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Abstract. Fermatean fuzzy sets (FFSs), proposed by Senapati and Yager (2019a), can handle un-

certain information more easily in the process of decision making. They defined basic operations

over the Fermatean fuzzy sets. Here we shall introduce three new operations: subtraction, division,

and Fermatean arithmetic mean operations over Fermatean fuzzy sets. We discuss their properties

in details. Later, we develop a Fermatean fuzzy weighted product model to solve the multi-criteria

decision-making problem. Finally, an illustrative example of selecting a suitable bridge construc-

tion method is given to verify the approach developed by us and to demonstrate its practicability

and effectiveness.

Key words: Fermatean fuzzy set, subtraction operation, division operation, Fermatean arithmetic

mean operation, multiple criteria decision making (MCDM), weighted product model (WPM).

1. Introduction

Orthopair fuzzy sets are fuzzy sets in which the membership grades of an element x are

pairs of values in the unit interval, 〈µ(x), ν(x)〉, one of which indicates support for mem-

bership in the fuzzy set and the other support against membership. Two examples of or-

thopair fuzzy sets are Atanassov’s classic intuitionistic fuzzy sets (IFSs) (Atanassov, 1986,

2012; Atanassov et al., 2013) and a second kind of intuitionistic fuzzy sets (Atanassov,

1983, 2016). This idea has been followed up in Parvathi (2005), Parvathi et al. (2012),

Vassilev et al. (2008), Vassilev (2012, 2013). It is noted that for classic IFSs the sum of

the support for and against is bounded by one, while for the second kind, Pythagorean

fuzzy sets (PFSs), the sum of the squares of the support for and against is bounded by

one. (Yager, 2017) introduced a general class of these sets called q-rung orthopair fuzzy

sets in which the sum of the q th power of the support for and the q th power of the support

against is bounded by one. He noted that as q increases, the space of acceptable orthopairs
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increases and thus gives the user more freedom in expressing their belief about member-

ship grade. When q = 3, Senapati and Yager (2019a) have considered q-rung orthopair

fuzzy sets as Fermatean fuzzy sets (FFSs).

PFSs have attracted the attention of many researchers within a short period of time.

For example, Yager (2014) built up a helpful decision technique in view of Pythagorean

fuzzy aggregation operators to deal with Pythagorean fuzzy MCDM issues. Yager and

Abbasov (2013) explained the Pythagorean membership grades (PMGs) and the thoughts

identified with PFSs and presented the connection between the PMGs and the complex

numbers. Reformat and Yager (2014) applied the PFNs in handling the collaborative-

based recommender system. Gou et al. (2016) initiated a few Pythagorean fuzzy map-

pings and studied their basic properties like derivability, continuity, and differentia-

bility in details. Zeng et al. (2018) established an aggregation procedure for the PFS

and utilized its application in solving MADM problems. Zhang (2016) introduced a

MCDM approach in view of the idea of the similarity measure. PFSs have been effec-

tively connected in different fields, for example, the investment decision (Garg, 2016;

Peng and Yang, 2015), the candidate selection of Asian Infrastructure Investment Bank

(Ren et al., 2016) and the service quality of domestic airline (Zhang and Xu, 2014).

Senapati and Yager (2019a) have given an example to prove the reasonability of the

FFS: When a person wants to give his preference for the degree of an alternative xi to a

criterion Cj , he may allow the degree to which the alternative xi satisfies the criterion Cj

as 0.9, and similarly when the alternative xi dissatisfies the criterion Cj as 0.6. We can

definitely get 0.9 + 0.6 > 1, and, therefore, it does not follow the condition of IFSs. Also,

we can get (0.9)2 + (0.6)2 = 0.81 + 0.36 = 1.17 > 1, which does not obey constraint

condition of PFS. However, we can get (0.9)3 + (0.6)3 = 0.729 + 0.216 = 0.945 6 1,

which is appropriate to engage the FFS to capture it. This is to mention that the FFSs

have more uncertainties than IFSs and PFSs, and are capable to handle higher levels of

uncertainties.

Senapati and Yager (2019a) defined basic operations over the FFSs and introduced

new score functions and accuracy functions of FFSs. They extended the technique for or-

der preference by similarity to ideal solution (TOPSIS) approach to handling the MCDM

problem with Fermatean fuzzy information. Senapati and Yager (2019b) introduced sev-

eral Fermatean fuzzy aggregation operators, for example, the Fermatean fuzzy weighted

average (FFWA) operator, Fermatean fuzzy weighted geometric (FFWG) operator, Fer-

matean fuzzy weighted power average (FFWPA) operator and Fermatean fuzzy weighted

power geometric (FFWPG) operator.

The subtraction and division operations of IFS have been introduced by some authors

(Atanassov, 2009; Atanassov and Riecan, 2006; Chen, 2007) and finally been established

by Atanassov (2012) in his recently published book. Since subtraction and division op-

erations are also necessary for FFS, we are going to introduce those two new operations

on FFS. The contributions of this paper are the following: Section 2 displays the prelim-

inary information of the paper. Then, in Section 3, we concentrate on basic knowledge

of FFS and their fundamental operations. Section 4 proposes the subtraction operation

and the division operation over FFSs. Several operational laws of these two operations are
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given. In addition, the relationships between these two operations are also established in

this paper. In Section 5, we discuss two theorems on Fermatean arithmetic mean opera-

tions over FFNs. Section 6 describes the concept of weighted product models (WPMs). In

next Section, we utilize Fermatean fuzzy weighted product model to solve multi-criteria

decision-making problems. Section 8 exhibits the reliability and sustainability of the pro-

posed method in fruitful and flawless application by attaching it to an MCDM problem

for choosing the most appropriate bridge construction method. Finally, in Section 9, the

conclusion and scope of future research are outlined and discussed.

2. IFSs and PFSs

In this section, we have given some definitions, and that, hopefully will come in handy in

our work.

IFS, which was invented or formerly explained by Atanassov (1986), is an elaboration

of the traditional fuzzy set, and it is a reliable and enormously accepted way to ascertain

the uncertainties. It can also be described as follows.

Definition 1. (See Atanassov, 2012.) (IFSs) The intuitionistic fuzzy sets are defined on

a non-empty set X as objects having the form A = {〈x,αA(x),βA(x)〉 : x ∈ X}, where the

functions αA(x) : X → [0,1] and βA(x) : X → [0,1] denote the degree of membership

and the degree of non-membership of each element x ∈ X to the set A, respectively, and

0 6 αA(x)+ βA(x)6 1 for all x ∈ X. Obviously, when βA(x) = 1 − αA(x) for all x ∈ X,

the set A becomes a fuzzy set.

Currently, Yager (2013) launched a nonstandard fuzzy set referred to as PFS, whose

definition is as follows:

Definition 2. (PFSs) The Pythagorean fuzzy sets defined on a non-empty set X as ob-

jects having the form P = {〈x,αP (x),βP (x)〉 : x ∈ X}, where the functions αP (x) :
X → [0,1] and βP (x) : X → [0,1] denote the degree of membership and the de-

gree of non-membership of each element x ∈ X to the set P , respectively, and 0 6

(αP (x))2 + (βP (x))2 6 1, for every x ∈ X. For any Pythagorean fuzzy set P and x ∈ X,

πP (x) =
√

1 − (αP (x))2 − (βP (x))2 is called the degree of indeterminacy of x to P .

3. Fermatean Fuzzy Sets

In this section, Fermatean fuzzy sets are defined in detail and their corresponding prop-

erties are discussed. Score and accuracy functions of these sets have been defined and

compared.

Definition 3. (See Senapati and Yager, 2019a.) Let X be a universe of discourse. A Fer-

matean fuzzy set F in X is an object having the form

F =
{〈

x,αF (x),βF (x)
〉

: x ∈ X
}

,
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Fig. 1. Comparison of space of FMGs, PMGs and IMGs.

where αF (x) : X → [0,1] and βF (x) : X → [0,1], including the condition

0 6
(

αF (x)
)3 +

(

βF (x)
)3

6 1,

for all x ∈ X. The numbers αF (x) and βF (x) denote, respectively, the degree of member-

ship and the degree of non-membership of the element x in the set F .

For any FFS F and x ∈ X, πF (x) = 3
√

1 − (αF (x))3 − (βF (x))3 is identified as the

degree of indeterminacy of x to F .

For convenience, Senapati and Yager called (αF (x),βF (x)) a Fermatean fuzzy num-

ber (FFN) denoted by F = (αF , βF ).

We shall point out the membershipgrades related to Fermatean fuzzy sets as Fermatean

membership grades (FMGs).

Theorem 1. (See Senapati and Yager, 2019a.) The set of FMGs is larger than the set of

Pythagorean membership grades (PMGs) and intuitionistic membership grades (IMGs).

This development can be evidently recognized from Fig. 1. Here we notice that IMGs

are all points beneath the line x +y 6 1, the PMGs are all points with x2 +y2 6 1 and the

FMGs are all points with x3 + y3 6 1. We see then that the FMGs enable the presentation

of a bigger body of nonstandard membership grades than IMGs and PMGs.

Definition 4. (See Senapati and Yager, 2019a.) Let F = (αF , βF ), F1 = (αF1
, βF1

) and

F2 = (αF2
, βF2

) be three FFNs, then their operations are defined as follows:

(i) F1 ∩F2 =
(

min{αF1
, αF2

},max{βF1
, βF2

}
)

;

(ii) F1 ∪F2 =
(

max{αF1
, αF2

},min{βF1
, βF2

}
)

;

(iii) Fc = (βF , αF ).

Definition 5. (See Senapati and Yager, 2019a.) Let F = (αF , βF ), F1 = (αF1
, βF1

) and

F2 = (αF2
, βF2

) be three FFNs and λ > 0, then their operations are interpreted in this

way:

(i) F1 ⊞F2 =
(

3

√

α3

F1
+ α3

F2
− α3

F1
α3

F2
, βF1

βF2

)

;
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(ii) F1 ⊠F2 =
(

αF1
αF2

, 3

√

β3

F1
+ β3

F2
− β3

F1
β3

F2

)

;

(iii) λF =
(

3

√

1 − (1 − α3

F )
λ
, β3

F

)

;

(iv) Fλ =
(

αλ
F ,

3

√

1 − (1 − β3

F )
λ
)

.

Theorem 2. (See Senapati and Yager, 2019a.) For three FFNs F = (αF , βF ), F1 =
(αF1

, βF1
) and F2 = (αF2

, βF2
), the following ones are valid:

(i) F1 ⊞F2 =F2 ⊞F1;

(ii) F1 ⊠F2 =F2 ⊠F1;

(iii) λ(F1 ⊞F2) = λF1 ⊞ λF2, λ > 0;

(iv) (λ1 + λ2)F = λ1F ⊞ λ2F , λ1, λ2 > 0;

(v) (F1 ⊠F2)
λ =F

λ
1
⊠F

λ
2

, λ > 0;

(vi) Fλ1 ⊠Fλ2 =F (λ1+λ2), λ1, λ2 > 0.

Theorem 3. (See Senapati and Yager, 2019a.) For three FFNs F1 = (αF1
, βF1

), F2 =
(αF2

, βF2
) and F3 = (αF3

, βF3
), the following ones are valid:

(i) F1 ∩F2 =F2 ∩F1;

(ii) F1 ∪F2 =F2 ∪F1;

(iii) F1 ∩ (F2 ∩F3) = (F1 ∩F2) ∩F3;

(iv) F1 ∪ (F2 ∪F3) = (F1 ∪F2) ∪F3;

(v) λ(F1 ∪F2) = λF1 ∪ λF2;

(vi) (F1 ∪F2)
λ =Fλ

1
∪Fλ

2
.

Theorem 4. (See Senapati and Yager, 2019a.) Let F = (αF , βF ), F1 = (αF1
, βF1

) and

F2 = (αF2
, βF2

) be three FFNs, then

(i) (F1 ∩F2)
c =F

c
1

∪F
c
2
;

(ii) (F1 ∪F2)
c =F

c
1

∩F
c
2
;

(iii) (F1 ⊞F2)
c =F

c
1
⊠F

c
2
;

(iv) (F1 ⊠F2)
c =F

c
1
⊞F

c
2
;

(v) (Fc)λ = (λF)c ;

(vi) λ(Fc) = (Fλ)c.

Theorem 5. (See Senapati and Yager, 2019a.) Let F1 = (αF1
, βF1

), F2 = (αF2
, βF2

) and

F3 = (αF3
, βF3

) be three FFNs, then

(i) (F1 ∩F2)⊞F3 = (F1 ⊞F3) ∩ (F2 ⊞F3);

(ii) (F1 ∪F2)⊞F3 = (F1 ⊞F3) ∪ (F2 ⊞F3);

(iii) (F1 ∩F2)⊠F3 = (F1 ⊠F3) ∩ (F2 ⊠F3);

(iv) (F1 ∪F2)⊠F3 = (F1 ⊠F3) ∪ (F2 ⊠F3).

In order to rank FFNs, we define the score function of the FFN:



396 T. Senapati, R.R. Yager

Definition 6. For any FFN F = (αF , βF ), the score function of F can be defined as

follows:

score(F) = α3

F − β3

F ,

where score(F) ∈ [−1,1]. For any two FFNs F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

),

if score(F1) < score(F2), then F1 < F2. If score(F1) > score(F2), then F1 > F2. If

score(F1) = score(F2), then F1 ∼F2.

By Definition 6, we recognize that the score function is well organized to rank

the FFNs. But, in some instances, this function is not suitable to suggest which FFN

is superior, for example, if F1 =
( 3

√
4

2
,

3
√

4

2

)

and F2 = (0.5,0.5), then score(F1) =
score(F2) = 0. More generally, if any FFN satisfies αF = βF , then its score is 0. But

we realize that these FFNs are not identical. So impelled by the definition of the score

function, an accuracy function for FFN can be described as:

Definition 7. Let F = (αF , βF ) be an FFN, then the accuracy function of F may be

described as follows:

acc(F) = α3

F + β3

F .

Clearly, acc(F) ∈ [0,1]. In fact, 0 6 acc(F) = α3

F + β3

F 6 1. The larger the value of

acc(F) is, the higher is the degree of accuracy of the FFS F .

From Definitions 3 and 7, we can get π3

F + acc(F) = 1. The lower degree of indeter-

minacy makes the higher accuracy of the FFN F = (αF , βF ).

Depending upon these score and accuracy functions of FFNs, the ranking technique

for any two FFNs can be described as:

Definition 8. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs. score(Fi) and

acc(Fi) (i = 1,2) are the score values and accuracy values of F1 and F2, respectively,

then

1. If score(F1) < score(F2), then F1 <F2;

2. If score(F1) > score(F2), then F1 >F2;

3. If score(F1) = score(F2), then

(i) If acc(F1) < acc(F2), then F1 <F2;

(ii) If acc(F1) > acc(F2), then F1 >F2;

(iii) If acc(F1) = acc(F2), then F1 =F2.

4. Subtraction and Division Operations over FFNs

The subtraction and division operations in IFSs had been firstly suggested by Atanassov

and Riecan (2006). Later, Chen (2007) additionally brought comparable operations for

IFSs. Liao and Xu (2014) utilized these operations over hesitant fuzzy sets. Here we extend

subtraction and division operations over FFNs.
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Definition 9. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs, then

(i) F1 ⊟F2 =
(

3

√

α3

F1
−α3

F2

1−α3

F2

,
βF1

βF2

)

if αF1
> αF2

, βF1
6 min

{

βF2
,

βF2
π1

π2

}

;

(ii) F1 �F2 =
(

αF1

αF2

, 3

√

β3

F1
−β3

F2

1−β3

F2

)

if αF1
6 min

{

αF2
,

αF2
π1

π2

}

, βF1
> βF2

.

Theorem 6. Let F = (αF , βF ), F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be three FFNs,

and λ,λ1, λ2 > 0, then

(i) λ(F1 ⊟F2) = λF1 ⊟ λF2 if αF1
> αF2

, βF1
6 min

{

βF2
,

βF2
π1

π2

}

;

(ii) (F1 �F2)
λ =F

λ
1

�F
λ
2

if αF1
6 min

{

αF2
,

αF2
π1

π2

}

, βF1
> βF2

;

(iii) λ1F ⊟ λ2F = (λ1 ⊟ λ2)F if λ1 > λ2;

(iv) Fλ1 �Fλ2 =F (λ1−λ2) if λ1 > λ2.

Proof. We will present the proofs of (i) and (iii). Let F , F1 and F2 be three FFNs, and

λ,λ1, λ2 > 0.

(i) Since αF1
> αF2

, βF1
6 min

{

βF2
,

βF2
π1

π2

}

we have

βF1
π2 6 βF2

π1

⇒ β3

F1
π3

2
6 β3

F2
π3

1

⇒ β3

F1
β3

F2
+ β3

F1
π3

2
6 β3

F1
β3

F2
+ β3

F2
π3

1

⇒ β3

F1
(β3

F2
+ π3

2
)6 β3

F2
(β3

F1
+ π3

1
)

⇒ β3

F1
(1 − α3

F2
) 6 β3

F2
(1 − α3

F1
)

⇒
(

β3

F1

β3

F2

)λ

6

(

1 − α3

F1

1 − α3

F2

)λ

⇒ 1 −
(

1 − α3

F1

1 − α3

F2

)λ

+
(

β3

F1

β3

F2

)λ

6 1

⇒

(

3

√

√

√

√

1 −
(

1 − α3

F1

1 − α3

F2

)λ
)3

+
(

βλ
F1

βλ
F2

)3

6 1.

Then from Definitions 9 and 5, we get

3(F1 ⊟F2) = 3

(

3

√

√

√

√

α3

F1
− α3

F2

1 − α3

F2

,
βF1

βF2

)

=
(

3

√

√

√

√1 −
(

1 −
α3

F1
− α3

F2

1 − α3

F2

)λ

,

(

βF1

βF2

)λ
)

=

(

3

√

√

√

√1 −

(

1 − α3

F1

1 − α3

F2

)λ

,
βλ

F1

βλ
F2

)
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and

λF1 ⊟ λF2 =
(

3

√

1 −
(

1 − α3

F1

)λ
, β3

F1

)

⊟

(

3

√

1 −
(

1 − α3

F2

)λ
, βλ

F2

)

=

(

3

√

√

√

√

√

1 − (1 − α3

F1
)
λ − 1 + (1 − α3

F2
)
λ

1 − 1 + (1 − α3

F2
)
λ

,
βλ

F1

βλ
F2

)

=
(

3

√

√

√

√

√

(1 − α3

F2
)
λ − (1 − α3

F1
)
λ

(1 − α3

F2
)
λ

,
βλ

F1

βλ
F2

)

=
(

3

√

√

√

√1 −
(

1 − α3

F1

1 − α3

F2

)λ

,
βλ

F1

βλ
F2

)

.

Hence, λ(F1 ⊟F2) = λF1 ⊟ λF2.

(iii) λ1F ⊟ λ2F =
(

3

√

1 − (1 − α3

F )
λ1

, β
λ1

F

)

⊟

(

3

√

1 − (1 − α3

F )
λ2

, β
λ2

F

)

=

(

3

√

√

√

√

1 − (1 − α3

F )
λ1 − 1 + (1 − α3

F )
λ2

1 − 1 + (1 − α3

F )
λ2

,
β

λ1

F

β
λ2

F

)

=
(

3

√

1 − (1 − α3

F )
λ1−λ2

, β
λ1−λ2

F

)

= (λ1 ⊟ λ2)F .

The other assertions are proved analogously. �

Theorem 7. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs, then

(i) (F1 ⊟F2)
c =F

c
1

�F
c
2

if αF1
> αF2

, βF1
6 min

{

βF2
,

βF2
π1

π2

}

;

(ii) (F1 �F2)
c =F

c
1

�F
c
2

if αF1
6 min

{

αF2
,

αF2
π1

π2

}

, βF1
> βF2

.

Proof. We will present the proof of (i). Let F1 and F2 be two FFNs, then

(F1 ⊟F2)
c =

(

3

√

√

√

√

α3

F1
− α3

F2

1 − α3

F2

,
βF1

βF2

)c

=
(

βF1

βF2

, 3

√

√

√

√

α3

F1
− α3

F2

1 − α3

F2

)

= (βF1
, αF1

) � (βF2
, αF2

) =F
c
1

�F
c
2
.

Assertion (ii) is proved analogously. �

Theorem 8. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs, then

(i) (F1 ∪F2)⊟ (F1 ∩F2) =F1 ⊟F2 if αF1
> αF2

, βF1
6 min

{

βF2
,

βF2
π1

π2

}

;
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(ii) (F1 ∪F2) � (F1 ∩F2) =F1 �F2 if αF1
6 min

{

αF2
,

αF2
π1

π2

}

, βF1
> βF2

.

Proof. We will present the proof of (i). Let F1 and F2 be two FFNs. Since αF1
> αF2

,

βF1
6 min

{

βF2
,

βF2
π1

π2

}

, then

(F1 ∪F2)⊟ (F1 ∩F2)

=
(

max{αF1
, αF2

},min{βF1
, βF2

}
)

⊟
(

min{αF1
, αF2

},max{βF1
, βF2

}
)

=

(

3

√

(max{αF1
, αF2

})3 − (min{αF1
, αF2

})3

1 − (min{αF1
, αF2

})3
,

min{βF1
, βF2

}
max{βF1

, βF2
}

)

=
(

3

√

√

√

√

max
{

α3

F1
, α3

F2

}

− min
{

α3

F1
, α3

F2

}

1 − min
{

α3

F1
, α3

F2

} ,
βF1

βF2

)

=
(

3

√

√

√

√

α3

F1
− α3

F2

1 − α3

F2

,
βF1

βF2

)

=F1 ⊟F2.

Assertion (ii) is proved analogously. �

Theorem 9. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs, then

(i) (F1 ∩F2)⊟ (F1 ∪F2) =F2 ⊟F1 if αF1
> αF2

, βF1
6 min

{

βF2
,

βF2
π1

π2

}

;

(ii) (F1 ∩F2) � (F1 ∪F2) =F1 �F2 if αF1
6 min

{

αF2
,

αF2
π1

π2

}

, βF1
> βF2

.

Proof. We will present the proof of (i). Let F1 and F2 be two FFNs. Since αF1

> αF2
, βF1

6 min

{

βF2
,

βF2
π1

π2

}

, then

(F1 ∩F2)⊟ (F1 ∪F2)

=
(

min{αF1
, αF2

},max{βF1
, βF2

}
)

⊟
(

max{αF1
, αF2

},min{βF1
, βF2

}
)

=
(

3

√

(min{αF1
, αF2

})3 − (max{αF1
, αF2

})3

1 − (max{αF1
, αF2

})3
,

max{βF1
, βF2

}
min{βF1

, βF2
}

)

=

(

3

√

√

√

√

min
{

α3

F1
, α3

F2

}

− max
{

α3

F1
, α3

F2

}

1 − max
{

α3

F1
, α3

F2

} ,
βF1

βF2

)

=

(

3

√

√

√

√

α3

F2
− α3

F1

1 − α3

F1

,
βF2

βF1

)

=F2 ⊟F1.

Assertion (ii) is proved analogously. �
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Theorem 10. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs, then

(i) (F1 ∩F2) ∪F2 =F2;

(ii) (F1 ∪F2) ∩F2 =F2;

(iii) (F1 ⊟F2)⊞F2 =F1 if αF1
> αF2

, βF1
6 min

{

βF2
,

βF2
π1

π2

}

;

(iv) (F1 �F2)⊠F2 =F1 if αF1
6 min

{

αF2
,

αF2
π1

π2

}

, βF1
> βF2

.

Proof. We will present the proofs of (i) and (iii). Let F1 and F2 be two FFNs, then

(i) (F1 ∩F2) ∪F2 =
(

min{αF1
, αF2

},max{βF1
, βF2

}
)

∪ (αF2
, βF2

)

=
(

max
{

min{αF1
, αF2

}, αF2

}

,min
{

max{βF1
, βF2

}, βF2

})

= (αF2
, βF2

) =F2;
(iii) Since αF1

> αF2
, βF1

6 min

{

βF2
,

βF2
π1

π2

}

we have

(F1 ⊟F2)⊞F2 =
(

3

√

√

√

√

α3

F1
− α3

F2

1 − α3

F2

,
βF1

βF2

)

⊞ (αF2
, βF2

)

=
(

3

√

√

√

√

α3

F1
− α3

F2

1 − α3

F2

+ α3

F2
−

α3

F1
− α3

F2

1 − α3

F2

α3

F2
,
βF1

βF2

βF2

)

=

(

3

√

√

√

√

α3

F1
− α3

F2
+ α3

F2
− α6

F2
− α3

F1
α3

F2
+ α6

F2

1 − α3

F2

, βF1

)

=

(

3

√

√

√

√

α3

F1
(1 − α3

F2
)

(1 − α3

F2
)

, βF1

)

= (αF1
, βF1

) =F1.

The other assertions are proved analogously. �

Theorem 11. Let F1 = (αF1
, βF1

), F2 = (αF2
, βF2

) and F3 = (αF3
, βF3

) be three FFNs,

then

(i) (F1 ∩F2)⊟F3 = (F1⊟F3)∩ (F2 ⊟F3), if αF3
6 min{αF1

, αF2
}, max{βF1

, βF2
}

6 {βF3
, βF3

π1

π3
, βF3

π2

π3
},

min{α3

F1
,α3

F2
}−α3

F3

1−α3

F3

+
max{β3

F1
,β3

F2
}

β3

F3

6 1;

(ii) (F1 ∪F2)⊟F3 = (F1⊟F3)∪ (F2 ⊟F3), if αF3
6 min{αF1

, αF2
}, max{βF1

, βF2
}

6 {βF3
, βF3

π1

π3
, βF3

π2

π3
},

max{α3

F1
,α3

F2
}−α3

F3

1−α3

F3

+
min{β3

F1
,β3

F2
}

β3

F3

6 1;

(iii) (F1 ∩F2)�F3 = (F1 �F3)∩ (F2 �F3), if βF3
6 min{βF1

, βF2
}, max{αF1

, αF2
}

6 {αF3
, αF3

π1

π3
, αF3

π2

π3
},

max{β3

F1
,β3

F2
}−β3

F3

1−β3

F3

+
min{α3

F1
,α3

F2
}

α3

F3

6 1;

(iv) (F1 ∪F2)�F3 = (F1 �F3)∪ (F2 �F3), if βF3
6 min{βF1

, βF2
}, max{αF1

, αF2
}

6 {αF3
, αF3

π1

π3
, αF3

π2

π3
},

min{β3

F1
,β3

F2
}−β3

F3

1−β3

F3

+
max{α3

F1
,α3

F2
}

α3

F3

6 1.
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Proof. We will present the proofs of (i) and (iii). Let F1, F2 and F3 be three FFNs.

(i) Since αF3
6 min{αF1

, αF2
}, max{βF1

, βF2
}6 {βF3

, βF3

π1

π3
, βF3

π2

π3
},

min{α3

F1
,α3

F2
}−α3

F3

1−α3

F3

+
max{β3

F1
,β3

F2
}

β3

F3

6 1, then

(F1 ∩F2)⊟F3 =
(

min{αF1
, αF2

},max{βF1
, βF2

}
)

⊟ (αF3
, βF3

)

=
(

3

√

√

√

√

min{α3

F1
, α3

F2
} − α3

F3

1 − α3

F3

,
max{βF1

, βF2
}

βF3

)

=

(

min

{

3

√

√

√

√

α3

F1
− α3

F3

1 − α3

F3

, 3

√

√

√

√

α3

F2
− α3

F3

1 − α3

F3

}

,max

{

βF1

βF3

,
βF2

βF3

}

)

;

(F1 ⊟F3) ∩ (F2 ⊟F3)

=
(

3

√

√

√

√

α3

F1
− α3

F3

1 − α3

F3

,
βF1

βF3

)

∩
(

3

√

√

√

√

α3

F2
− α3

F3

1 − α3

F3

,
βF2

βF3

)

=

(

min

{

3

√

√

√

√

α3

F1
− α3

F3

1 − α3

F3

, 3

√

√

√

√

α3

F2
− α3

F3

1 − α3

F3

}

,max

{

βF1

βF3

,
βF2

βF3

}

)

.

Hence, (F1 ∩F2)⊟F3 = (F1 ⊟F3) ∩ (F2 ⊟F3).

(iii) Since βF3
6 min{βF1

, βF2
}, max{αF1

, αF2
} 6 {αF3

, αF3

π1

π3
, αF3

π2

π3
},

max{β3

F1
,β3

F2
}−β3

F3

1−β3

F3

+
min{α3

F1
,α3

F2
}

α3

F3

6 1, then

(F1 ∩F2) �F3 =
(

min{αF1
, αF2

}, max{βF1
, βF2

}
)

� (αF3
, βF3

)

=

(

min{αF1
, αF2

}
αF3

, 3

√

√

√

√

max{β3

F1
, β3

F2
} − β3

F3

1 − β3

F3

)

=

(

min

{

αF1

αF3

,
αF2

αF3

}

,max

{

3

√

√

√

√

β3

F1
− β3

F3

1 − β3

F3

, 3

√

√

√

√

β3

F2
− β3

F3

1 − β3

F3

})

;

(F1 �F3) ∩ (F2 �F3)

=

(

αF1

αF3

, 3

√

√

√

√

β3

F1
− β3

F3

1 − β3

F3

)

∩

(

αF2

αF3

, 3

√

√

√

√

β3

F2
− β3

F3

1 − β3

F3

)
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=
(

min

{

αF1

αF3

,
αF2

αF3

}

,max

{

3

√

√

√

√

β3

F1
− β3

F3

1 − β3

F3

, 3

√

√

√

√

β3

F2
− β3

F3

1 − β3

F3

})

.

Hence, (F1 ∩F2) �F3 = (F1 �F3) ∩ (F2 �F3).

The other assertions are proved analogously. �

Theorem 12. Let F1 = (αF1
, βF1

), F2 = (αF2
, βF2

) and F3 = (αF3
, βF3

) be three FFNs,

then

(i) F1 ⊞F2 ⊞F3 =F1 ⊞F3 ⊞F2;

(ii) F1 ⊠F2 ⊠F3 =F1 ⊠F3 ⊠F2;

(iii) F1 ⊟ F2 ⊟ F3 =F1 ⊟ F3 ⊟ F2, if αF1
> max{αF2

, αF3
}, βF1

6 min{βF2
βF3

,

βF2

π1

π2
, βF3

π1

π3
},

α3

F1
−α3

F2
−α3

F3
+α3

F2
α3

F3

(1−α3

F2
)(1−α3

F3
)

+
β3

F1

β3

F2
β3

F3

6 1;

(iv) F1 � F2 � F3 =F1 � F3 � F2, if βF1
> max{βF2

, βF3
}, αF1

6 min{αF2
αF3

,

αF2

π1

π2
, αF3

π1

π3
},

β3

F1
−β3

F2
−β3

F3
+β3

F2
β3

F3

(1−β3

F2
)(1−β3

F3
)

+
α3

F1

α3

F2
α3

F3

6 1.

Proof. We will present the proofs of (i) and (iii). Let F1, F2 and F3 be three FFNs.

(i) F1 ⊞F2 ⊞F3

= (αF1
, βF1

)⊞ (αF2
, βF2

)⊞ (αF3
, βF3

)

=
(

3

√

α3

F1
+ α3

F2
− α3

F1
α3

F2
, βF1

βF2

)

⊞ (αF3
, βF3

)

=
(

3

√

α3

F1
+ α3

F2
− α3

F1
α3

F2
+ α3

F3
− α3

F3
(α3

F1
+ α3

F2
− α3

F1
α3

F2
), βF1

βF2
βF3

)

=
(

3

√

α3

F1
+ α3

F2
+ α3

F3
− α3

F1
α3

F2
− α3

F1
α3

F3
− α3

F2
α3

F3
+ α3

F1
α3

F2
α3

F3
, βF1

βF2
βF3

)

=
(

3

√

α3

F1
+ α3

F3
− α3

F1
α3

F3
+ α3

F2
− α3

F2
(α3

F1
+ α3

F3
− α3

F1
α3

F3
), βF1

βF3
βF2

)

=
(

3

√

α3

F1
+ α3

F3
− α3

F1
α3

F3
, βF1

βF3

)

⊞ (αF2
, βF2

)

=F1 ⊞F3 ⊞F2.

(iii) Since αF1
> max{αF2

, αF3
}, βF1

6 min{βF2
βF3

, βF2

π1

π2
, βF3

π1

π3
},

α3

F1
−α3

F2
−α3

F3
+α3

F2
α3

F3

(1−α3

F2
)(1−α3

F3
)

+
β3

F1

β3

F2
β3

F3

6 1, then

F1 ⊟ F2 ⊟ F3 =

(

3

√

√

√

√

α3

F1
− α3

F2

1 − α3

F2

,
βF1

βF2

)

⊟ (αF3
, βF3

)
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=
(

3

√

√

√

√

√

√

α3

F1
−α3

F2

1−α3

F2

− α3

F3

1 − α3

F3

,
βF1

βF2
βF3

)

=
(

3

√

√

√

√

α3

F1
− α3

F2
− α3

F3
+ α3

F2
α3

F3

(1 − α3

F2
)(1 − α3

F3
)

,
βF1

βF2
βF3

)

;

and

F1 ⊟ F3 ⊟ F2 =
(

3

√

√

√

√

α3

F1
− α3

F3

1 − α3

F3

,
βF1

βF3

)

⊟ (αF2
, βF2

)

=
(

3

√

√

√

√

√

√

α3

F1
−α3

F3

1−α3

F3

− α3

F2

1 − α3

F2

,
βF1

βF2
βF3

)

=
(

3

√

√

√

√

α3

F1
− α3

F3
− α3

F2
+ α3

F2
α3

F3

(1 − α3

F2
)(1 − α3

F3
)

,
βF1

βF2
βF3

)

.

Therefore, F1 ⊟ F2 ⊟ F3 =F1 ⊟ F3 ⊟ F2.

The other assertions are proved analogously. �

Theorem 13. Let F1 = (αF1
, βF1

), F2 = (αF2
, βF2

) and F3 = (αF3
, βF3

) be three FFNs,

then

(i) F1 ⊟ F2 ⊟ F3 = F1 ⊟ (F2 ⊞ F3), if αF1
> max{αF2

, αF3
}, βF1

6 min{βF2
βF3

,

βF2

π1

π2
, βF3

π1

π3
},

α3

F1
−α3

F2
−α3

F3
+α3

F2
α3

F3

(1−α3

F2
)(1−α3

F3
)

+
β3

F1

β3

F2
β3

F3

6 1;

(ii) F1 � F2 � F3 = F1 � (F3 ⊠ F2), if βF1
> max{βF2

, βF3
}, αF1

6 min{αF2
αF3

,

αF2

π1

π2
, αF3

π1

π3
},

β3

F1
−β3

F2
−β3

F3
+β3

F2
β3

F3

(1−β3

F2
)(1−β3

F3
)

+
α3

F1

α3

F2
α3

F3

6 1.

Proof. We will present the proof of (i), and (ii) can be proved analogously. Let F1, F2

and F3 be three FFNs.

Since αF1
> max{αF2

, αF3
}, βF1

6 min{βF2
βF3

, βF2

π1

π2
, βF3

π1

π3
},

α3

F1
−α3

F2
−α3

F3
+α3

F2
α3

F3

(1−α3

F2
)(1−α3

F3
)

+
β3

F1

β3

F2
β3

F3

6 1, then

F1 ⊟ F2 ⊟ F3 =

(

3

√

√

√

√

α3

F1
− α3

F2
− α3

F3
+ α3

F2
α3

F3

(1 − α3

F2
)(1 − α3

F3
)

,
βF1

βF2
βF3

)
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and

F1 ⊟ (F2 ⊞ F3) = (αF1
, βF1

)⊟
(

3

√

α3

F2
+ α3

F3
− α3

F2
α3

F3
, βF2

βF3

)

=
(

3

√

√

√

√

α3

F1
− α3

F2
− α3

F3
+ α3

F2
α3

F3

1 − α3

F2
− α3

F3
+ α3

F2
α3

F3

,
βF1

βF2
βF3

)

=

(

3

√

√

√

√

α3

F1
− α3

F2
− α3

F3
+ α3

F2
α3

F3

(1 − α3

F2
)(1 − α3

F3
)

,
βF1

βF2
βF3

)

.

Therefore, F1 ⊟ F2 ⊟ F3 =F1 ⊟ (F2 ⊞ F3). �

5. Fermatean Arithmetic Mean Operations over FFNs

In this section, Fermatean arithmetic mean operations over FFNs are defined in detail and

two corresponding theorems are proved.

Definition 10. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs, then average

operator of F1 and F2 is defined as

F1 a©F2 =
(

α3

F1
+ α3

F2

2
,
β3

F1
+ β3

F2

2

)

.

Theorem 14. Let F1 = (αF1
, βF1

), F2 = (αF2
, βF2

) and F3 = (αF3
, βF3

) be three FFNs,

then

(i) (F1 ∩F2) a©F3 = (F1 a©F3) ∩ (F2 a©F3);

(ii) (F1 ∪F2) a©F3 = (F1 a©F3) ∪ (F2 a©F3);

(iii) (F1 a©F2)
c =F

c
1

a©F
c
2
.

Proof. Let F1, F2 and F3 be three FFNs.

(i) (F1 ∩F2) a©F3 = (min{αF1
, αF2

},max{βF1
, βF2

}) a©(αF3
, βF3

)

=
(

min{α3

F1
, α3

F2
} + α3

F3

2
,

max{β3

F1
, β3

F2
} + β3

F3

2

)

=
(

min

{

α3

F1
+ α3

F3

2
,
α3

F2
+ α3

F3

2

}

,max

{

β3

F1
+ β3

F3

2
,
β3

F2
+ β3

F3

2

})

=
(

α3

F1
+ α3

F3

2
,
β3

F1
+ β3

F3

2

)

∩
(

α3

F2
+ α3

F3

2
,
β3

F2
+ β3

F3

2

)

= (F1 a©F3) ∩ (F2 a©F3)

;
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(iii) (F1 a©F2)
c =

(

α3

F1
+ α3

F2

2
,
β3

F1
+ β3

F2

2

)c

=
(

β3

F1
+ β3

F2

2
,
α3

F1
+ α3

F2

2

)

= (βF1
, αF1

) a©(βF2
, αF2

) = F
c
1

a©F
c
2
.

Assertion (ii) is proved analogously. �

Theorem 15. Let F1 = (αF1
, βF1

) and F2 = (αF2
, βF2

) be two FFNs, then

(

(F1 ∩F2)⊞ (F1 ∪F2)
)

a©
(

(F1 ∩F2)⊠ (F1 ∪F2)
)

=F1 a©F2.

Proof. We know that for any two real numbers a and b,

min(a, b) + max(a, b) = a + b,

min(a, b) · max(a, b) = a · b.

Now,

(F1 ∩F2)⊞ (F1 ∪F2)

=
(

min{αF1
, αF2

},max{βF1
, βF2

}
)

⊞
(

max{αF1
, αF2

},min{βF1
, βF2

}
)

=
(

3

√

min
{

α3

F1
, α3

F2

}

+ max
{

α3

F1
, α3

F2

}

− min
{

α3

F1
, α3

F2

}

max
{

α3

F1
, α3

F2

}

,

max{βF1
, βF2

} min{βF1
, βF2

}
)

=
(

3

√

α3

F1
+ α3

F2
− α3

F1
α3

F2
, βF1

βF2

)

;

(F1 ∩F2)⊠ (F1 ∪F2)

=
(

min{αF1
, αF2

},max{βF1
, βF2

}
)

⊠
(

max{αF1
, αF2

},min{βF1
, βF2

}
)

=
(

min{αF1
, αF2

} max{αF1
, αF2

},

3

√

max
{

β3

F1
, β3

F2

}

+ min
{

β3

F1
, β3

F2

}

− max
{

β3

F1
, β3

F2

}

min
{

β3

F1
, β3

F2

}

)

=
(

αF1
αF2

, 3

√

β3

F1
+ β3

F2
− β3

F1
β3

F2

)

.

Therefore,

(

(F1 ∩F2)⊞ (F1 ∪F2)
)

a©
(

(F1 ∩F2)⊠ (F1 ∪F2)
)

=
(

3

√

α3

F1
+ α3

F2
− α3

F1
α3

F2
, βF1

βF2

)

a©
(

αF1
αF2

, 3

√

β3

F1
+ β3

F2
− β3

F1
β3

F2

)

=
(

α3

F1
+ α3

F2

2
,
β3

F1
+ β3

F2

2

)

=F1 a©F2. �
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6. Weighted Product Model

The weighted product model (WPM) is one of the best known and often applied MCDM

methods for evaluating a number of alternatives in terms of a number of decision criteria.

Each decision alternative is compared with the others by multiplying a number of ratios,

one for each decision criterion. Each ratio is raised to the power equivalent to the relative

weight of the corresponding criterion. Some of the first references to this method are due

to Bridgman (1922) and Miller and Starr (1969). More details on this method are given

in the MCDM book by Triantaphyllou (2000).

Its application first requires developmentof a decision/evaluationmatrix, X = [xij ]m∗n

where xij is the performance of i-th alternative with respect to j -th criterion, m is the

number of alternatives and n is the number of criteria. To make the performance measures

comparable and dimensionless, all the elements in the decision matrix are normalized

using the following two equations:

xij =
xij

maxi xij

, for beneficial criteria, (1)

xij =
mini xij

xij

, for non-beneficial criteria, (2)

where xij is the normalized value of xij .

According to WPM the total relative importance of alternative i , denoted as Qi , is

defined as follows:

Qi =
n
∏

j=1

(xij )
wj , (3)

where wj denotes the weight (relative importance) of j -th criterion.

7. WPM Approach to MCDM Problem with Fermatean Fuzzy Data

In this section, I am going to introduce the MCDM problem under Fermatean fuzzy en-

vironment. Then, an effective decision-making method is hereby indicated to handle such

MCDM problems.

7.1. Description of the MCDM Problem with FFNs

The main work done in most of the MCDM problem is to rank one or more alterna-

tives from a collection of possible alternatives regarding multiple criteria. For a stated

MCDM problem under Fermatean fuzzy domain, presume that there are m alternatives

Si (i = 1,2, . . . ,m) and n criterion Cj (j = 1,2, . . . , n) with the criteria weight vec-

tor w = (w1,w2, . . . ,wn)
T such that 0 6 wj 6 1, j = 1,2, . . . , n, and

∑n
j=1

wj = 1.

We express the assessment values of the alternative Si with respect to the criterion Cj
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by xij = (uij , vij ), and R = (xij )m×n is a Fermatean fuzzy decision matrix. Thus, the

MCDM problem with FFNs can be considered as the subsequent matrix form:

R = (xij )m×n =

C1 C2 · · · Cn

S1

S2

...

Sm











(u11, v11) (u12, v12) · · · (u1n, v1n)

(u21, v21) (u22, v22) · · · (u2n, v2n)
...

...
. . .

...

(um1, vm1) (um2, vm2) · · · (umn, vmn)











,
(4)

where each of elements xij = (uij , vij ) is an FFN, which implies that those degrees should

the alternative Si fulfills the attributes Cj will be the value uij and the degree should the

alternative Si disappoints the attributes Cj may be the worth vij .

7.2. The Proposed Decision Method

For an effective solution of the MCDM problem, mentioned above, we suggest a Fer-

matean fuzzy WPM (FF-WPM) method.

The first step in FF-WPM is to normalize the R = (xij )m×n matrix with a linear

method. Let the criteria be classified to a subset of benefit criteria, B , and a subset of

cost criteria, C. The linear normalization for any j ∈ B is defined as follows:

xij = xij � max
i

xij , (5)

where maxi xij is determined as maxi xij = (maxi uij ,mini vij ).

And the linear normalization for any j ∈ C is defined as follows:

xij = min
i

xij � xij , (6)

where mini xij is determined as mini xij = (mini uij ,maxi vij ).

By applying score functions, we can easily get the result that xij 6 maxi xij and

mini xij 6 xij , ∀i, j : i = 1,2, . . . ,m, j ∈ C. The division operations in Eq. (5) and Eq. (6)

are done based on the Definition 9(ii). The decision matrix R is transformed into the nor-

malized matrix R:

R =
(

xij

)

m×n
=











x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn











. (7)

According to WPM the total relative importance of alternative i , denoted as Qi , is

defined as

Qi =
n
∏

j=1

(xij )
wj . (8)
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Table 1

Fermatean fuzzy decision matrix.

Criteria Optimization Weight S1 S2 S3 S4 max/min xij

direction

C1 max 0.142875 (0.38,0.52) (0.73,0.28) (0.78,0.23) (0.57,0.44) (0.78,0.23)

C2 min 0.059524 (0.62,0.22) (0.56,0.87) (0.08,0.81) (0.35,0.65) (0.08,0.87)

C3 min 0.214251 (0.24,0.80) (0.25,0.47) (0.21,0.65) (0.42,0.57) (0.21,0.80)

C4 min 0.095238 (0.51,0.47) (0.25,0.71) (0.46,0.48) (0.40,0.51) (0.25,0.71)

C5 max 0.142875 (0.68,0.35) (0.39,0.33) (0.65,0.34) (0.29,0.63) (0.68,0.33)

C6 min 0.119048 (0.16,0.75) (0.23,0.79) (0.38,0.45) (0.86,0.61) (0.16,0.79)

C7 min 0.059524 (0.25,0.42) (0.68,0.29) (0.21,0.75) (0.17,0.87) (0.17,0.87)

C8 min 0.166665 (0.11,0.90) (0.40,0.31) (0.38,0.63) (0.23,0.76) (0.11,0.90)

In Eq. (8), the power operation (xij )
wj , j = 1,2, . . . , n is done based on Defini-

tion 5(iv), while the product operation of obtained values is performed based on Defi-

nition 5(i). It is notable that Qi is a FFN.

In the last step, the score and accuracy functions are calculated for Qi , i = 1,2, . . . ,m

and the final rankings of alternatives are determined based on the descending order of Qi ,

i = 1,2, . . . ,m.

8. Applications to Bridge Construction Selection

In this section, we expand the implementation of the proposed WPM approach with a nu-

merical example, which is discussed in Chen (2012). There are four available bridge con-

struction methods, including the advanced shoring method (S1), the incremental launch-

ing method (S2), the balanced cantilever method (S3), and the precast segmental method

(S4). The set of all candidate methods is denoted by S = {S1, S2, S3, S4}. The criteria for

evaluating bridge construction methods contain durability (C1), damage cost (C2), con-

struction cost (C3), traffic conflict (C4), site condition (C5), weather condition (C6), land-

scape (C7), and environmental effect (C8). Among these criteria, C1 and C5 are the benefit

criteria, whereas the others are cost criteria. The set of evaluative criteria is denoted by

C = {C1,C2, . . . ,C8} with Cb = {C1,C5} and Cc = {C2,C3,C4,C6,C7,C8}. In order to

avoid influencing each other, the decision makers are required to evaluate the four available

bridge construction methods Si (i = 1,2,3,4) under the above eight criterions and the

decision matrix R = (xij ) is presented in the middle of Table 1, where xij (i = 1,2,3,4,

j = 1,2, . . . ,8) are in the form of FFNs. The weight vector of Cj j = 1,2, . . . ,8 is w =
(0.142875,0.059524,0.214251,0.095238,0.142875,0.119048,0.059524,0.166665)T .

The normalized decision matrix will be obtained by applying Eq. (5) and Eq. (6) based

on Definition 9(ii), as shown in Table 2.

Finally, the FF-WPM is calculated for all of the alternatives. The results are shown in

Table 3. The rankings of alternatives in Table 3 are obtained by calculating the score and

accuracy functions of FF-WPM. It can be seen that the most preferred alternative is S1

and then the alternatives S2, S3 and S4 are in the 3rd, 2nd and 4th places, respectively.

Therefore, the advanced shoring method will be preferred to other alternatives.
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Table 2

Normalized decision matrix.

Criteria S1 S2 S3 S4

C1 (0.38,0.52) (0.73,0.28) (0.78,0.23) (0.57,0.44)

C2 (0.08,0.87) (0.08,0.87) (0.08,0.87) (0.08,0.87)

C3 (0.21,0.80) (0.21,0.80) (0.21,0.80) (0.21,0.80)

C4 (0.25,0.71) (0.25,0.71) (0.25,0.71) (0.25,0.71)

C5 (0.68,0.35) (0.39,0.33) (0.65,0.34) (0.29,0.63)

C6 (0.16,0.79) (0.16,0.79) (0.16,0.79) (0.16,0.79)

C7 (0.17,0.87) (0.17,0.87) (0.17,0.87) (0.17,0.87)

C8 (0.11,0.90) (0.11,0.90) (0.11,0.90) (0.11,0.90)

Table 3

Numerical results obtained by FF-WPM.

Alternatives FF-WPM Score Rank

S1 (0.7088603,0.558145642) 0.182312972 1

S2 (0.5582420,0.693929450) −0.16018621 3

S3 (0.6793039,0.693499322) −0.02006513 2

S4 (0.4626257,0.691596519) −0.23178229 4

9. Conclusions

In this article, we have introduced the subtraction, division and Fermatean arithmetic mean

operations over FFNs. A few operative rules of these three operations have been provided.

In addition, the relationships between these operations have also been established. These

operations can be instantly prolonged into interval-valued Fermatean fuzzy sets. Finally,

we propose a FF-WPM method and apply it to bridge construction selection. In the fu-

ture, we will combine others methods like VIKOR Method (Liu and Qin, 2017), MUL-

TIMOORA Method (Stanujkic et al., 2017), SWARA Method (Karabasevic et al., 2016),

SECA method (Keshavarz-Ghorabaee et al., 2018), GDM models (Capuano et al., 2018;

Moral et al., 2018; Zhang et al., 2018), with FFNs.
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