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Abstract: By exploiting the saturation of a reversible single photon
transition, RESOLFT microscopy is capable of resolving three dimensional
structures inside specimen with a resolution that is no longer limited by
the wavelength of the light in use. The transition is driven by a spatially
varying intensity distribution that features at least one isolated point, line
or plane with zero intensity and the resolution achieved depends critically
on the field distribution around these zeros. Based on a vectorial analysis
of the image formation in a RESOLFT microscope, we develop a method
to effectively search for optimal zero intensity point patterns under typical
experimental conditions. Using this approach, we derived aspatial intensity
distribution that optimizes the focal plane resolution. Moreover, we outline
a general strategy that allows optimization of the resolution for a given
experimental situation and present solutions for the most common cases in
biological imaging.
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1. Introduction

Far-field light microscopy is the only method that non-invasively delivers three-dimensional
images of (live) samples. However, the diffraction-limited resolution of light microscopes [1]
has often eluded their application on a scale smaller than approximately half the wavelength
of the light in use. Recently a family of approaches has been described and in part realized
that have fundamentally overcome the diffraction resolution barrier in far-field fluorescence
microscopy while still retaining the advantages of a far-field technique.

It is important to realize that nonlinear multiphoton optical transitions [2, 3] do not effectively
increase the resolution in far-field microscopy. This primarily stems from the fact that the op-
tical transitions in question require the energy to be subdivided into multiple long-wavelength
photons. The power of the new concept based onreversiblesaturable (orswitchable)optical
linear (fluorescence)transitions (RESOLFT) stems from the fact that it generates anonlin-
ear optical response but is based on a single photon process,[4, 5, 6, 7, 8, 9] and therefore it
does not require longer wavelengths. Moreover, since molecular cross-sections for single pho-
ton transitions are usually much larger than for multiphoton processes, RESOLFT microscopy
operates at comparatively low intensities. Several implementations of the RESOLFT concept
have been published [10, 11, 12], including those based on photoswitching of proteins and op-
tically bistable organic molecules. More prominent examples are ground state depletion (GSD)
and stimulated emission depletion (STED) microscopy. STEDmicroscopy already increased
the resolution toλ/45 in the lateral plane [13, 14]. Every RESOLFT microscope uses a spa-
tially varying intensity distribution with one or several isolated regions of zero intensity. This
pattern can be used in two ways: to inhibit fluorescence so that it is allowed only at the zeros
and their immediate proximity, or to switch it on, so that it occurs everywhere, except at the
local intensity zero [15]. In the latter case, extensive mathematical modelling is required to de-
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rive the actual subdiffraction images. In this paper we shall therefore concentrate on the first
approach, which is conceptually more appealing since it produces ’positive images’ that can
be readily interpreted. In a point-scanning microscope theintensity distribution is chosen such,
that it features a classical intensity zero at a given point in the focal plane. The signal from there
is never suppressed but as the intensity is increased, the signal will be efficiently inhibited in
regions close to the central zero. Ultimately, the area fromwhich photons can be emitted will
be squeezed down to the molecular scale. The quality of the ’inhibition patterns’ plays a vital
role. It determines how effectively this process operates.

Although different inhibition patterns have already been used in practical applications or have
been proposed [16, 17, 18], a systematic survey has still to be made. The goal of this work is to
find the optimal inhibition point patterns for RESOLFT microscopy. For this we shall outline
a framework that enables the efficient search for pupil functions that create intensity patterns
with focal zeros by confining a global optimization algorithm to the corresponding subspace.
The application of this method confirmed the suitability of the phase masks used. Additionally
it has resulted in a novel phase mask that has recently been applied to STED microscopy of
biological cells with unpredecented resolution[19].

2. Image formation in RESOLFT microscopy

In order to identify those intensity distributions that areespecially favorable for RESOLFT
type microscopy, a thorough understanding of the image formation is helpful. While treatments
neglecting the vectorial nature of light are sufficient for low saturation intensities, our goal de-
mands a vectorial theory. The single point-scanning RESOLFT microscopy analyzed here relies
on the inhibition of fluorescence from areas outside a small focal spot and involves light at two
wavelengths,λex andλinh. The first forms an excitation or activation pattern, which drives the
molecules to the fluorescing state inside a spot while the second de-excites or de-activates them
outside the very center of the spot thereby inhibiting fluorescence from there. Often both, the
excitation and the inhibition are effected by illuminationwith a short laser pulse and for our
purpose it is a good approximation to assume that both pulsesdo not overlap in time. While the
following calculations are based on this assumption, it is important to realize that RESOLFT
does not rely on pulsed excitation or inhibition [4]. In factthe concept has already been suc-
cessfully implemented with continous wave illumination [10]. A possible implementation of a
point-scanning RESOLFT microscope is schematically outlined in Fig. 1.

Exc.Inh.Inh.

sampleF

P(r,φ)

ϕ

r

DC

Exc.

P(r,φ)

pupil function Inhibition pattern

Excitation spot

Fig. 1. Schematic illustration of a point-scanning RESOLFT microscope. Anexcitation
(Exc.) and inhibition (Inh.) light beam are combined with a dichroic mirror(DC) so that
they can be focused onto the same spot. The inhibition beam is modulated by aphase
and/or amplitude filter (F) so that its focal light distribution features a focalintensity zero
and large contributions in its immediate vicinity. To this end, the filter creates an amplitude
and phase distributionP(r,φ) which is imaged onto the back aperture of the objective lens.

Let the electric fields during the pulses be given byEex(r ′) andEinh(r ′), respectively. Let
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us further assume that both, the excitation and the inhibition are single photon transitions well
approximated by a dipole interaction with parallel transition dipolesp. Usually detection optics
is also applied and the probability of detecting a fluorophore at positionr ′ in the sample is given
by the collection efficiency function CEF(p, r ′). Here the unit vectorp denotes the dye’s orien-
tation upon excitation and de-activation and the CEF includes any effects due to dye rotation
between excitation and detection. If we assume that rotational diffusion is much faster than flu-
orescence emission, its dependence onp disappears. Finally, the effective PSF of the system is
proportional to the joint probability of (1) exciting the dye, (2) not inhibiting fluorescence and
(3) detecting the emitted photon. If we assume that the molecule cannot change its orientation
between excitation and inhibition, we have

h(r ′,p) = C|Eex ·p|2 f (|Einh ·p|2)CEF(p, r ′) (1)

where f describes the probability of not inhibiting fluorescence ata given de-excitation or de-
activation rate. Assuming pulsed light and a simple two-level system with spontaneous rates
much slower than the de-excitation or de-activation rate during the pulse,f is well approxi-
mated byf (s) = exp(− ln2ε0cs/Isat) whereIsat is called the saturation intensity,c is the speed
of light andε0 is the vaccum permittivity [8]. Due to the dependence of the PSF on the dye’s
orientation, the imaging process can no longer be describedas a simple convolution integral
with the effective PSF but takes the more general form

i(R) =
∫

h(r ′,p)ρ(p,R− r ′)dΩd3r ′ (2)

whereρ(p,R) describes the angular density of dye orientations in samplespace. In fact, equa-
tion (2) also applies to ordinary confocal microscopy wheree.g. z-oriented molecules have a
different PSF than those parallel to the focal plane. However, unless the dye orientation is very
non-isotropic and inhomogeneous, the effect is almost negligible. This is because both exci-
tation and detection of axially oriented molecules is supressed by a factor sin2 θ whereθ is
the angle of the transition dipole with the optic axis. Practice shows that deconvolution and
quantitative analysis assuming a space-invariant effective PSF, are possible in common situa-
tions. For RESOLFT type microscopes, the situation is more complex. The argument of the
saturation functionf also depends onp and therefore the shape of the PSF can change be-
tween the desired nanoscopic size and the confocal form depending on the dye’s orientation.
For space variant anisotropies, this results in data that are difficult to interpret. But even for a
space-invariant, random orientation of dyes, it can resultin significant broadening of the ef-
fective PSF and loss of resolution. In both cases it is therefore mandatory that the projection
of the inhibition field along each transition dipole that is significantly excited is strong every-
where around the focus. In the present manuscript we shall assume that the dyes are excited
using linearly polarized or circularly polarized (or unpolarized) light. In our search for optimal
inhibition fields, their quality is therefore determined bythe strength of either one designated
lateral component (linear polarization) or the weaker of both lateral components (circular po-
larization). While a field which is simultaneously quenchingboth lateral components as in the
latter case is arguably preferrable, its quality has to be compared to an incoherent combination
of perpendicular fields found for the linear polarization case.

3. Efficient calculation of focal intensity distributions

To rigorously optimize feasible intensity patterns near the focal spot, an efficient way is needed
to calculate the inhibition light distribution resulting from a given vectorial pupil function
A(θ ,φ). We extend the integrals given by Richards and Wolf [20] for aplanatic lenses to in-
corporate an arbitrary vectorial pupil function with complex components Ax and Ay along the
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two transverse directions. The focused electric field of theinhibition light is then given by an
integral over the exit pupil of the objective lens:

Einh(r ′) =
∫ √

cosθ [AxK(θ ,φ)+AyMK (θ ,φ −π/2)]exp
(

iknr′ cosε
)

sinθdθdφ , (3)

The matrixM rotates the coordinate system aboutπ/2 around the z-axis,K is the vectorial part
of the diffraction integrals:

Kx = cosθ +(1−cosθ)sin2 φ
Ky = (cosθ −1)sinφ cosφ
Kz = sinθ cosφ (4)

and cosε = cosθ cosθ ′+sinθ sinθ ′ cos(φ −φ ′). In this manuscript we will restrict our analysis
to pupil functions with uniform circular or linear polarization because other configurations are
not easily experimentally feasible. The pupil functions are then

Ax = P(r,φ)

Ay = 0 (5)

for linearlily polarized light and

Ax = P(r,φ)/
√

2

Ay = iP(r,φ)/
√

2 (6)

for circular polarization. The normalized radius 0≤ r ≤ 1 is given byr = sinθ/sinα, α is the
semi-aperture angle of the objective lens andP(r,φ) is the scalar part of the pupil function,
which we can experimentally assess by phase and amplitude filters. For efficient optimization
we will decomposeP(r,φ) into Zernike polynomials which form a complete set of orthogo-
nal functions on the unit disc [21]. These polynomials are usually divided in even and odd
parts,Zm

n (r,φ) with 0 ≤ |m| ≤ n andm−n even. However, it is more convenient for our pur-
poses to renormalize and re-number the Zernike polynomialsobtaining orthonormal polynomi-
alsZ̃i(r,φ) with a single index only:

Z̃i(r,φ) = (2n+2)1/2Zm
n (r,φ)/ [π (1+δm0)] (7)

The indexi is a one-to-one mapping on the allowed indices(n,m) given by i = n(n+ 1)/2+
(m+n)/2. The approximate decomposition of an arbitrary functionP(r,φ) in a finite number
N of Zernike polynomials is then

P(r,φ) ≃
N

∑
i=1

ci Z̃i(r,φ), ci ∈ C, (8)

where the orderN has to be chosen according to the degree of complexity in the pupil function.
For a given polarization, aperture angle and positionr ′ in sample space, equation (3) is a linear
functionalEinh(r ′)[P] on the space of pupil functions. Using equation (8) we can therefore write

Einh(r ′)[P] ≃
N

∑
i=1

ciEinh(r ′)[Z̃i ] (9)
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In our optimization we will have to calculate the inhibitionfield at points of interestr ′j for a
large number of pupil functions. This is efficiently done by precalculating the integrals on the
right-hand-side:

Mli =Ek
inh(r

′
j)[Z̃i ] (10)

and writing the solutions as

Sl = Ek
inh(r

′
j)[P] (11)

with l = 3 j +k andk = 0,1,2 denoting the x,y,z component of the electric field. For a known
decomposition of an arbitrary pupil function, the field at the points of interest is then given by
a simple matrix multiplication

S= Mc (12)

and no integrals have to be solved during optimization.

4. Optimization

4.1. Figure of merit

The goal of the optimization is to identify the pupil function P that produces a strict intensity
zero at the focal point while also featuring the steepest doughnut intensity distribution around
it. For this purpose a figure of merit (FoM) is defined, which measures this steepness on a
suitable length scale and thus reflects the potential of the pupil function for resolution increase.
The minimum intensity around the focal point turned out to bea practical choice for the FoM.
It is calculated by placing points of interest at a distancedER from the central intensity zero
and determining the minimal intensity at these points. Their exact position depends on the case
investigated. We therefore chose several common situations for our investigation:

X The resolution is to be optimized along the polarization direction of light. The FoM is
calculated from two points located on the x-axis.

Y The resolution is to be optimized perpendicularly the polarization direction of light. The
FoM is calculated from two points located on the y-axis.

Z The resolution is to be optimized along the optic axis. The FoM is calculated from two
points located on the z-axis.

XY The resolution is to be optimized isotropically in the lateral directions. The FoM is cal-
culated from points located on a circle in the focal plane.

3D The resolution is to be optimized isotropically in all three spatial directions. The FoM is
calculated from points located on a spherical shell around the focal spot.

In the last two cases it is sufficient to use only a few points iftheir spacing is much smaller
than the wavelength. The distance from the focal spotdER should be chosen in the range of the
expected resolution. It turned out that its influence on the optimization result is negligible in
the range ofλ/50 -λ/5 and a value of 100 nm was used because it resulted in reliableand fast
convergence.
For the reasons outlined above, only the intensity of the field’s x-component was regarded
in the FoM and optimized. For circular polarization this also implies optimization of the y-
component, while for linear polarization coverage of otherpolarization directions necessitates
the incoherent combination of at least two beams.
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4.2. Algorithm and constraints

Due to non-quadratic dependence of the FoM on the result vector S, linear optimization al-
gorithms cannot be applied to the problem. An iterative approach was therefore implemented,
restricting the space of pupil functions to linear combinations of the firstN = 120 polynomials
Z̃i . The algorithm searches a 3N-dimensional space for the vectorc in equation (12) with the
highest FoM. But, in order to restrict the search to physically reasonable results, several con-
straints have to be considered. Most obviously, a strict intensity zero at the origin is required.
In addition, some form of limitation on the available power may always be present. Otherwise,
spot sizes could be made arbitrarily small with any inhibition pattern that features an isolated
intensity zero. In practice, the following restrictions are common:

(A) The maximum amplitude in the aperture is limited. This isequivalent to a limitation
of the available laser power under the common condition thatthe aperture’s amplitude
distribution is created by phase and transmission filters only.

(B) The total power the sample can sustain without damage is limited due to photobleaching,
trapping effects, thermal instability or other detrimental effects.

There is a very elegant way to restrict the search to the subspace of pupil functions that create
a strict intensity zero at the origin. EvaluatingEinh(r ′ = 0)[Z̃i ] shows that many polynomials
feature an intensity zero at the focus due to inherent symmetries. All others have only one or
two non-zero components. It is straightforward to manuallyremove three polynomials from the
basis and replace all others by linear combinations with oneof these so that the intensity at the
origin is always zero for combinations of the new basis functions. While the new basis is not
necessarily orthonormal, the focal field is still the resultof a matrix multiplication of the form
given in equation (12) but with the number of dimensions reduced to 3(N−3).
Due to the nonlinear nature of the power constraints, they are not as readily implemented. Here,
the conditions (A) and (B) were both fulfilled by scaling the pupil function accordingly after
each iteration. We used the Metropolis algorithm [22] to randomly browse the whole optimiza-
tion space and ensured convergence to the global optimum by simulated annealing. For short-
range optimization a robust simplex search [23] was additionally performed at the end of the
annealing process. The maximum step size for each iterationin the Metropolis algorithm was
adjusted to||∆c||∞ ≃ 0.02..0.05 for optimum convergence rates and we restarted the annealing
process several times to improve coverage of the solution space. The total number of Metropolis
iterations was 5·105 with a local search and a subsequent restart every 104 iterations.

5. Results

5.1. Limited wavefront amplitude (A)

The results for this most common situation are shown in Fig. 2. Clear shapes can be identified
in the phase and amplitude distributions of the pupil function which were found by the global
optimization. The phase distributions mainly consist of two domains which have an average
phase difference ofπ. The boundaries of these domains are of simple shape, mainlycircular
or straight lines. The result for the XY inhibition pattern and circularly polarized light shows
exceptional behavior. Here, the corresponding phase distribution resembles an angular phase
ramp that runs linearly from 0 to 2π. The pupil functions for inhibition patterns in the X or
Y direction and circularly polarized light are not shown because in these cases the algorithm
converges to a result suitable for the whole XY plane. For 3D patterns, the results for linear and
circular polarization are very similar.

The lack of perfect symmetry in these results indicate that the algorithm has not yet con-
verged to the global optimum. We therefore attempted to improve the results by finding ideal-
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Fig. 2. Results for the limited field amplitude in the entrance pupil of the objective lens
(condition A). In a), the points of interest used for the calculation of the FoM are shown
schematically for linearly and circularly polarized light. The creation of optimized inhi-
bition patterns for resolution increase in X, Y, Z, XY and 3D was investigated. In b), the
results of the global optimization algorithm are shown as phase and amplitudedistributions
of the pupil function. In c), the idealized phase-only pupil functions areshown together
with the optimal values of the parametersd and h. In d), sections of the corresponding
inhibition patterns are shown. Only the intensity of the x-component is depicted. The num-
ber at the bottom right corner of each section reflects the maximal intensityrelative to the
intensity in the focus of an unmodified beam.
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ized versions of the results, also allowing for easier experimental realization. Figure 2 shows
amplitude and phase distributions that are almost flat except directly at the phase domain bound-
aries. The width of the valley in the amplitude is approximately equivalent to the smallest fea-
tures representable by the polynomials included in the basis of our optimization. It can therefore
be assumed that the algorithm was converging towards the best approximation of a constant
amplitude distribution with a discontinuous stepwise phase distribution. In fact this is not sur-
prising, because this choice maximizes the transmitted power participating in the resolution
increase.
For our idealization, we therefore chose a constant amplitude and domains of constant phase 0
or π. The domain boundaries were simplified to circles, semi-circles or straight lines. For the
XY inhibition pattern and circular polarized light, we let the phase increase linearly withφ .
The resulting phase distributions are shown in Fig. 2(c). Where applicable, the relative extent
of each phase domain was parametrized and the parameter values where determined to ensure
the focal intensity zero and to maximize the FoM. The resulting pupil functions are

P3D(r,φ) =

{

1 for r > d/2

−1 else
(13)

For the lateral FoMs we have in the case of circular polarization:

PXY(r,φ) = exp(iφ) (14)

and for linear polarization along the x-axis:

PXY(r,φ) =

{

1 for r > h/2∧ (x > 0∨y < h/2)

−1 else
(15)

PX(r,φ) =

{

1 for x < h/2

−1 else
(16)

PY(r,φ) =

{

1 for φ > π
−1 else

(17)

The pupil functions for optimal resolution increase along the optic axisPZ are identical to those
for the 3D case and the values ofd andh found for a numerical aperture (NA) of 1.2 (water) are
displayed in Fig. 2 along with the intensity of the resultinginhibition fields’ x-component. The
idealized patterns for the 3D case and for linear polarization and optimized resolution along
a single dimension (Y) had been in use in STED microscopy before our systematic survey.
Our findings confirm that for these requirements, the corresponding pupil functions are the
optimal choice. The phase pattern of the pupil function found for optimal lateral resolution
and circularly polarized light is similar to a Gauss-Laguerre beam [17]. However the resulting
donut-shaped intensity distribution features a tighter zero due to the efficient use of the whole
aperture of the lens and all available light. This inhibition pattern has been adopted by most
STED-microscopes that are designed for optimal isotropic resolution in the focal plane and led
to new resolution benchmarks [19, 14].

5.2. Limited power (B)

The resulting phase distributions for variable amplitudesshowed a similar behavior as for (A)
but the amplitude showed pronounced peaks at the centers of the phase domains. For the same
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reasons as above, idealized versions of the optimization results were created. We used the same
phase distributions as in equations (13)-(17) but allowed for a symmetrical, smooth amplitude
variation resembling the outcome of the optimization runs.Different parametrizations were
tried and in each case the parameters were chosen to optimizethe FoM. For circular polarization
the following pupil functions delivered the best results:

P3D(r,φ) =

{

cα(rα − r)α for r < d

−cβ (r − rβ )β for r ≥ d
(18)

PXY(r,φ) = ((α +1)/π)1/2 rα (19)

The optimal parameter choices for NA=1.2 are:cα = 2.14,cβ = 14.3, d = 0.71,α = 0.57, and
β = 1.58 for P3D andα = 1.02 for PXY . To some extent, the optimal parameter values for both
functions depend on the NA of the lens. The optimization results, idealized pupil functions and
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Fig. 3. Results for limited focal power (condition B). In a), the results of the global opti-
mization are shown for the Z and the XY pattern. The idealized phase and amplitude dis-
tributions are shown in b). Central intensity profiles through the pupil function are shown
in c) in comparison with the results for condition (A) (denoted by B and A, respectively).
In d), profiles of the inhibition beam’s intensity pattern along the z-axis for the Z pattern
and along the x-axis for the XY pattern are shown (NA=1.2).
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resulting intensity patterns are shown in Fig. 3 and are compared to the findings for regime
(A) at equal power. The enhancement achieved when allowing variable amplitudes is due to
the possibility to strengthen high spatial frequencies that are responsible for fast oscillations in
the image plane. Other parametrizations were tried that also resembled the optimization results
but allowed for more degrees of freedom in the description ofthe amplitude distribution. In the
case of the lateral FoM, a superset of the above functions wasinvestigated that allowed zero
amplitude at the edge of the aperture and a radially adjustable maximum:rα(1− rβ )α/β . In the
axial case a dark ring between the two regimes was allowed. But when optimizing the FoM, the
results given in equations (18) and (19) were reproduced.

6. Conclusions

We performed a comprehensive search, optimization and characterization of fluorescence in-
hibition patterns for RESOLFT microscopy relying on singlepoint scanning. By constructing
a subspace that enforces an intensity zero at a given point, aglobal optimization was applied
and optimal pupil functions were found. Our results show conclusively, that if the maximal am-
plitude of the pupil function is limited, phase-only pupil functions deliver the best results. The
ideal phase masks found for some conditions correspond to pupil functions used in earlier ex-
periments [24, 16] encouraging their ongoing application.However, the optimization identified
a novel, superior lateral donut-shaped distribution for circularly polarized light. Its application
has led to a resolution of down to 20 nm [19] in biological applications. Our analysis revealed
that if the total power focused into the sample is the limiting factor, the hightest resolution can
be achived when allowing for phase- and amplitude-modulation of the inhibition beam’s wave-
front. Our findings encourage the use of circularly polarized light in all but a few specialized
situations where either experimental conditions or an anisotropic orientation of dye molecules
encourage special combinations of linearly polarized beams. A single inhibition pattern can-
not efficiently cover all polarization components and all directions around an intensity zero.
Here, we have assumed that the contribution from z-polarized molecules is too weak to com-
promise resolution. As saturation factors increase and resolution approaches a few nanometers,
the background of z-polarized molecules will become largerand inhibition fields have to be
designed that effectively quench them. Using similar techniques as outlined in this manuscript,
suitable patterns can be found by using radially polarized light [25]. Finally parallelization of
RESOLFT microscopy demands patterns with multiple intensity zeros. While incoherent, time
muliplexed combinations of the patterns presented here could be used, coherent creation of
such field distribution should lead to more economic use of laser power due to synergy effects.
The methods introduced here will be an important tool for theefficient design and optimization
of pupil functions for the creation of inhibition fields withmultiple intensity zeros.
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