
The following paper was originally published in the
Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS)

Santa Fe, New Mexico, April 27-30, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Java Transactions for the Internet

M.C. Little and S.K. Shrivastava
University of Newcastle

Java Transactions for the Internet

M.C. Little and S.K. Shrivastava
(M.C.Little@ncl.ac.uk, Santosh.Shrivastava@ncl.ac.uk)

Department of Computing Science
University of Newcastle, Newcastle upon Tyne, NE1 7RU, England

Abstract

The Web frequently suffers from failures which affect
the performance and consistency of applications run
over it. An important fault-tolerance technique is the
use of atomic transactions for controlling operations
on services. While it has been possible to make server-
side Web applications transactional, browsers typically
did not possess such facilities. However, with the
advent of Java it is now possible to consider
empowering browsers so that they can fully participate
within transactional applications. In this paper we
present the design and implementation of a standards
compliant transactional toolkit for the Web. The toolkit
allows transactional applications to span Web browsers
and servers and supports application specific
customisation, so that an application can be made
transactional without compromising the security
policies operational at browsers and servers.

1. Introduction

The Web frequently suffers from failures which can
affect both the performance and consistency of
applications running over it. For example, if a user
purchases a cookie (a token) granting access to a
newspaper site, it is important that the cookie is
delivered and stored if the user’s account is debited; a
failure could prevent either from occurring, and leave
the system in an inconsistent state. For resources such
as documents, failures may simply be annoying to
users; for commercial services, they can result in loss
of revenue and credibility.

Atomic transactions are a well-known technique for
guaranteeing application consistency in the presence of
failures. Web applications already exist which offer
transactional guarantees to users. However, currently
these guarantees only extend to resources used at Web
servers, or between servers; clients (browsers) are not
included, despite their role being significant in
applications such as mentioned previously. Providing
end-to-end transactional integrity between the browser
and the application is important: in the previous
example, the cookie must be delivered once the user’s
account has been debited. Cgi-scripts cannot provide

this level of transactional integrity since replies sent
after the transactions have completed may be lost, and
replies sent during the transaction may need to be
revoked if the transaction cannot complete. This is an
inherent problem with the original “thin” client model
of the Web, where browsers were functionally barren.
With the advent of Java it is now possible to consider
empowering browsers so that they can fully participate
within transactional applications. However, to be
widely applicable, we claim that any such transaction
system must meet the following three requirements:

(i) it must support distributed, nested transactions;

(ii) it must not compromise the security policy imposed
at the browser’s site; and,

(iii) it must comply with appropriate standards.

We have designed and implemented the JTSArjuna
system, a transaction toolkit that meets the above
requirements. Our toolkit allows transactional
applications to span Web browsers and servers and
supports application specific customisation, so that an
application can be made transactional without
compromising the security policies operational at
browsers and servers. The toolkit complies with the
OMG Object Transaction Service (OTS) and the Java
Transaction Service (JTS) standards [OMG95][VM96].
Although the OMG has specified several object
services, there is no specification for an overall object
model with which to glue them together into a coherent
application development framework. Therefore, we
have provided a high-level API which allows
programmers to be isolated from many of the issues
involved in building transactional applications. This
API is the result of extensive experience with the
original C++ Arjuna distributed transaction system
[GDP95][SKS95].

2. Transaction standards for distributed
objects

For a transaction system to be widely applicable, it
must conform to the standards. The most widely
accepted standard for distributed objects is the
Common Object Request Broker Architecture

(CORBA) from the Object Management Group
(OMG). It consists of the Object Request Broker (ORB)
that enables distributed objects to interact with each
other, and a number of services have also been
specified, which include persistence, concurrency
control and the Object Transaction Service.

2.1 The Object Transaction Service
The Object Transaction Service supports the well
known concept of ACID transactions. The OTS
provides interfaces that allow multiple distributed
objects to cooperate in a transaction such that all
objects commit or abort their changes together.
However, the OTS does not require all objects to have
transactional behaviour. Instead objects can choose not
to support transactional operations at all, or to support
it for some requests but not others.

The transaction service specification distinguishes
between recoverable objects and transactional objects.
Recoverable objects are those that contain the actual
state that may be changed by a transaction and must
therefore be informed when the transaction commits or
aborts to ensure the consistency of the state changes.
This is achieved be registering appropriate objects that
support the Resource interface (or the derived
SubtransactionsAwareResource interface) with
the current transaction. In contrast, a simple
transactional object need not necessarily be a
recoverable object if its state is actually implemented
using other recoverable objects. The major difference is
that a simple transactional object need not take part in
the commit protocol used to determine the outcome of
the transaction since it does not maintain any state
itself, having delegated that responsibility to other
recoverable objects which will take part in the commit
process.

It is important to realise that the OTS is simply a
protocol engine that guarantees that transactional
behaviour is obeyed but does not directly support all of
the transaction properties. As such it requires other co-
operating services that implement the required
functionality, including:

• Persistence/Recovery Service. Required to support
the atomicity and durability properties. (There is
no recovery service currently specified by the
OMG.)

• Concurrency Control Service. Required to support
the isolation properties.

2.2 Writing OTS applications
To participate within an OTS transaction, a
programmer must be concerned with:

• creating Resource and
SubtransactionAwareResource objects for
each object which will participate within the
transaction/subtransaction. These resources are
responsible for the persistence, concurrency
control, and recovery for the object. The OTS will
invoke these objects during the
prepare/commit/abort phase of the
(sub)transaction, and the Resources must then
perform all appropriate work.

• registering Resource and
SubtransactionAwareResource objects at the
correct time within the transaction, and ensuring
that the object is only registered once within a
given transaction. As part of registration a
Resource will r eceive a reference to a
RecoveryCoordinator which must be made
persistent so that recovery can occur in the event
of a failure.

• ensuring that, in the case of nested transactions,
any propagation of resources such as locks to
parent transactions are correctly performed.
Propagation of
SubtransactionAware Resource objects to
parents must also be managed.

• in the event of failures, the programmer or system
administrator is responsible for driving the crash
recovery for each Resource which was
participating within the transaction.

The OTS does not provide any Resource
implementations. These must be provided by the
application programmer or the OTS implementer. The
interfaces defined within the OTS specification are too
low-level for most application programmers.
Therefore, we have designed JTSArjuna to make use of
raw Common Object Services interfaces but provide a
higher-level API for building transactional applications
and frameworks. This API automates much of the
above activities concerned with participating in an
OTS transaction.

The architecture of the system is shown in figure 1. As
we shall show, the API interacts with the concurrency
control and persistence services, and automatically
registers appropriate resources for transactional
objects. These resources may also use the persistence
and concurrency services.

JTSArjuna API

State
management

Concurrency
Control

OTS protocol
engine

Resource/
Subtran-
Resource

ORB

Trans. Appl.
Framework

Trans.
Application

Figure 1: JTSArjuna structure

3. Requirements for configuration

The use of Java to implement transactional
applications raises some important security issues. Java
security is imposed by a SecurityManager object, which
defines what a program can, and cannot do
[DF97][JSF95]. However, there is no standard for the
SecurityManager implementation, with the result that
an application written for one interpreter may not be
able to execute as intended on another. The recent
addition of digital signatures, allowing users to specify
security capabilities on a per signature basis, increases
the difficulties of building truly portable applications.

The constraints imposed by SecurityManagers can
directly affect transactional applications which may
require, for example, to make state updates persistent
by accessing the local disk. There are two obvious
solutions to this problem: (i) all objects must reside
within domains which have well-behaved security
constraints (Web servers), or (ii) modify the Java
language and the interpreter and provide an
implementation of the SecurityManager which relaxes
these security restrictions [MA96]. The first solution is
unnecessarily restrictive in environments where
SecurityManagers do allow programs increased
flexibility. The second solution lacks portability as it
requires users to have access to specialised
implementations.

Our solution was to design and implement the
JavaGandiva configuration support framework based
on the model described in [SMW96], which isolates
applications and programmers from the differences
between Java SecurityManagers. Applications can be
dynamically configured to take advantage of the
environment in which they execute. As we shall show,

several JTSArjuna classes must use this framework to
provide portability across SecurityManagers.

3.1 Configuration model
Software components are split into two separate
entities: the interface component and the
implementation component. The interactions between
implementations can only occur through interfaces. A
single interface can be used to access multiple
implementations, and a single implementation can be
accessed through multiple interfaces. The necessity of
providing multiple interfaces to implementations has
long been recognised. However, we take this further by
allowing the bindings of interfaces to implementations,
and the interfaces an implementation can be accessed
through, to be dynamic and configurable. Applications
are written only in terms of interfaces, and although an
application can request a specific implementation, it
occurs in a way that allows this request to be changed
without modifying the application. Therefore, this
allows the application to be adapted for each
SecurityManager by ensuring that interfaces use only
those implementations which can operate within a
particular environment.

3.2 JavaGandiva implementation
In an object-oriented language like Java, it is possible
to map interface components and implementation
components onto interface and implementation classes
respectively. Object-orientation allows us to specify the
binding between interface class and implementation
class either through inheritance or delegation. We
require the binding between interface classes and
implementation classes to be evaluated when the
interface class is instantiated. Therefore, delegation
best matches our requirements to control this binding
at run-time [SMW96].

In order to leave this binding until run-time we must
specify it as data and not within the code of the
interface class. The instance of the interface class
(interface object) uses this data to create and bind to
the correct instance of the implementation class
(implementation object). To provide this separation of
interface component and implementation component
requires changing what would have been a single Java
class into three classes, and a Java interface :

(i) the interface class: users interact with instances of
this class, which defines the public operations that
can be invoked on the implementation. The only
implementation specific information present in the
class definition is a reference to an instance of an

implementation interface, to which the interface
delegates all operations.

(ii) the implementation interface: this is a Java
interface and all implementations accessible to
an interface class implement it. This guarantees
that all implementations conform to a known type.

(iii) the implementation class: instances of this class
represent the implementation of an object.
Implementation classes can be derived from
multiple implementation interfaces.

(iv) the control class: this class provides access to
operations that manipulate the non-functional
characteristics of an implementation class.
Implementation classes provide an operation that
returns a specific instance of this control class.
Interface classes provide an operation that can be
used to request an instance of the implementation’s
control class.

Figure 2 shows an object structure formed by the above
classes, where the implementation specific objects are
shown in grey.

Control object

Implementation object

Interface object
Implementation
interface

Control
interface

Figure 2: Interface, Implementation and Control Objects.

3.3 JavaGandiva built-time support
The JavaGandiva build-time system offers support to
programmers to construct applications from existing
interfaces and to build new interfaces and
implementations. Interfaces can be automatically
generated from a high-level definition language, and
contain the necessary code to interact with the run-time
system to bind to an appropriate implementation (as
described in the next section).

To incorporate configurability into an application, the
programmer creates a Configuration Management

Object (CMO). The CMO contains data which
specifies the interface to implementation bindings for
the application, and any data required by
implementations for initialisation. The data may also
specify alternate implementations, e.g., because of
possible security restrictions. At bind time an interface
interrogates the CMO to determine which
implementation it requires, and then passes this
information to the run-time system. Importantly for our
purposes, the CMO data associated with an application
can be specified at run time, therefore providing a way
to configure the application for each user and
environment.

3.4 JavaGandiva run-time support
The run-time consists primarily of an Implementation
Repository which is used for creating new instances of
(arbitrary) implementation classes given their class
names. Implementation classes can be registered with
the repository so that instances of them can be created
later. The repository isolates interfaces from direct
implementation creation; as we shall see, all aspects of
implementation creation are hidden within the
repository, so that modification of the types of
implementations available to an application and
interface does not require changes to either.

Figure 3 illustrates how an interface uses these objects
when binding to an appropriate implementation. When
an interface requires to be bound to an implementation,
it interrogates the application CMO for the
implementation type. It then requests an instance of
this type from the repository. If the requested
implementation type does not exist, or cannot be used
within the current environment, then the binding will
fail. The interface can then attempt an alternate
binding if one is specified by the CMO. Importantly,
none of this is visible to the application, which simply
attempts to create and use an object.

Configuration support framework

Java application

Implementations

Interface CMO

Repository

Figure 3: Application execution environment.

3.5 Specifying an application’s
configuration
The configuration management object is implemented
by the ObjectName class. This configuration
information is maintained as a set of attributes; each
attribute is a name (string), value pair. An interface
object uses the attributes of ObjectName to determine
the type of its implementation; this implementation can
also use the ObjectName to configure itself, e.g., to
obtain its initial state. If multiple bindings are possible
for the interface because of possible security
restrictions, the ObjectName can specify alternate
implementations.

The (simplified) signature of ObjectName , without
the exceptions it can throw, is shown below:

public class ObjectName implements
 Serializable
{
// the supported attribute types

public static final int SIGNED_NUMBER = 0;

// for C++ compatibility
public static final int UNSIGNED_NUMBER = 1;

public static final int STRING = 2;
public static final int OBJECTNAME = 3;
public static final int CLASSNAME = 4;
public static final int UID = 5;

public int attributeType (String attrName);
public String firstAttributeName ();
public String nextAttributeName (String curr);

/*
 * Now a series of set/get methods for each
 * type of attribute. We show only two for
 * simplicity.
 */

public long getLongAttribute (String atr);
public String getStringAttribute (String atr);

public void setLongAttribute (String atr,
 long value);
public void setStringAttribute (String atr,
 String value);

public boolean removeAttribute (String atr);
public boolean equals (ObjectName objectName);
public boolean notEquals (ObjectName objName);

// how to store/retrieve data
private NameService _nameService;
}

An attribute value can be one of six basic types.
ObjectName is responsible for run-time type
checking: an exception is raised if an interface requests
the wrong type for an attribute. There are methods for
creating new attribute name, value pair mappings, and
for retrieving an attribute given its name. Additionally,
it is possible to query the type of an attribute using
attributeType , and to iterate through all of the

attributes using firstAttributeName and
nextAttributeName .

To enable the configuration information to be stored in
a flexible manner, ObjectName stores and retrieves
the information using a separate NameService interface
and implementation. Therefore, the means of storing
this configuration data can be changed simply be
changing the NameService implementation. For
example, the JDBC (Java Database Connectivity) API
is a standard SQL database access interface, providing
uniform access to a wide range of relational databases.
By providing a suitable NameService implementation,
the ObjectName data could be maintained within such
a database. However, to minimise external
dependencies, our current implementation for Web
applications embeds the ObjectName data within the
HTML document which is downloaded with the Java
application. The HTML document is created
automatically from a separate description language.

3.6 Implementation repository
The implementation repository is provided by the
Inventory, which is an interface class and a set of
implementation classes. To be able to create
implementations for interfaces, the inventory must be
populated with these implementations. Populating the
inventory can occur:

1) statically at build time: each implementation can be
registered with the inventory when the application
is built, i.e., a specific inventory is constructed for
each application. If implementations are required to
be added or removed from the inventory then the
inventory implementation must be modified.

2) dynamically at run time: implementations may be
loaded across the network or from the local disk.
Given the name of a class, an inventory can attempt
to load it dynamically. This has the advantage of
flexibility, but requires the sources of these
implementations (e.g., Web servers) to remain
available while the application is being configured.

Because the inventory is accessed through a well-
defined interface, changing the implementation from,
say 1) to 2), does not require any changes in an
application.

The Inventory interface class has methods for
obtaining an instance of an implementation from its
class name. For simplicity we show only a
representative set of these methods, without the
exceptions they throw:

public class Inventory
{
public synchronized Object createVoid
 (String typeName);
public synchronized Object createObjectName
 (String typeName,
 ObjectName paramObjectName);
public synchronized Object createResources
 (String typeName,
 Object[] paramResources);

/*
 * A handle on the application’s inventory
 * for bootstrapping (already bound interface
 * and implementation.
 */

public static Inventory inventory ();
}

Each create method takes the name of the
implementation class to instantiate and, depending on
the method, may pass additional parameter(s) to the
created implementation. For example,
createObjectName will pass the ObjectName
parameter to the implementation when it is created. In
order that the inventory can deal with any Java
implementation class, it returns all created objects to
the interface as instances of the Java Object class,
which is the base class from which all Java classes are
derived. The interface can then safely convert this back
to the actual type.

3.7 Determining security restrictions
In order to configure itself to operate within a specific
security environment, an application must be able to
determine the restrictions imposed by that
environment. At bind time an interface must be able to
determine whether the implementation it receives from
the inventory can work within the current security
restrictions. Therefore, each implementation object
must provide a canExecute method which returns
either true if it can execute within the current
environment, or false if it cannot. When the inventory
returns an implementation object, the interface calls
this method to determine whether the object can
function. If it cannot, the interface can ask the
ObjectName for the name of another implementation,
and pass this to the inventory.

To determine whether or not it can function within the
security environment, the implementation object may
extract information from the ObjectName it is given
when it is created, e.g., the location of the object store
database to use. Shown below is the canExecute
method for a simple object store service which writes to
the local file system:

public SimpleObjectStore implements
 ObjectStoreImple
{
public boolean canExecute ()
{
 /*
 * First get handle on current
 * SecurityManager.
 */

 SecurityManager manager =
 System.getSecurityManager();

 if (manager == null)
 return true; // no restrictions!
 else
 {
 /*
 * There is a SecurityManager, so
 * interrogate it.
 */

 try
 {
 /*
 * Assume these file names were read
 * from the ObjectName when we were
 * created.
 */

 manager.checkRead(“/ObjStore/data”);
 manager.checkWrite(“/ObjStore/data);
 manager.checkDelete(“/ObjStore/data”);

 return true;
 }
 catch (Exception e)
 {
 /*
 * SecurityManager raised an
 * exception, could try alternate
 * location.
 */

 return false;
 }
 }
}
}

4. JTSArjuna implementation

JTSArjuna exploits object-oriented techniques to
present programmers with a toolkit of Java classes
from which application classes can inherit to obtain
desired properties, such as persistence and concurrency
control [MCL97]. These classes form a hierarchy, part
of which is shown below.

StateManager

LockManager AtomicActionLock

User classes

Figure 4: JTSArjuna class hierarchy

As we shall show, apart from specifying the scopes of
transactions, and setting appropriate locks within
objects, the application programmer does not have any
other responsibilities: JTSArjuna guarantees that
transactional objects will be registered with, and be
driven by, the appropriate transactions, and crash
recovery mechanisms are invoked automatically in the
event of failures.

4.1 Saving object states
JTSArjuna needs to be able to remember the state of an
object for several purposes, including recovery (the
state represents some past state of the object) and
persistence (the state represents the final state of an
object at application termination). Since these
requirements have common functionality they are all
implemented using the same mechanism: the classes
InputObjectState and OutputObjectState.
The classes maintain an internal array into which
instances of the standard types can be contiguously
packed (unpacked) using appropriate pack (unpack)
operations. This buffer is automatically resized as
required should it have insufficient space. The
instances are all stored in the buffer in a standard form
(so-called network byte order) to make them machine
independent. Any other architecture independent
format (such as XDR or ASN.1) could be implemented
simply by replacing the operations with ones
appropriate to the encoding required. (We are currently
examining using the new object serialization
mechanisms within the Java language.)

4.2 The object store
Implementations of persistence can be affected by
restrictions imposed by the Java SecurityManager.
Therefore, the object store provided with JTSArjuna is
implemented using the techniques of
interface/implementation separation described earlier.
The current distribution has implementations which
write object states to the local file system or database,

and remote implementations, where the interface uses
a client stub (proxy) to remote services.

Persistent objects are assigned unique identifiers
(instances of the Uid class), when the are created, and
this is used to identify them within the object store.
States are read using the read_committed operation
and written by the write_(un)committed
operations.

public interface ObjectStoreImple
{
public boolean commit_state (Uid id);
public InputObjectState read_committed (Uid
id);
public InputObjectState read_uncommitted (Uid
id);
public boolean remove_committed (Uid id);
public boolean remove_uncommitted (Uid id);
public boolean write_committed (Uid id,
 OutputObjectState state);
public boolean write_uncommitted (Uid id,
 OutputObjectState state);
};

4.3 Recovery and persistence
At the root of the class hierarchy is the class
StateManager . This class is responsible for object
activation and deactivation and object recovery. The
simplified signature of the class is:

public abstract class StateManager
{
public boolean activate ();
public boolean deactivate (boolean commit);

public Uid get_uid (); // object’s identifier.

// methods to be provided by a derived class

public abstract boolean restore_state
 (InputObjectState os);
public abstract boolean save_state
 (OutputObjectState os);

protected StateManager ();
protected StateManager (Uid id);
};

Objects are assumed to be of three possible flavours.
They may simply be recoverable, in which case
StateManager will attempt to generate and maintain
appropriate recovery information for the object. Such
objects have lifetimes that do not exceed the
application program that creates them. Objects may be
recoverable and persistent, in which case the lifetime
of the object is assumed to be greater than that of the
creating or accessing application, so that in addition to
maintaining recovery information StateManager will
attempt to automatically load (unload) any existing
persistent state for the object by calling the activate
(deactivate) operation at appropriate times. Finally,
objects may possess none of these capabilities, in which

case no recovery information is ever kept nor is object
activation/deactivation ever automatically attempted.

If an object is recoverable (or persistent) then
StateManager will invoke the operations
save_state (while performing deactivate), and
restore_state (while performing activate) at
various points during the execution of the application.
These operations must be implemented by the
programmer since StateManager cannot detect user
level state changes. (We are examining the automatic
generation of default save_state and restore_state
operations, allowing the programmer to override this
when application specific knowledge can be used to
improve efficiency.) This gives the programmer the
ability to decide which parts of an object’s state should
be made persistent. For example, for a spreadsheet it
may not be necessary to save all entries if some values
can simply be recomputed. The save_state
implementation for a class Example that has integer
member variables called A, B and C could simply be:

public boolean save_state(OutputObjectState o)
{
 return (o.packInt(A) && o.packInt(B)
 && o.packInt(C));
}

4.4 The concurrency controller
The concurrency controller is implemented by the class
LockManager which provides sensible default
behaviour while allowing the programmer to override
it if deemed necessary by the particular semantics of
the class being programmed. As with StateManager
and persistence, concurrency control implementations
are accessed through interfaces. As well as providing
access to remote services, the current implementations
of concurrency control available to interfaces include:

• local disk/database implementation, where locks
are made persistent by being written to the local
file system or database.

• a purely local implementation, where locks are
maintained within the memory of the virtual
machine which created them; this implementation
has better performance than when writing locks to
the local disk, but objects cannot be shared
between virtual machines. Importantly, it is a basic
Java object with no requirements which can be
affected by the SecurityManager.

The primary programmer interface to the concurrency
controller is via the setlock operation. By default,
the runtime system enforces strict two-phase locking
following a multiple reader, single writer policy on a
per object basis. Lock acquisition is (of necessity)

under programmer control, since just as
StateManager cannot determine if an operation
modifies an object, LockManager cannot determine if
an operation requires a read or write lock. Lock
release, however, is under control of the system and
requires no further intervention by the programmer.
This ensures that the two-phase property can be
correctly maintained.

public abstract class LockManager
 extends StateManager
{
public LockResult setlock (Lock toSet,
 int retry,
 int timeout);
};

The LockManager class is primarily responsible for
managing requests to set a lock on an object or to
release a lock as appropriate. However, since it is
derived from StateManager , it can also control when
some of the inherited facilities are invoked. For
example, LockManager assumes that the setting of a
write lock implies that the invoking operation must be
about to modify the object. This may in turn cause
recovery information to be saved if the object is
recoverable. In a similar fashion, successful lock
acquisition causes activate to be invoked.

The code below shows how we may try to obtain a
write lock on an object:

public class Example extends LockManager
{
public boolean foobar ()
{
 AtomicAction A = new AtomicAction;
 boolean result = false;

 A.begin();

 if (setlock(new Lock(LockMode.WRITE) ==
 Lock.GRANTED)
 {
 /*
 * Do some work, and JTSArjuna will
 * guarantee ACID properties.
 */

 // automatically aborts if fails

 if (A.commit() == AtomicAction.COMMITTED)
 {
 result = true;
 }
 }
 else
 A.rollback();

 return result;
}
}

4.5 Configuration hierarchy
Figure 5 shows a transactional user class inheriting
from LockManager. Internally, LockManager accesses

the concurrency service (CC) through an interface, and
StateManager does likewise with the persistence
service (POS). For each application object, the
implementations of CC and POS are not chosen until
run-time. Additional implementations can be provided
without changing the JTSArjuna system or
applications which use it. The JTSArjuna API isolates
programmers from the different POS and CC
implementations, allowing them to concentrate on the
application.

User class

LockManager

StateManager

CC daemon

POS daemon

Persistence service

Concurrency service

memory

Concurrency
interface

Persistence
interface

Local disk

Local disk

Figure 5: Configuration hierarchy

5. Performance results

Table 1 shows some basic performance results for
JTSArjuna, obtained using JDK1.2 running on a Sun
Ultra Enterprise 1/170 with 128Meg of RAM. In these
tests, the transactional object operated upon had a
single integer as its state. (As shown in the table, this
transactional object was sometimes only recoverable,
i.e., its state was not obtained from/saved to disk.) All
timings have been averaged over 1000 runs.

Type of operation Time taken

Update a persistent object 21.6 milliseconds

Update a recoverable
object

11.2 milliseconds

Create and commit a null
transaction

1.1 milliseconds

Create and commit a null
nested transaction and its
parent

1.9 milliseconds

Table 1:JTSArjuna performance figures

These figures represent the initial implementation of
our Java transactions. Based upon our experiences with
JTSArjuna and its C++ counterpart, we believe that
further optimisations to the system are possible which
will improve performance.

6. Newspaper example using JTSArjuna

In this section we shall illustrate the different aspects
of constructing a transactional application using
JTSArjuna. Consider the example of subscribing to an
on-line newspaper described in the introduction.

The entities involved in the newspaper application are:

• the user’s on-line bank, from where funds will be
debited. We shall assume that the newspaper's
account is also located here.

• the newspaper site, where the user’s details will be
added upon successfully completing the transaction.

• the user’s browser site, where a cookie
authenticating the user must be delivered and
stored.

Each of the entities is represented as a separate
transactional object (see figure 6). A transaction will
begin when the user downloads the Java application
and types in the bank account details. The application
will then attempt to debit the account and, if
successful, place the cookie within the cookie object at
the browser. It will then commit the transaction. If a
failure occurs, the transaction and all of its work will
be aborted.

cookie Newspaper
site

Bank

subscribe

debit

cookie

OK or Fail

Figure 6: Transactional newspaper.

We first use the transactional toolkit to construct the
application classes and partition the application as
shown. An example of the cookie class which resides
within the browser is:

public class Cookie extends LockManager
{
public Cookie ();

public boolean depositCookie (UserDetails obj)
{
 AtomicAction B = new AtomicAction();
 boolean result = false;

 B.begin (); // start transaction
 // automatically nested if one
 // is already running

 if (setlock(new Lock(LockMode.WRITE) ==
 Lock.GRANTED)
 {
 userDetails = obj;

 if (B.commit()) // aborts if cannot commit
 result = true;
 }
 else
 B.abort();

 return result;
};

public boolean save_state
 (OutputObjectState os);
public boolean restore_state
 (InputObjectState os);

private UserDetails userDetails;
};

An example of the server code is shown below. Apart
from declaring instances of the required objects and
invoking the methods for transferring funds between
accounts and depositing the cookie, the programmer
need only start and terminate the transaction. The
transaction system will guarantee the outcome even in
the presence of failures.

{
 AtomicAction A = new AtomicAction();

 BankAccount B1 = new BankAccount(UserNumb);
 BankAccount B2 = new BankAccount(PaperNumb);
 Cookie C = new Cookie();

 A.begin();

 if (B1.debit(amount) && B2.credit(amount))
 {
 if (C.depositCookie(UserDetails))
 A.commit();
 else
 A.abort();
 }
 else
 A.abort();
}

Once the application has been constructed, we can
decide on the configuration. The transactional object
within the browser represents the cookie, which is
initially empty. Upon successful completion of the
transaction, the cookie will have been stored for future
use. The requirements on concurrency control for the
cookie are minimal since there will be no concurrent
access by multiple users; therefore, the local non-
persistent concurrency control implementation can be
used. Since this implementation can be guaranteed to
work under all SecurityManagers, we require no
alternate.

Obviously we would like to store the cookie on the
user’s local disk. However, security restrictions
imposed by the browser’s SecurityManager (or by the
user if digital signatures are being used) may prevent
this. Thus, we require an alternate form of persistence
in these situations. In this example we shall assume
that the newspaper site will provide a persistence
service implementation which is available remotely
should the local implementation fail.

After identifying the application configuration, we can
construct the HTML document containing the
configuration information which will be downloaded
with the Java application. (The ‘~’ and ‘!’ characters
preceding each attribute value are used for runtime
type checking by ObjectName .) Importantly, there are
no requirements from the application user: all
implementations will be loaded across the network
when required.

<HTML>
<HEAD><TITLE>Example Applet</TITLE></HEAD>
<BODY>
<APPLET CODE=TranApplet.class WIDTH=400
HEIGHT=200>
<PARAM NAME=OSClassName1
VALUE=”~LocalObjectStoreImple”>
<PARAM NAME=OSLocation1
VALUE=”!/tmp/ObjectStore”>
<PARAM NAME=OSClassName2
VALUE=”~RemoteObjectStoreImple”>
<PARAM NAME=OSLocation2
VALUE=”!glororan.ncl.ac.uk”>
<PARAM NAME=CCClassName1
VALUE=”~LocalCCImple”>
</APPLET>
</BODY>
</HTML>

The preferred type of the persistence service is
LocalObjectStoreImple, with the attribute name
OSClassName, and the location of the object store is
the directory /tmp/ObjectStore. If this fails, the
interface can use the alternate implementation
RemoteObjectStoreImple which is on the specified
machine. The concurrency service is local. If the
programmer wishes to change the configuration of the
application, only modifications to the HTML document
are required.

7. Comparisons with other systems

We are not aware of any other working OTS/JTS
compliant, configurable transaction system; therefore,
in this section we briefly describe some systems which
offer limited functionality.

7.1 Transactions through cgi-scripts
Figure 7 shows how it is possible to use cgi-scripts to
allow users to make use of applications which
manipulate atomic resources [TRA96]: the user selects
a URL which references a cgi-script on a Web server
(message 1), which then performs the action and
returns a response to the browser (message 2) after the
action has completed. (Returning the message during
the action is incorrect since the action may not be able
to commit the changes.)

In a failure free environment, this mechanism works
well, with atomic actions guaranteeing the consistency
of the server application. However, in the presence of
failures it is possible for message 2 to be lost between
the server and the browser. If the transaction commits,
the reply will be sent after the transaction has ended;
therefore, other work performed within the transaction
will have been made permanent. For some applications
this may not be a problem, e.g., where the result is
simply confirmation that the operation has been
performed. If the result is a cookie, however, the loss of
the cookie will leave the user without his purchase and

money, and may require the service provider to
perform complex procedures to verify the cookie was
lost, invalidate it and issue another.

cgi-script

Object

1

2

Figure 7: transactions through cgi-scripts

7.2 Transactions in persistent Java
There are several groups working on incorporating
transactions into persistent Java [MA96]. These
schemes are based on providing atomic actions with
orthogonal-persistence: objects are written without
requiring knowledge that they may be persistent or
atomic: the Java runtime environment is modified to
provide this functionality. The program simply starts
and ends transactions, and every object which is
manipulated within a transaction will automatically be
made atomic. Although these approaches provide a
convenient programming model, we believe that they
are unsuitable for Web applications for the following
reasons:

(i) They require changes to the Java interpreter and
language. Applications written using these systems
will only execute on specialised interpreters.

(ii) Both schemes assume that the entire application
will be written in Java, and will not be distributed,
i.e., it will either execute at the browser or at the
Web server.

8. Concluding remarks

This paper has described the design and
implementation of JTSArjuna, a standards compliant
toolkit for the construction of fault-tolerant Web and
Internet applications using atomic actions. The toolkit
addresses the requirement for end-to-end transactional
guarantees by allowing applications to be built which
encompass Web browsers, rather than just Web
servers. Transactional objects can reside within Web
servers, and interact with objects and applications
within other browsers or backoffice environments. As
well as being standards compliant, the system does not
compromise the security policy imposed at the

browser’s site. This means that applications can be
built without requiring specific security policies, such
as being able to write to the local disk. An application
can be configured at build-time or run-time to adapt to
the environment/user in which it runs, enabling the
same application to execute anywhere.

Acknowledgements
The work reported here has been supported in part by a
grant from UK Engineering and Physical Sciences
Research Council (grant no. GR/L 73708).

References
[DF97] D. Flanagan, “Java in a Nutshell 2nd

Edition”, O’Reilly and Associates, Inc.,
1996.

[GDP95] “The Design and Implementation of
Arjuna”, G.D. Parrington et al, USENIX
Computing Systems Journal, Vol. 8., No.
3, Summer 1995, pp. 253-306.

[JSF95] J. S. Fritzinger and M. Mueller, “Java
Security”, Sun Microsystems, 1995.

[MA96] “Draft Pjava Design 1.2”, M. Atkinson et
al, Department of Computing Science,
University of Glasgow, January 1996.

[MCL97] M. C. Little and S. K. Shrivastava,
“Distributed Transactions in Java”,
Proceedings of the 7th International
Workshop on High Performance
Transaction Systems, September 1997, pp.
151-155.

[OMG95] “CORBAservices: Common Object
Services Specification”, OMG Document
Number 95-3-31, March 1995.

[SKS95] S. K. Shrivastava, “Lessons learned from
building and using the Arjuna distributed
programming system,” International
Workshop on Distributed Computing
Systems: Theory meets Practice, Dagsthul,
September 1994, LNCS 938, Springer-
Verlag, July 1995.

[SMW96] “The Design and Implementation of a
Framework for Configurable Software”, S.
M. Wheater and M. C. Little, Proceedings
of the 3rd International Workshop on
Configurable Distributed Systems, May
1996, pp. 136-143.

[TRA96] “Transarc DE-Light Web Client Technical
Description”, Transarc Corporation,
February 1996.

[VM96] “JTS: A Java Transaction Service API”, V.
Matena and R. Cattell, Sun Microsystems,
December 1996.

Availability
Further information about JTSArjuna, including how
to obtain and license the software, can be obtained
from our Web site (http://arjuna.ncl.ac.uk) or by
emailing M.C.Little@ncl.ac.uk

