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ABSTRACT 

 
We present here a study about the limitations found when trying to develop an accurate atmospheric particulate matter 

forecasting model based on real data, and evidence that the time series of fine particulate matter concentration exhibit 
deterministic chaotic behavior. We have calculated the Lyapunov exponents of PM2.5 time series obtained from 
measurements from four monitoring stations located in the city of Santiago, Chile, in recent years. Values obtained for the 
largest Lyapunov exponents turned out to be positive and ranging between 0.3 and 0.5 which, according to the theory of 
chaos, is a condition for the presence of deterministic chaos and random behavior in time series. Given the shape of decay 
of autocorrelation functions and values of correlation dimension and Hurst exponents, random behavior can be discarded: 
we therefore conclude that the series are chaotic and very sensitive to initial conditions. The study presented here can be 
replicated in other mid-sized cities that present similar situations to the city of Santiago, where complexity of topography, 
meteorology and seasonal trends favor the generation of high concentration episodes of atmospheric particulate matter and 
where a reliable air quality forecasting model may be important for environmental management. 
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INTRODUCTION 

 
In urban centers around the world it is observed that on 

some days the population is exposed to unhealthy 
concentrations of atmospheric particulate matter. For this 
reason, it seems convenient that environmental authorities 
operate a forecasting system which can be used to prevent 
the population or to enforce emissions restrictions. 

Atmospheric particulate matter concentration forecasting 
models may be classified as statistical or deterministic. 
Statistical models are based on historical information from 
the particulate matter (PM) time series and associated 
meteorology. During a training stage, using samples of an 
appropriate input-output relation, a number of adjustable 
parameters are calculated. During operational mode, values 
of pollutant concentration and meteorological variables 
measured within the last few hours are introduced in the 
algorithm that generates an estimation of the future value 
of the variable of interest.  

Particulate matter forecasts using statistical models, in 
which historical values are used for parameter adjustment, 
may be of reasonable accuracy when estimation of  
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concentrations a few hours ahead in time is the goal. 
However with these models in general it is not possible to 
generate spatial distribution of pollutant concentrations. 
Besides, errors become considerably large when forecasting 
more than one day into the future (Pérez et al., 2000; Ordieres 
et al., 2005; Grivas and Chaloulakou, 2006). Since these 
models are trained with data from the past, they usually 
tend to be less accurate for extreme cases (very low or very 
high pollutant concentration) that are observed with a relative 
low frequency. From an operational point of view, poor 
long-range forecasting will be a disadvantage, because high 
particulate matter episodes are of crucial interest for air 
pollution management and they are normally observed on 
few occasions during the year. Among statistical models 
used for air pollution forecasting we find linear regressions 
(Thomas and Jacko, 2007), artificial neural networks (Pérez 
and Reyes, 2006), discriminant analysis (Silva et al., 2001) 
and Kalman filtering (Van der Wal and Janssen, 2000).  

On the other hand, deterministic models are chemistry-
transport models (Grell et al., 1994; Byun and Ching, 1999; 
Tie et al., 2007; Jorba et al., 2008; Stern et al., 2008) for 
which, given the rate of emission of a variety of pollutants, 
meteorological fields and chemical boundary conditions, the 
time evolution of several chemical compounds and aerosols 
is calculated. In general, these models are composed of a 
meteorological driver (MD) and a chemical and transport 
module (CTM). Limitations on the forecasting accuracy of 
this type of model may be attributed to the difficulty to 
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consider in detail all the relevant sources of air pollution 
and to take into account all the physical-chemical processes 
that have an effect on the evolution of particulate matter 
concentrations (Pool, 1989). Accuracy of forecasting is 
strongly dependent on the precise estimation of initial 
conditions (Manders et al., 2009). Konovalov et al (2009) 
presented a study that combines the properties of a 
statistical model and a deterministic model, which seems 
to optimally combine the accuracy of the former with the 
capability of longer time forecasting of the later. 

Average PM concentration forecasting errors with one 
day anticipation are not significantly lower than 20% with 
any model, whether statistical or deterministic. It is possible 
that intrinsic properties of the PM time series do not allow 
for forecasting accuracies much better than those obtained 
with existing models, due in part to the evidence that these 
series are chaotic in nature (Chelani and Devotta, 2006a; 
Kumar et al., 2008; Lee and Lin, 2008).  

According to Lorenz (1963) nonlinearity is inherent to 
atmospheric systems. Sivakumar et al (2007) points out the 
existence of nonlinear deterministic behavior in the air 
quality index in time series such as ozone. Raga and Le 
Moine (1996) have applied nonlinear dynamic tool on air 
quality data (NO, CO, SO2 and O3). 

In the decade of the 80’s, the analysis of time series 
through dynamical systems theory (Takens, 1981) has 
established that relevant information may be obtained by 
the calculation of a set of parameters (or indexes) as time lag, 
mutual information (Fraser and Swinney, 1986), embedding 
dimension, capacity dimension, correlation dimension, entropy 
of information, Hurst exponent and Lyapunov exponents, 
among others (Grassberger and Procaccia, 1983). 

Among these parameters, the largest Lyapunov exponent 
is one of the most widely used indicator to detect chaotic 
behavior in a dynamical system consisting of a time series 
(Eckmann et al., 1986). 

In this paper the PM2.5 data recorded in four monitoring 
stations located in the urban area of Santiago, Chile during 
2000–2006 is analyzed. The significantly positive Lyapunov 
exponents obtained are an indication that the evolution of 
concentrations is very sensitive to initial conditions and the 
estimation of capacity dimension, correlation dimension 
and Hurst exponent indicate that they are not random but 
chaotic. 
 
Chaotic Behavior in Air Pollution Time Series 

Linear methods for analysis and prediction of time 
series may be a starting point in the study of behavior of 
air pollution and meteorological data. However, the most 
relevant results have been obtained with the introduction 
of nonlinear tools. The reason for this is that in this type of 
data, small causes may have large effects in future values, 
which is the essence of nonlinearity. 

Let us consider the following time series: 
 
x(t), x(t + ∆), x(t + 2∆), x(t + 3∆), … (1) 
 
where ∆ is the time difference between measurements of 
variable x. We can write this series in simpler form by 

calling x(t + kΔ) = xk. A distance d0 between two arbitrary 
samples of the series xi and xj may be defined as: 
 

0 i jd x x   (2) 

 
This corresponds to absolute value of difference in one 

dimension and to Euclidean distance in higher dimensions. 
The distance between the respective following values is 

called d1: 
 

1 1 1i jd x x    (3) 

 
If we assume that the distance dN = ||xi+N – xj+N|| increases 

exponentially with N, the exponent λ defined by Eq. (4) is 
called the Lyapunov exponent (Hilborn, 2000): 

 
dN = d0e

Nλ (4) 
 

Taking natural logarithm: 
 

0

1
ln Nd

N d
   (5) 

 
In practice, the Lyapunov exponent is obtained from Eq. 

(5) in the limit of large N, for which saturation of log(dN) 
becomes evident (see Fig. 3). What is found is that there 
are as many different Lyapunov exponents as the embedding 
dimension De of the time series, where De is the integer 
dimension of phase-space required to reproduce the steady 
state of the system.  

Nonlinear systems are described by multidimensional 
vectors labeled by a time coordinate. The space in which 
these vectors lie is known as state space or phase space. 
What is shown in Eqs. (2)–(5) corresponds to the case with 
De = 1. These equations describe the way to calculate the 
single Lyapunov exponent for this simple case. In the general 
case, points must be represented by a De-dimensional vector: 
 
{x(t), x(t + ∆), x(t + 2∆), …, x(t + (De – 1)∆)} (6) 
 
and distances dN must be understood as Euclidian distances. 

For a time series of scalar observations, which may be the 
case of the series of one hour average PM2.5 concentrations 
measured at a monitoring station, Pérez and Reyes (2001) 
have shown a methodology for calculating the embedding 
dimension and the optimal time lag ∆. In this case, the 
embedding dimension corresponds to the length of a sequence 
of observations used as input to a multilayer neural network 
which are necessary to predict the next step value, where the 
time separation between inputs is ∆. 

Lyapunov exponents may be positive, zero or negative. 
If the maximal Lyapunov exponent is negative, we are in 
the presence of a time series representing a dissipative system 
with a stable fixed point. If the motion settles down onto a 
limit cycle, the maximal Lyapunov exponent is zero. If a 
predominantly deterministic system is affected by random 
noise, the maximal Lyapunov exponent is infinite (Kantz 
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and Schreiber, 2005). A positive finite maximal Lyapunov 
exponent would be an indication of chaos. For a given time 
series, the sum of all positive Lyapunov exponents defines 
its Kolmogorov entropy K (Kolmogorov, 1959), and its 
inverse quantifies the average time of predictability, Tp = 
1/K. In general, the largest positive Lyapunov exponent of 
a system λL is obtained in a straightforward manner, and 
then we can establish that 
 

1
p

L

T


  (7) 

 
providing in this way a strong restriction for modeling (Liu 
et al., 2004). 

Lanfredi and Macchiato (1997) have found that random 
behavior dominates over the chaotic behavior in time series of 
pollutants like NOx, O3 and CO. Raga and Le Moyne (1996) 
have applied nonlinear analysis to O3, NO2, SO2 and CO 
time series obtained from 13 monitoring stations in Mexico 
City, finding low-dimensional chaotic behavior in those time. 
Related to total ozone concentration, Chattopadhyay and 
Chattopadhyay (2008) have found the existence of chaotic 
behavior in Arosa, using the correlation dimension method. 
On the other hand, Haase et al. (2002) have indicated that 
if there is any nonlinearity in the ozone time series it may 
be very weak. But different to that result, Chelani (2010) has 
observed chaotic signatures in ozone concentration time series 
in Delhi, India, for 1 h and 4 h sampling rates. Koçak et al. 
(2000) applied a local method to predict observed O3 time 
series data in Istanbul. The attractor in a multidimensional 
space was reconstructed, concluding that O3 concentration 
is governed by a deterministic chaotic system. 

Chelani and Devotta (2006b) implemented a hybrid 
methodology in order to predict one step ahead air pollutant 
concentration time series using nonlinear dynamic modeling 
and applied to NO2 concentrations observed at a site in 
Delhi that was more effective than an autoregressive model. 
Also, using neural networks and nonlinear dynamical systems 
theory, Chelani et al. (2005) have characterized and predicted 
ambient nitrogen dioxide time series concentration at three 
sites in Kolkata, India. At two sites in the Gdansk region in 
Poland, Khokhlov et al. (2008) have investigated chaotic 
behavior in the nitrogen dioxide and sulphurous anhydride 
concentration time series finding low-dimensional chaos 
(low- dimensional chaos is characterized by only one positive 
Lyapunov exponent). Using artificial neural networks and 
a new scheme to predict chaotic time series of air pollutant 
concentrations (applied to Lorenz map and ozone 
observations), Gautam et al. (2008) got better predictions 
as compared to standard backpropagation algorithm. Yu et 
al. (2011) have found clear evidence of chaotic behavior of 
PM10 time series over a time span of 10 years in Lanzhou, 
China. 

An indication of the presence of chaos in a time series is 
the value of the Lyapunov exponent, for which we describe 
a calculation method below. 
 
METHODOLOGY 

In what follows, the largest Lyapunov exponents for PM2.5 
series are calculated using the algorithm proposed by Wolf 
et al. (1985). In order to use this algorithm, an estimation of 
the embedding dimension of the system is necessary. One 
way to calculate embedding dimension is by analyzing the 
correlation dimension (Grassberger and Procaccia, 1983) as a 
function of embedding dimension De. Correlation dimension 
is calculated as follows: for each data point generate a hyper 
dimensional sphere of embedding dimension De and radius 
r with the point at its center. The fraction of subsequent 
points within the sphere is calculated for different values of 
r. Then the log of this number versus the log of the radius is 
plotted. The correlation dimension is defined as the average 
slope of the cumulative curve. As the embedding dimension 
increases, the correlation dimension also increases, but for 
most systems it saturates at some value. The smallest integer 
value of De within the saturated region corresponds to the 
correct value of embedding dimension De.  

Once we have estimated the embedding dimension, it is 
possible to construct the state space from the experimental 
data record (Small, 2005; Takens, 1981). 

Let us consider  
 
y(t) = x(t), x(t + ∆), x(t + 2∆), …, x(t + (De – 1)∆) (8) 

 
where y(t) is the reconstructed De dimensional state vector, 
x(t) is the observed variable, τ is a time lag, calculated from 
the first minimum of the Average Mutual Information 
function (Fraser and Swinney, 1986; Abarbanel, 1996). 
This quantity is a set theoretic concept and as a function of 
time delay estimates the mutual information content of two 
sets of measurements. 

It is worth mention that nearly random time series has 
also large Lyapunov exponents. However, in that case a 
signature is the linear autocorrelation function, defined as 
(Abarbanel, 1996):  
 

   ( ) ( ) ( )
n

C T x n x x n T x      (9) 

 
This correlogram is an image of correlation statistics 

and may be used to investigate if a sequence of data is 
random or if adjacent observations are related. 

For a random series, C(t) goes abruptly to zero, while 
for chaotic deterministic data it shows slower decay. The 
calculation of additional statistical parameters as capacity 
dimension, correlation dimension, Hurst exponent and 
entropy may be related to the determination of whether the 
analyzed time series are chaotic. 

The capacity dimension is the fractional dimension of any 
attractor of the time series obtained when data are plotted in 
a reconstructed phase space with a given embedding 
dimension. It is calculated by iteratively dividing the phase 
space with embedding dimension De into equal hypercubes 
and plotting the log of the fraction of hypercubes containing 
data points against the log of the size of the edge of the 
hypercube. The average slope of the central part of the curve 
is taken as the capacity dimension. A dimension greater than 
five is an indication of essentially random data. 
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The correlation dimension is calculated by counting data 
points inside hyper-spheres of different radii centered on 
each data point in a reconstructed phase space with a given 
embedding dimension. It corresponds to the average slope 
of the cumulative curve obtained from the log of the record 
against the log of the radius. Also, a correlation dimension 
greater than about five implies that the time series represents 
data from a random process. 

The Hurst exponent is a measure of the degree to which 
the data can be represented by a random walk. Here, the 
root-mean-square displacement is calculated as a function 
of time, where each point in the time series is taken as an 
initial condition. The slope of the curve obtained is the Hurst 
exponent. For ordinary Brownian motion the exponent is 
0.5. Values between 0.5 and 1.0 indicate deterministic 
behavior and persistence. Hurst exponent significantly less 
than 0.5 are typical for deterministic behavior and anti-
persistence (Kantz and Schreiber, 2005). 

 
Chaos in Santiago PM2.5 Time Series 

PM2.5 series in several monitoring stations in Santiago, 
Chile show annual averages that are high relative to national 
standards. In addition, a seasonal effect is observed, according 
to which concentrations are significantly higher during fall 
and winter as compared to the rest of the year. This seasonal 
increase in concentrations, results from a combination of 
unfavorable meteorology dominated by severe temperature 
inversion, the presence of urban emission sources, and a 
confined geographical area (Ruttland and Garreaud, 1995). 
This pattern of atmospheric pollution is not unique to 
Santiago, but is also observed in other cities around the 
world, like Lohan, Utah, USA (Silva et al., 2007), Tucson, 
Arizona, USA (Bailey et al., 2011), Graz, Austria (Stadlober 
et al., 2008), Gothenburg, Sweden (Olofson et al; 2000). 
When episodes of high concentrations occur in the cold 
period, harmful effects for the population may be prevented 
in part by the use of a forecasting model. However, when 
chaos is present in PM2.5 time series, important limitations 
to the accuracy of the forecast are unavoidable. 

The data from four PM2.5 monitoring stations in Santiago is 
analyzed in this study. Their location within the urban area 
is shown in Fig. 1. Station L is 604 m over sea level and is 
located near a commercial area. An important contribution 
to PM2.5 concentrations measured in this station may be 
attributed to traffic congestion produced at rush hours. 
Station M is 785 m over mean sea level (MSL) and it is 
located in a residential area. Fine particles measured at this 
station are expected to be produced by vehicle traffic and 
wood burning (in winter). This station registers PM2.5 
concentrations that in general are lower than those measured 
by the other three analyzed stations. A reason for this is that 
its altitude is often higher than altitude of thermal inversions 
during episodes (between 600 m and 700 m MSL). Station 
N is 550 m over sea level and is near down town and close 
to freeway. Station O is 481 m MSL. It is located in a 
residential area, and being located towards the extreme west 
and the lowest part of the city, it is expected to measure 
not only local emissions but also particles transported from 
other areas. During high concentration episodes this station 

 
Fig. 1. Location of PM2.5 monitoring stations in Santiago 
urban area. 

 

registers the highest values. The accumulation of air 
pollution in this area is enhanced by the presence of a night 
breeze that blows from east to west, which is blocked by a 
coastal range with elevations over 1000 m that stands 
between the city and the Pacific Ocean. Given the high 
PM2.5 concentrations observed in Santiago, environmental 
authorities have implemented control strategies, like 
restrictions to wood burning, vehicle circulation and closing 
of industries during episodes. We must have in mind that 
in urban areas an important fraction of the measured PM2.5 
is produced through chemical reactions that occur in the 
atmosphere (Wang et al., 2008; Seguel et al., 2009). 

About 2% of our time series data are missing. For small 
gaps linear interpolation was applied and for bigger gaps, a 
cubic spline with single imputation technique was used 
(Junninen et al., 2004). 

One hour average PM2.5 concentrations during one year 
are shown in Fig. 2. Seasonal variation is evident from data 
in the four stations. Being Santiago located in the southern 
hemisphere, autumn starts in March and winter ends in 
September. Average concentrations are significantly higher 
between April and August during which more episodes of 
high PM2.5 are observed. During this period, a greater 
number of episodes are observed in station O as compared 
with the rest of the year (notice the difference of scale in 
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Fig. 2). Statistical properties of the PM2.5 series for years 
from 2000 to 2006 are displayed in Tables 1 and 2. Table 1 
shows statistics for the complete year and Table 2 for the 
period between April and August, which is the season with 
the worst air quality. From the period averages for all stations 
and all years it becomes evident the difference between the 
cold season and the rest of the year. By comparing maximum 
values in Tables 1 and 2 we can verify that most of them 
occur between April and August and that the highest 
values are observed in station O. Large standard deviations 
suggest that forecasting is not easy.  

Skewness indicates the symmetry of the probability density 

function (PDF) of a time series. A time series with an equal 
number of large and small values has a skewness of zero 
(Joanes and Gill, 1998). The positive values of skewness in 
Tables 1 and 2 is an indication that there are relatively 
fewer large PM2.5 concentrations in all series. This will be 
inconvenient for the construction of precise statistical 
forecasting models because parameters in them are 
calculated from historical cases and a low representation of 
high concentration cases will imply in general a tendency 
to under-predict extreme values. From an operational point 
of view, for air quality management in a city, detection of 
high concentrations situations are particularly important.

 

(a)  

(b)  

Fig. 2. One hour average of PM2.5 concentrations measured in Santiago monitoring stations during 2006. (a) Station M, (b) 
station L, (c) station N, (d) station O.  
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(c)  

(d)  

Fig. 2. (continued). 

 

Average skewness for series including one year data is 
2.06, while the average for data from the cold season 
decreases to 1.54, which is consistent with the observation 
that higher concentrations occur in the fall and winter 
periods. 

Kurtosis is a measure of the peakedness of the PDF of a 
time series. A kurtosis value close to three indicates a 
Gaussian like peakedness. PDFs with relatively sharp peaks 
have kurtosis greater than three. PDFs with flat peaks have 
kurtosis less than three. From the values of this parameter 
obtained from Santiago data, we observe significant 
differences from one monitoring station to another. It is 
not unexpected that largest kurtosis corresponds to station 
O, where higher concentrations within the city are verified, 

and where under unstable atmospheric conditions, the 
lowest concentrations are observed. 

Since it is of interest to investigate the presence of chaos 
in PM2.5 series, we proceeded, as mentioned in the previous 
section, to calculate the Lyapunov exponent using the Wolff 
algorithm. As a previous step it was necessary to estimate 
the time lag τ and the embedding dimension De. The values 
obtained for our series of interest remain rather constant, 
and for all of them we estimated values τ = 11 and De = 5. 

Table 3 shows the largest Lyapunov exponents for PM2.5 
time series (one hour spacing between data) at four 
monitoring stations in Santiago, between years 2000 and 
2006. We can verify that these values are relatively large, and 
then we may conclude, based on Eq. (7), that predictability
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Table 1. Statistics of PM2.5 series for years 2000–2006 as measured in four monitoring stations. Data from January through 
December. 

PM2.5 
Year 

Number 
of data 

Mean 
(µg/m3) 

Maximum Value (a)
(µg/m3) 

Standard deviation
(µg/m3) 

Skewness 
(µg/m3) 

Kurtosis 
(µg/m3) 

Station M       
2000 8687 28.17 190 20.74 1.66 3.91 
2001 8280 25.84 157 17.56 1.77 5.78 
2002 8736 24.96 191 18.37 1.96 6.81 
2003 8760 27.56 273 19.26 1.96 8.28 
2004 8784 25.69 151 17.91 1.58 4.32 
2005 8736 26.57 159 17.16 1.30 2.99 
2006 8760 24.80 119 16.60 1.51 3.58 

Station L       
2000 8737 35.55 182 24.91 1.46 2.65 
2001 8760 34.81 224 22.73 1.82 5.59 
2002 8736 32.27 316 24.20 1.94 6.68 
2003 8736 34.27 231 25.48 1.72 4.29 
2004 8760 36.39 209 26.23 1.55 3.60 
2005 8760 33.58 208 23.82 1.55 3.45 
2006 8760 34.51 216 23.91 1.86 5.08 

Station N       
2000 8734 35.53 222 29.57 1.85 4.25 
2001 8687 33.94 269 27.38 2.12 6.30 
2002 8639 35.04 327 30.03 2.15 6.46 
2003 8639 40.15 251 33.38 1.94 4.60 
2004 8616 35.16 213 27.71 1.96 5.22 
2005 8313 32.71 180 23.33 1.79 4.60 
2006 8664 34.09 223 26.00 1.82 4.44 

Station O       
2000 8759 33.27 319 31.06 2.66 9.65 
2001 8736 33.20 328 32.25 2.89 11.82 
2002 8664 34.26 425 37.15 3.30 15.72 
2003 8759 36.46 351 35.06 2.85 11.77 
2004 8712 33.66 434 33.01 3.41 18.69 
2005 8760 30.68 287 25.91 2.63 10.81 
2006 8664 33.03 388 30.37 2.85 13.69 

(a) The minimum value for all time series was 1 µg/m3. 

 

based on information contained in the series is not greater 
than 3 hours. The average values for all the stations are 
similar except for station O, which are somewhat smaller. 
The reason for this may be attributed to the fact that this 
station is located in an area with the lowest altitude in the 
city, where concentrations tend to have extreme values, 
very low under conditions of unstable atmosphere and very 
high under stable atmosphere, so their values may be 
easier to predict under specific conditions. One must take 
into account that this time limit may be increased if we 
incorporate information from relevant exogenous variables 
(meteorological for example, which however may also 
show chaotic behavior). Calculated Lyapunov exponents 
are between 0.274 and 0.504. These values are of the same 
order of magnitude as those obtained for PM10 series in 
Mexico (Vasquez et al., 2012) and Taiwan (Lee and Lin, 
2008). The Lyapunov exponents in Table 3 were calculated 
using an embedding dimension De = 5. For the same 
embedding dimension, the Lyapunov exponent for PM10 
series in Taipei was 0.277 and they found a correlation 

dimension of 4.32. Both of these values are indications of 
chaos. Lyapunov exponents for PM10 series in Mexico city 
were between 0.4 and 0.6, correlation dimension between 
3.6 and 4.4 and a Hurst exponent between 0.2 and 0.25. 
The values of these three parameters are consistent with 
attribution of chaotic behavior to the PM10 time series. 
Lyapunov exponents for PM10 time series in Lanzhou are 
positive but much smaller (Yu et al., 2011), which we believe 
is due to an erroneous estimation of the time scale. 

In our case we can test the exponential divergence by 
constructing five dimensional vectors, where components 
are five successive measurements in PM2.5 series. 

For an arbitrary measurement at time t we would have: 
 
Xt = (x(t), x(t + ∆), x(t + 2∆), x(t + 3∆), x(t + 4∆)) (10) 
 

In order to study the evolution of state vectors we 
calculated the Euclidian distance between points separated 
by time n∆. We selected at random points for which the 
distance to Xt+∆ was smaller or of the order of 10 µg/m3
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Table 2. Statistics of PM2.5 series for years 2000–2006 as measured in four monitoring stations. Data from April through 
August. 

PM2.5 
Year 

Number 
of data 

Mean 
(µg/m3) 

Maximum Value (b)
(µg/m3) 

Standard deviation
(µg/m3) 

Skewness 
(µg/m3) 

Kurtosis 
(µg/m3) 

Station M       
2000 3676 33.08 190 25.75 1.19 1.16 
2001 3676 28.84 157 21.34 1.50 3.89 
2002 3676 28.61 170 24.26 1.41 2.62 
2003 3676 31.19 145 23.29 1.20 1.90 
2004 3676 29.68 151 22.26 1.16 2.00 
2005 3676 27.68 159 21.53 1.12 1.59 
2006 3676 28.63 119 20.57 1.12 1.60 

Station L       
2000 3676 43.75 182 30.23 0.95 0.79 
2001 3676 42.29 224 29.18 1.29 2.51 
2002 3676 40.92 192 30.54 1.11 1.29 
2003 3676 44.99 231 30.75 1.17 1.84 
2004 3676 45.70 209 32.00 1.11 1.60 
2005 3676 38.90 208 29.01 1.24 1.78 
006 3676 43.35 216 29.62 1.32 2.36 

Station N       
2000 3676 35.53 222 29.57 1.85 4.25 
2001 3676 33.94 269 27.38 2.12 6.30 
2002 3676 35.04 327 30.03 2.15 6.46 
2003 3676 40.15 251 33.38 1.94 4.60 
2004 3676 35.16 213 27.71 1.96 5.22 
2005 3676 32.71 180 23.33 1.79 4.60 
2006 3676 34.09 223 26.00 1.82 4.44 

Station O       
2000 3676 44.58 319 40.13 1.87 4.47 
2001 3676 45.84 328 42.56 1.98 5.35 
2002 3676 48.66 425 49.58 2.30 7.40 
2003 3676 50.89 351 44.91 1.948 5.46 
2004 3676 47.26 434 43.39 2.46 9.81 
2005 3676 37.05 287 32.87 2.08 6.50 
2006 3676 45.11 298 36.77 1.67 3.74 

(b) The minimum value for all time series was 1 µg/m3 

 

and then proceeded to calculate the Euclidian distance to 
successive five dimensional vectors. Fig. 3 shows the 
logarithm of the distance as a function of time interval for 
different starting point. The fact that most of the curves 
show a linear increase may be seen as a verification of 
exponential divergence that in turn tells us the presence of 
chaos. 

Correlograms provide a useful method of visualizing the 
spatial dependence between data points in relation to distance 
(Fortin and Dale, 2005). Furthermore, the correlogram is a 
tool for checking randomness, rising or declining trend, 
oscillation, etc., of a time series. If a time series is random, its 
autocorrelation function should be near zero for all times 
greater than zero, and if non-random, the autocorrelation 
function will decay slowly to zero. The correlogram for PM2.5 
series during 2005 is shown in Fig. 4, where significant 
correlation between measurements close in time is observed. 
Curves for the other years are not significantly different. 
This has to do with the presence of a daily cycle, where in 
general, higher concentrations are observed at times where 

anthropogenic activity is high and meteorological conditions 
for pollutant dispersion are unfavorable (around 8 a.m. in 
the morning and 8 p.m. in the evening). Table 4 shows the 
result of the calculation of some additional indexes for the 
case of station N, now for years 2000 through 2008. We 
observe that for all years capacity dimension and correlation 
dimension are less than five, which is an indication of non 
random behavior. Hurst exponent is for all years, except 
2001, significantly smaller than 0.5, which is an indication 
of deterministic behavior and antipersistence (predominance 
of oscillation between high and low values). 

The values of the parameters calculated for station N 
and shown in Table 4 confirm the conclusion that PM2.5 
series are chaotic. Values for stations L, M, and O are the 
same order of magnitude and are not shown. 

Given the values of the largest Lyapunov exponents 
displayed in Table 3, the shape of the autocorrelation function 
shown in Fig. 4 and the values of the additional time 
parameter characterization presented in Table 4, we can 
conclude that the analyzed PM2.5 time series are chaotic. 
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Table 3. Lyapunov exponents for PM2.5 annual and winter time series in four monitoring station in Santiago, Chile. 

 
STATION 

M N L O 
Annual     
2000 0.428 0.504 0.425 0.351 
2001 0.482 0.484 0.399 0.325 
2002 0.413 0.394 0.340 0.276 
2003 0.365 0.472 0.429 0.351 
2004 0.482 0.472 0.456 0.274 
2005 0.462 0.503 0.487 0.365 
2006 0.481 0.478 0.456 0.275 
Mean 0.445 0.472 0.427 0.317 

Winter     
2000 0.440 0.471 0.447 0.412 
2001 0.453 0.452 0.423 0.398 
2002 0.436 0.455 0.417 0.383 
2003 0.455 0.452 0.465 0.411 
2004 0.442 0.427 0.466 0.370 
2005 0.414 0.443 0.452 0.389 
2006 0.439 0.431 0.464 0.361 
Mean 0.44 0.447 0.448 0.389 

 

 
Fig. 3. Logarithm of Euclidian distance between successive five dimensional vectors constructed from 2007 PM2.5 time 
series in station O. 

 

DISCUSSION 
 
The evidence that the time series of atmospheric 

concentrations of particulate matter from four monitoring 
stations in Santiago, Chile, exhibit deterministic chaotic 
behavior imposes severe restrictions about the predictability 
of air quality in the city. Although a positive finite maximal 
Lyapunov exponent is not by itself an unambiguous 
indication of chaos. In our case, the results of calculation 
of additional statistical parameters confirm this behavior, 
which means that the series are deterministic and very 
sensitive to initial conditions. Statistical forecasting models, 
which constitute a pragmatic approach, adjusting parameters 
on the basis of historical data, would appear as a reliable 
tool for operational forecasting of particulate matter 
concentrations in urban regions only for a few hours into 
the future, provided relevant meteorological information is 

included as input (Klingner and Sähn, 2008; Pérez and 
Salini, 2008; Stadobler et al., 2008; Stern et al., 2008). 
Deterministic photo-chemical forecasting models (Konovalov 
et al., 2009) would require detailed consideration of 
topography, emission sources and atmospheric processes. 
Any spatial or temporal averaging oriented to simplify the 
analysis may be critical if they leave out conditions that 
are relevant for estimating future patterns. A combination 
of deterministic and statistical approaches may be an 
option for more accurate results and longer time forecasting 
(Konovalov et al., 2009). For high concentration episodes, 
which in general are of great interest for air pollution 
management, special effort must be put towards overcoming 
shortcomings of prognostic weather prediction models for 
the simulation of stagnant weather situations. The results 
of this study show that particulate matter forecasting in a 
large city like Santiago will exhibit intrinsic limitations on 
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Fig. 4. Correlogram for 2005 PM2.5 time series obtained from 4 stations in Santiago. (a) Station M. (b) Station L. (c) 
Station N. (d) Station O. 

 

Table 4. Statistics of PM2.5 series for years 2000–2006 as measured in four monitoring stations. Data from April through 
August are considered. 

Year 
Capacity 

Dimension 
Correlation 
Dimension 

Embedding 
Dimension De

Hurst 
exponent H 

Entropy 
(1/hours) 

Maximum 
Prediction (hours)

2000 2.355 3.455 5 0.265 0.525 1.900 
2001 2.115 3.601 5 0.584 0.559 1.789 
2002 2.285 3.520 5 0.257 0.489 2.045 
2003 2.503 3.671 5 0.258 0.544 1.840 
2004 2.476 3.776 5 0.247 0.416 2.400 
2005 2.170 3.744 5 0.260 0.510 1.960 
2006 2.202 3.824 5 0.241 0.488 2.050 
2007 2.194 3.943 5 0.258 0.421 2.380 
2008 2.644 3.641 5 0.185 0.405 2.470 

 

accuracy. However, this conclusion may not discourage us 
from the necessary task of modeling in order to provide the 
environmental authorities with a tool that nevertheless will 
help to protect the health of citizens. The situation described 
here may apply in other places such as mid-sized cities, 
where the complexity of topography, multiple emission 
sources, seasonal trends and meteorology impose limitations 
to the estimation of future pollutant concentrations. 
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