Macomber, S. Martens, and C.E.
Woodcock, 1999. A neural network method for mixture
estimation for vegetation mapping, Remote Sensing of Environ-
ment, 70:138–152.

Fisher, P.F., 1997. The pixel: A snare and a delusion, International
Journal of Remote Sensing, 18:679–685.

Foody, G.M., 1996. Approaches for the production and evaluation of
fuzzy land-cover classifications from remotely sensed data,
International Journal of Remote Sensing, 17:1317–1340.

Foody, G.M., 2001. Monitoring the magnitude of land-cover change
around the southern limits of the Sahara, Photogrammetric
Engineering & Remote Sensing, 67(8):841–847.

Haertel, V., Y.E. Shimabukuro, and R. Almeida-Filho, 2004. Fraction
images in multitemporal change detection, International Journal
of Remote Sensing, 25:5473–5489.

Jug, J., E.D. Kolaczyk, and S. Gopal, 2003. Gaussian mixture
dicriminant analysis and sub-pixel land-cover characterisation
in remote sensing, Remote Sensing of Environment, 84:
550–560.

Liu, W., and E.Y. Wu, 2005. Comparison of non-linear mixture
models: Sub-pixel classification, Remote Sensing of Environ-
ment, 94:145–154.

Mertens, K.C., B. De Baets, L.P.C. Verbeke, and R.R. De Wulf, 2006.
A sub-pixel mapping algorithm based on sub-pixel/pixel spatial
attraction models, International Journal of Remote Sensing,
27:3293–3310.

Muslim, A.M., G.M. Foody, and P.M. Atkinson, 2006. Localised 
soft classification for super-resolution mapping of the 
shoreline, International Journal of Remote Sensing, 27:
2271–2285.

932 Augu s t 2007 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Peterson, S.H., and D.A. Stow, 2003. Using multiple endmember
spectral mixture analysis to study chaparral regrowth in
southern California, International Journal of Remote Sensing,
24:4481–4504.

Petrou, M., and P.G. Foschi, 1999. Confidence in linear spectral
unmixing of single pixels, IEEE Transactions on Geoscience and
Remote Sensing, 37:624–626.

Rogers, A.S., and M.S. Kearney, 2004. Reducing signature variability
in unmixing coastal marsh Thematic Mapper scenes using
spectral indices, International Journal of Remote Sensing,
25:2317–2335.

Settle, J.J., and N.A. Drake, 1993. Linear mixing and the estimation
of ground cover proportions, International Journal of Remote
Sensing, 14:1159–1177.

Skole, D., and C. Tucker, 1993. Tropical deforestation and habitat
fragmentation in the Amazon: Satellite data from 1978 to 1988,
Science, 260:1905–1910.

Small, C., 2004. The Landsat ETM� spectral mixing space, Remote
Sensing of Environment, 93:1–17.

Song, C., 2005. Spectral mixture analysis for subpixel vegetation
fractions in the urban environment: How to incorporate
endmember variability?, Remote Sensing of Environment,
95:248–263.

Tatem, A.J., H.G. Lewis, P.M. Atkinson, and M.S. Nixon, 2001.
Super-resolution target identification from remotely sensed
images using a Hopfield neural network, IEEE Transactions on
Geoscience and Remote Sensing, 39:781–796.

Theseira, M.A., G. Thomas, J.C. Taylor, F. Gemmell, and J. Varjo,
2003. Sensitivity of mixture modelling to end-member selection,
International Journal of Remote Sensing, 24:1559–1575.

Figure 10. Different scenarios of change derived by comparison of class composition
distributions. Assuming that forest clearance is viewed negatively, the images show what
might be considered (a) a relatively good case scenario (first quartile 1984 – third quartile
1988), and (b) a relatively bad case scenario (third quartile 1984 – first quartile 1988).

SRS-4.qxd  7/10/07  2:59 PM  Page 932



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Augu s t  2007 933

Figure 11. Impacts of intra-class variation on super-resolution mapping: (a) extract of
the Landsat TM imagery used, (b) spatially degraded imagery; (c) actual boundary and
boundary derived from a conventional hard classification; (d) actual boundary and
boundary derived from super-resolution mapping using HNN applied to the soft classifi-
cation output from the mixture model; and (e) actual boundary and the locations of
boundaries defined at the 10th and 90th deciles of the class composition distributions.
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