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1. Introduction 

 

Development of technologies for the production 

of composite structures, allowing forming materials with 

specific strength and performance properties has resulted 

in their frequent use in machinery and construction engi-

neering. The homogenous components selected in suitable 

proportions, when combined together, provide greater 

rigidity and strength, while reducing the weight. 

The composite materials are characterized by 

macroscopic inhomogeneity of their structures. Forced 

compliance of surface displacements in relation to combi-

nation of components with different rigidity and potential 

presence of discontinuities in materials or sharp inclusions 

which cause local high stress gradients might be observed 

here. Such concentrators can generate a singular stress 

field of qualitatively different nature than in the case of 

stress raisers arranged in a homogeneous material. In many 

theoretical works on sharp corners with different boundary 

conditions [1-5] it has been proved that the exponent λ can 

take different real or complex values. 

Mechanical description of the stress fields in flat 

rigid inclusion area was dealt with by many scientists [6-

11]. Wang et al. [6] have shown that for inclusions located 

on a homogeneous material the stress fields were described 

by identical exponent as in case of the crack. Ballarini [7] 

proposed, in form of integral equations, equations describ-

ing the stress field and a strict solution of the stress intensi-

ty factors. Wu [8] and Ballarini [9] extended it to an issue 

of inclusions located at the interface. Ballarini suggested 

functions of complex potentials [12] to be used for analysis 

of the issues. Assuming that a flat, rectangular disk is im-

pacted infinitely by tensile loads he has received, in a 

complex form, dependences describing components of 

stress at the sharp tip of the inclusion. Furthermore, he 

gave a solution close to the stress intensity factors used in 

description of the tested fields. 

The analytical dependences for calculating coeffi-

cients KI and KII [9] can only be used assuming that on the 

plate there is an infinitely applied operating longitudinal 

and transverse tensile load. In case of finite dimensions of 

the component or the presence of additional inclusions or 

cracks when introducing abnormal stress distribution, it is 

necessary to use methods of determining numerical values 

for the sought coefficients. 

This was set in the work by Dong [13], Mochalov 

and Sil'vestrov [14] for different configurations of inclu-

sions and cracks using the appropriate integral equations. 

Basing on comparison of stresses obtained using the BEM 

with the analytical solution, Lee and Kwak [15] have de-

fined the stress intensity factors of the first particular 

member. 

2. Main purposes of the work 

 

In this case, alike the issue of interfacial crack, the 

exponent is a complex number. Thus, the stress fields have 

an oscillating feature [2], which hinders their analytical 

description. The use of fracture mechanics hypotheses 

based on local stress fields (eg Sih, McClintock) requires 

oscillations to be eliminated from the analytical descrip-

tion. Therefore the main purpose of this work is to obtain 

an analytical description of the mechanical fields without 

applying oscillation. In order to get such description the 

classic definition of stress intensity factors KI and KII with 

appropriately modified counterparts r
IK


 and r
IIK


 needs 

to be replaced taking into account oscillating nature of the 

singular stress field. In the literature there can rarely be 

found an analytical description of fields of stresses and 

displacements in the area of sharp inclusions at the inter-

face with use of the so-modified actual coefficients r
IK


 

and r
IIK


. It was necessary to find relationship between the 

classically defined stress intensity factors KI and KII, as 

well as an adopted analytical description of the modified 

r
IK


 and r
IIK


. Another purpose of the study was to devel-

op a method on how to calculate the modified stress inten-

sity factors 𝐾𝑗
𝜆𝑟. In this case, in order to determine the 

value of modified coefficients r
IK


 and r
IIK


and also high-

er order terms coefficients of the asymptotic solutions, the 

FEM has been applied, what found its positive verification 

for issues related to the interfacial crack [16]. 

 

3. The method and the results of analytical calculations 

 

The approach proposed in the work by Parton and 

Perlin [17] served basis for obtaining, as an asymptotic, 

analytical description of the fields of stresses and dis-

placements at the tip of a sharp rigid inclusion (using mod-

ified stress intensity factor) (Fig. 1). 

 

Fig. 1 Sharp, rigid inclusion located on border of merger of 

two elastic materials 
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Parton and Perlin took into consideration a flat, 

sharp corner of side angle 2, found as a result in a linear-

elastic material, the polar coordinate system (r, ) posi-

tioned at the tip (Fig. 2).The authors have received a gen-

eral solution of the sharp corner problem in the form of 

components of displacement and stress fields: 
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 (1) 

Four independent constants A, B, C, D can be de-

termined from the boundary conditions of concerned prob-

lems, while the value of the exponent λ is determined by 

characteristic equation representing the determinant zero 

boundary conditions. 
 

 

Fig. 2 Location of the tip of a sharp notch in linear-elastic 

material 

 

Fig. 3 Sharp, rigid inclusion located on the interface 

When considering this work an issue of sharp, rig-

id inclusions, situated between two elastic materials 

(Fig. 3), was taken into account until meeting the following 

eight boundary conditions: 

1- of upper surface of rigid inclusions, for φ = π: 

1 10 0ru ;u   ; 

2- of lower surface of rigid inclusions, for φ = - π: 

2 20 0ru ;u   ; 

3- along the interface, for φ = 0: 

1 2 1 2 1 2 1 2r r r ru u u u   ; ; ;            . 

Characteristic equation results from the following 

formula: 
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where Γ is denotes the ratio of shear modulus μ1/μ2, while 

κj = 3 - 4νj - a plane strain. In consequence, the result of 

Eq. (2) represents λ exponent value. 

The result shows that there is one singular term of 

asymptotic solution for complex exponent, the real part λr  

of which is always 0.5, and imaginary part ε depends on 

the structure of material constants and can be determined 

on basis of the below equation:  
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Subsequent units are suitable: 1, 1.5 + є, 2, 2.5 + є. 

Analytical formulas describing components of the 

stress field and displacements around the tip of inclusion 

Eq. (4) have also been obtained: 
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The modified stress intensity factors are defined 

as follows: 
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Functions (materials constants and in polar coor-

dinates reference) 
I II

ik ikf f,  and 
I II

i ig ,g  are given in the 

Appendix. 

Relations between the classically defined stress 

intensity factors KI and KII and an adopted analytical de-

scription of the modified factors r
IK


 and r
IIK


 can be 

written as follows: 
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 (6) 

For sharp inclusions at the interface, classically 

defined factors KI and KII [9] can be calculated from the 

following equation: 
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where a is half the length of inclusions, σy and σx are ap-

plied tensile load in the infinity (longitudinal - σx and  

transverse - σy). 

 

4. FEM application results 

 

Using the FEM (ANSYS), a bimaterial structure 

was modeled with rigid inclusion in the interface line 

(Fig. 4, a). Length of 2a inclusions is small in relation to 

the height h and the width b of the disc (a = 1, b = h = 

= 20a), which corresponds to the issue of inclusions in the 

"infinite" area. Shield described quadrangular, finite ele-

ments with increased density found in the tip area 

(Fig. 4, b), with special triangular elements surrounding 

singular point [18]. 

 
a 

 
     b 

Fig. 4 a – FEM modeled fragment of structure, where  

a = 1, b = h = 20, b - of finite elements around tip of 

inclusion 

 

This inclusion has been modeled using a special 

rigid beam of finite elements (ANSYS, element type: 

MPC184). Because of symmetry, only half of the disc was 

modeled. In order to ensure equality displacements at right 

side of the disc, load value σx2 [19] is dependent on com-

ponents σx and σy: 
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 is 

Dundurs’ [19] constants. 

Numerical calculations were designed to deter-

mine the value of modified coefficients r
IK


, r
IIK


, to 

compare theses to the exact solution (7), using Eq. (6). 

Typically, in order to determine the stress intensi-

ty factors (using the FEM) the following four methods are 

used: 

1. comparison of stresses or displacements resulting 

from the FEM solution with a known analytical 

solution [20]; 

2. determination of the value of integral J on basis of 

the FEM [21]; 

3. designation of sought coefficients on basis of the 

change in strain energy associated with growth of 

virtual cracks [22]; 

4. use of special finite elements [23]. 

For aspects concerning this work not all the above 

methods can be used (e.g., 3), and some have certain limi-

tations. At the same time, in case of the analytical solution 

components of stress always depend on factors r
IK


 and 

r
IIK


, thus when using method 2, there can only be deter-

mined the value of integral J, which is functionally related 

to the sum of the squares of the sought coefficients. There-

fore it is impossible to calculate r
IK


 and r
IIK


 values 

separately. When using the FEM modeling commercial 

software, it is not always simple to apply their own finite 

elements, allowing direct determination of sought coeffi-

cients. 

Knowing the analytical solution of stress distribu-

tion and displacements, it seems reasonable to use method 

1 to determine coefficients r
IK


 and r
IIK


 for work issues 

analyzed in case of sharp inclusions. It is settled in approx-

imation. Values of the stress / displacement obtained from 

the FEM solutions have approximated special functions 

correlated to the analytical solution. In case of displace-

ments of the fields, the FEM and analytical solutions were 

compared for two angles φ = 0 and π/2, and the stress 
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distribution for three φ = 0, π/2 and π. The best results 

(presented hitherto in the work) based on the stress fields 

for angle φ = 0 (φ - polar angle in polar coordinates – 

Fig. 1) have been obtained. 

Disadvantage of this method, however, is the need 

for providing high density mesh division into finite ele-

ments around the tip of stress concentrator. Additionally, 

accuracy of the results is affected by the selection area 

where the numerical solution is compared to the analytical 

one. The drawback of this can eliminate by the use of 

higher order terms r
jiK


 in asymptotic expansion [24, 25]. 

For the issues analyzed three elements have been included. 

Approximating functions used herein are as follows:
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Values of modified stress intensity factors r
jK


 

and coefficients of higher order terms r
jiK


 for different 

variants of the load are provided in Tables 1 and 2 and in 

Figs. 5-8. In order to investigate the sensitivity of the 

method chosen for variation of material constants, calcula-

tions were performed for two-phase structures with differ-

ent proportions of the Young's modules 0  and Poisson's 

ratios 0 . The study was based on: E1 = 10000000,  

ν1 = 0.25. 

        

Table 1 

Values of coefficients r
jK / a


 for tensile perpendicular to interface 

0 2 1/    0 2 1E E/   r
IK / a  r*

IK / a  Error, % r
IIK / a  r*

IIK / a  Error, % 

0 10 25.08 25.41 1.30 7.29 7.46 2.34 

0.5 10 22.80 23.09 1.29 5.56 5.57 0.07 

1 10 19.84 20.14 1.50 3.49 3.59 2.81 

0 5 23.64 23.47 0.74 5.71 5.85 2.48 

0.5 5 20.89 21.23 1.58 4.22 4.26 0.93 

1 5 18.19 18.46 1.46 2.71 2.66 1.96 

0 2 18.78 19.10 1.69 2.92 2.99 2.41 

0.5 2 16.91 17.08 1.00 2.03 1.99 2.05 

1 2 14.77 14.77 0.01 1.03 1.05 1.52 

0 1 14.56 14.58 0.11 1.00 0.98 1.91 

0.5 1 12.93 12.89 0.30 0.45 0.45 0.38 

1 1 11.14 11.08 0.56 0.00 0.00 0 

σy = 100, σx = 0 

* - strict solution obtained by substituting equations (7) to (6); 100

r r

r

*

j j

*

j

K / a K / a
Error %

K / a

 




  

        

Table 2  

Values of coefficients 𝐾𝑗
𝜆𝑟/𝑎 for simultaneous tensile perpendicular and parallel to interface 

0 2 1/    0 2 1E E/   r
IK / a  r*

IK / a  Error, % r
IIK / a  r*

IIK / a  Error, % 

0 10 17.42 17.79 2.04 5.11 5.22 2.17 

0.5 10 15.70 16.17 2.89 3.79 3.90 2.79 

1 10 13.86 14.10 1.73 2.57 2.51 2.37 

0 5 16.18 16.43 1.52 3.99 4.10 2.74 

0.5 5 14.57 14.86 1.95 2.91 2.98 2.40 

1 5 12.78 12.92 1.14 1.85 1.86 0.46 

0 2 13.14 13.37 1.74 2.11 2.10 0.78 

0.5 2 11.80 11.96 1.35 1.38 1.39 1.01 

1 2 10.32 10.34 0.21 0.74 0.73 1.00 

0 1 10.14 10.20 0.58 0.67 0.69 1.78 

0.5 1 9.04 9.02 0.15 0.32 0.31 1.23 

1 1 7.80 7.75 0.58 0.00 0.00 0 

σy = 100, σx =10 

* - strict solution obtained by substituting equations (7) to (6); 100

r r

r

*

j j

*

j

K / a K / a
Error %

K / a
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a         b 

Fig. 5 Constant 2
r

IK / a
  at second term: a - tensile transverse; b - tensile perpendicular and parallel to interface 

  

a          b 

Fig. 6 Constant 2
r

IIK / a
  at second term: a - tensile transverse; b - tensile perpendicular and parallel to interface 

 

  

a          b 

Fig. 7 Constant 3
r

IK / a
 at third term: a - tensile transverse; b - tensile perpendicular and parallel to interface 
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a          b 

Fig. 8 Constant 3
r

IIK / a
 at third term: a - tensile transverse; b - tensile perpendicular and parallel to interface  

When analyzing Figs. 5-8, it can be concluded 

that for both load cases coefficients of higher order terms 

3 2
r r

I IIK K,
   increase the diversity of materials, while 

2 3
r r

I IIK K,
   decrease.  

 

5. Summary and conclusions 

 

This paper presents the results of investigating a 

flat element of two-phase structure with sharp linear inclu-

sion located at the interface. 

Analytical description of fields of stresses and 

displacements at the tip of a sharp rigid inclusion was 

obtained as an asymptotic. It has been presented as a func-

tion of the modified stress intensity factors. Relationship 

between the classically defined stress intensity factors KI , 

KII and modified coefficients r
IK
 , r

IIK
  has been defined. 

Possibility of using different methods (e.g. the FEM) to 

determine the modified coefficients has also been dis-

cussed.  

On basis of this study, the following conclusions 

can be drawn: 

- exponent λ takes complex values for the odd terms 

of the asymptotic expansion and real for even; 

- components of stresses and displacements, at the 

same time, always depend on r
IK
  and r

IIK
  and for 

independently acting normal and tangential loads; 

- calculated coefficients r
IK
  and r

IIK
  comply with 

the exact solution and are subject to error not great-

er than 3%; 

- value ratios r
IK
  and r

IIK
 are subject to increase 

along with the diversity of material constants; 

- for both the applied load cases, constant values 

3 2
r r

I IIK K,
   increase the diversity of materials, while 

2 3
r r

I IIK K,
   decrease; 

- the method used to determine value of the modified 

stress intensity factors is not sensitive to material 

parameters variation; 

- use higher order terms increases accuracy of the re-

sults. 
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G. Mieczkowski 

 
DESCRIPTION OF STRESS FIELDS AND DISPLACEMENTS 

AT THE TIP OF A RIGID, FLAT INCLUSION LOCATED AT 

INTERFACE USING MODIFIED STRESS INTENSITY FAC-

TORS 

 

S u m m a r y 

 

This paper presents the results of investigating a 

flat element of two-phase structure with sharp linear inclu-

sion located at the interface. Analytical description of 

fields of stresses and displacements at the tip of a sharp 

rigid inclusion was obtained as an asymptotic. It was pre-

sented as a function of modified stress intensity factors. 

Relationship between the classically defined stress intensi-

ty factors KI , KII and modified coefficients 𝐾𝐼
𝜆𝑟, 𝐾𝐼𝐼

𝜆𝑟 has 

been defined. Possibility of using different methods (e.g. 

the FEM) set on determining coefficients 𝐾𝑗
𝜆𝑟 has been 

discussed, and thus these values have been calculated nu-

merically and compared with the exact solution. 
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Stresses and displacements fields 
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where   log r  . 


