
Abstract
Vehicle counts and truck percentages are important input
variables in both noise pollution and air quality models,
but the acquisition of these variables through fixed-point
methods can be expensive, labor-intensive, and provide
incomplete spatial sampling. The increasing availability and
decreasing cost of high spatial resolution imagery provides
an opportunity to improve the descriptive ability of traffic
volume analysis. This study describes an object-based classi-
fication technique to extract vehicle volumes and vehicle
type distributions from aerial photos sampled throughout a
large metropolitan area. We developed rules for optimizing
segmentation parameters, and used feature space optimiza-
tion to choose classification attributes and develop fuzzy-set
memberships for classification. Vehicles were extracted from
street areas with 91.8 percent accuracy. Furthermore, sepa-
ration of vehicles into classes based on car, medium-sized
truck, and buses/heavy truck definitions was achieved with
87.5 percent accuracy. We discuss implications of these
results for traffic volume analysis and parameterization
of existing noise and air pollution models, and suggest
future work for traffic assessment using high-resolution
remotely-sensed imagery.

Introduction
Accurate vehicle counts and truck percentages are important
for traffic volume analysis, and serve as input variables to
both noise pollution and air quality models. For example,
vehicle traffic counts are directly linked to noise-related
health impacts in urban environments (Seto et al., 2007).
In order to calculate noise volumes for a given highway or
street segment, noise pollution models such as the Federal
Highway Administration Traffic Noise Model (Menge et al.,
1998) require traffic volume and vehicle-type percentages
along each street segment.

Likewise, traffic volumes, vehicle type distributions and
vehicle densities are important inputs to models of urban
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vehicular emissions (Lyons et al., 2003); these models, in
conjunction with pollutant dispersion models, aid in the
assessment of human exposure and overall air quality (Kunzli
et al., 2000). In addition to serving as important input vari-
ables to both noise pollution and air quality models, accurate
vehicle counts also have application to transportation plan-
ning, traffic flow studies, pavement maintenance programs,
environmental justice studies (Forkenbrock and Schweitzer,
1999; Forkenbrock and Weisbrod, 2001) and the promotion of
pedestrian and bicycle safety (Wachtel and Lewiston, 1996).

There are several different methods, involving both
direct and remote sensing, which can be used to detect
vehicle traffic volumes along a given street segment. Tech-
nologies such as pneumatic tube systems are portable and
can provide constant monitoring along a street or highway
segment; on the other hand, this method is labor-intensive,
involving the installation and subsequent removal of equip-
ment for each monitoring location and time period, and
in most cases does not provide the capability of detecting
different vehicle types or sizes (Bellemans et al., 2000).
An alternate option is the use of remotely sensed counts
derived from fixed-point counters, such as loop counters
or video monitoring. For example, video and infrared
monitoring can provide constant-stream information about
traffic flows along selected streets (Graettinger et al., 2005;
Pless and Jurgens, 2004). One drawback with fixed-point
counters, however, whether they involve direct or remote
sensing technologies, is that sampling may be limited and
is often conducted reactively, that is to say, on streets with
known high traffic volumes or with pre-existing traffic or
pedestrian-safety issues.

Over large metropolitan areas with complex traffic
patterns, detection technologies which provide more com-
plete sampling capabilities can add an additional layer
of traffic information to data acquired from direct or fixed-
point sensors. The increasing availability of affordable
aerial photography and high-spatial resolution satellite
imagery will provide new opportunities for deriving
Annual Average Daily Traffic (AADT) (McCord et al., 2002).
In addition, these data could contribute to spatially-
comprehensive assessments of noise and air pollution
model parameters, such as traffic counts, as well as car,
truck, and urban bus percentages.
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Figure 1. Study area, neighborhoods, and outlines of images. Over 2,000 images of
San Francisco were acquired on 26–27 August 2004, in the afternoon between the
hours of 1200 and 1900. Of these, six images were selected for analysis in the
current study.
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This study presents an object-based approach to detect
and classify vehicles from high-resolution aerial photogra-
phy. While previous studies have focused on the detection
of vehicles in remotely sensed imagery along highways
(McCord et al., 2002), this study extends an object-based
approach to detect vehicles from four different street types
(freeways/highways, arterials, bus routes, and residential
streets) in a major metropolitan area. We conclude that
vehicles can be accurately detected using an object-based
target detection approach. More specifically, this study
demonstrates that vehicles can be classified (e.g., as cars,
medium trucks, and heavy trucks) using an object-based
approach. We discuss implications of these results for
traffic volume analysis and parameterization of existing
noise and air pollution models, and suggest future work
for traffic assessment using high-resolution remotely sensed
imagery.

Study Ar ea and Data Description
Aerial photographs of San Francisco, California (Figure 1)
were acquired by HJW Geospatial using a Zeiss RMK TOP15
aerial survey camera, which captures red, green, and blue
(RGB) portions of the spectrum at a resolution of around 
0.17 meters. Images were acquired on 26–27 August 2004,
in the afternoon between the hours of 1200 and 1900. Before
analysis, the images were projected using Electronic Field
Study 2.6 (Pictometry EFS). From a set of over 2,000 images,
six images were selected for analysis. Two images (Figure 2a
and 2b) were selected for training and cross-validation of
the segmentation and classification processes, while the
remaining four images (Figure 2c through 2f) were reserved
for independent validation of the classification hierarchy
and process. These images were selected from different

neighborhoods and land-use types (residential, commercial,
and industrial) in San Francisco, and were chosen because
they captured a high density of vehicular traffic.

In addition to the aerial photographs, we also used GIS
ancillary data layers for this analysis. These data layers
included polygon outlines of the city blocks, sidewalks, and
curbs in San Francisco, and street center lines for four
different types of streets: freeways/highways, arterials
(defined as major roads with large traffic volumes), bus
routes (as outlined by current San Francisco Municipal
Transportation Agency (MUNI) bus and light-rail routes
maps), and residential streets.

Methods
An overview of the main steps in the segmentation and
classification process is described in Figure 3.

Creation of Training and Validation Data Sets
In order to create training and validation data sets for classi-
fication, polygons (rectangles) were digitized around vehicle
shapes along streets in each of the six study images. These
images were loaded into an ArcGIS® 9.1 project (ESRI) along
with neighborhood boundaries and street-centerline shape-
files for four types of streets: freeways/highways, arterials
(major roads with large traffic volumes), MUNI bus routes,
and residential streets. If a street segment fell into multiple
categories, it was assigned to the category with the highest
potential traffic volume (for example, a street segment that
was both a bus route and a freeway/highway would be
assigned to the “freeway/highway” category).

To evaluate vehicle type distributions and shape
properties of different vehicle classes, we panned across
the images, visually identifying and digitizing polygons
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(rectangles) around vehicles. Each digitized vehicle shape
was classified by visual interpretation into one of three
vehicle classes (cars, medium trucks, and heavy trucks or
buses), as defined by the Federal Highway Administration
Traffic Noise Model (TNM) model parameters (Table 1).

We visually identified and digitized rectangular poly-
gons around 553 vehicles from the six images. Of these
553 vehicle objects, 512 objects (92.6 percent) were identi-
fied as automobiles, 14 objects (2.5 percent) were identified
as medium trucks, and 14 objects (2.5 percent) were identi-
fied as heavy trucks or buses. Histograms of vehicle sizes
for each class were generated for later use in creating
membership functions for fuzzy classification (Figure 4).
This set of 553 digitized objects was split into two groups
for training and validation. 130 objects were associated with
the two training images used for determining segmentation

parameters and developing the classification rules; the
remaining 423 reference objects, which were digitized from
the four images used for validation, were used to independ-
ently evaluate the accuracy of these processes. In addition to
the reference objects, 500 non-vehicle points were digitized
to evaluate commission error; 100 of these points were used
for training of the object-based process and 400 were
reserved for validation.

Multi-resolution Segmentation
The first step in object-oriented image classification is image
segmentation, which involves the grouping of pixels into
more meaningful object primitives. Correct image segmenta-
tion is a prerequisite to successful image classification. At
the same time, this task requires explicit knowledge repre-
sentation (Gong, 2003), as the definition of a “correct” or

Figure 2. Training images (a) and (b), and validation images (c) through (f), shown in grayscale.
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Figure 4. Histograms of vehicles sizes (in square
meters) from the training samples created for
each vehicle class: (a) cars, (b) medium trucks,
(c) heavy trucks, and (d) buses.

“best” segmentation result or set of segmentation results
will vary based on image type, classification scheme, and
classification algorithm. Furthermore, optimal segmentation
results are dependant on not only the choice of segmentation
algorithm or procedure, but are also often influenced by the
choice of user-defined parameter combinations which are
required inputs for many segmentation programs (Radoux
and Defourny, 2006; Carleer et al., 2005).

While several studies (for example, Meinel and Neubert,
2004; Pal and Pal, 1993) have examined and compared vari-
ous published, open-source, and commercially available
segmentation algorithms, other studies (for example, Cardoso
and Corte-Real, 2005; Zhang et al., 2005) have focused on the
question of how to conduct the evaluation of segmentation
results, and on developing general methods for determining
which technique or set of parameters produce the most
meaningful object primitives. Zhang (1996) categorized the
latter types of studies based on their focus on three method-
ological categories: analytical methods, empirical goodness
methods, and empirical discrepancy methods. Analytical
methods are those which analyze the algorithms themselves,
and do not require application to a set of test images in order
to evaluate the segmentation results. Empirical goodness
methods are those which employ an unsupervised evaluation
approach to test images, and rely on intrinsic properties of
the resulting objects (such as region shape or contrast) to
evaluate the segmentation results.

Evaluation methods which fall into the last category, often
called empirical discrepancy methods, are generally consid-
ered more effective than the first two (Zhang, 1996). Empirical
discrepancy methods are also called supervised evaluation
methods, because they employ a priori knowledge about
reference segmentation objects to determine the quality of
image segmentation. Thus, segmentation can be accomplished
in a number of different ways; while the spatial attributes of
the best image segmentation or set of image segmentation
layers will vary between applications, optimal segmentation
results can be achieved for a given application by treating
image segmentation as a supervised classification task.

In this study, we developed an empirical discrepancy
method for choosing segmentation parameters such that
the segmentation results are optimal given a set of training
objects. We developed this method in the context of applica-
bility to high spatial resolution remotely sensed data, and
to address the need for a quantitative, user-supervised proce-
dure for choosing best segmentation parameters. The goal
was to develop an objective metric which maximizes the area
matched and number of training objects (targets) matched,
and which minimizes under- and over-segmentation for
desired image object primitives.

For the proposed empirical discrepancy method of
choosing segmentation parameter values, we defined
optimal segmentation parameter values as those which

TABLE 1. VEHICLE CLASS DEFINITIONS (S OURCE : TNM M ODEL PARAMETERS )

Vehicle Type Class Definition

Cars/Automobiles (A) All vehicles having two axles and four tires and designated primarily 
for transportation of nine or fewer passengers, i.e., automobiles, or for 
transportation of cargo, i.e., light trucks. Generally, the gross vehicle 
weight is less than 4,500 kg (9,900 lb).

Medium Trucks (MT) All cargo vehicles having two axles and six tires. Generally, the gross 
vehicle weight is greater than 4,500 kg (9,900 lb) but less than 
12,000 kg (26,400 lb).

Heavy Trucks (HT) All cargo vehicles having three or more axles. Generally, the gross 
weight is greater than 12,000 kg (26,400 lb).

Buses (B) All vehicles designed to carry more than nine passengers.

Figure 3. Schematic overview of segmentation and
classification steps.
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would (a) minimize the total area outside of training
objects, for segmentation objects which overlapped train-
ing objects, and (b) in the case where different segmenta-
tion parameter combinations produced similar (optimal)
outcomes for step (a), we defined optimal segmentation
parameter values as those which would produce the least
number of sub-objects which overlapped the boundaries
of each training object. We defined the optimal results of
a supervised segmentation approach as those that would
optimize the ratio of training objects area to segmentation
objects area, minimize under-segmentation, and minimize
over-segmentation.

Goal 1: Maximize the Match of Training Object Area to Segmentation
Object Area
Each training object ai in the set of training objects A will
have j segmentation objects (bij) whose centers are located
within the boundaries of ai. Ideally, for each training object
ai the total area of these j segmentation objects should equal
the area of ai. For each image segmentation result, we define
the Area Matched criterion as:

(1)

Goal 2: Minimize Under-segmentation
Each training object ai in the set of training objects A will
have j segmentation objects (bij) whose centers are located
within the boundaries of ai. If j � 0 for training object ai, then
we say that ai has not been identified given that particular
set of segmentation parameters, and the image is under-
segmented for object ai. Thus, to minimize the number of
objects that are under-segmented, we maximize the proportion
of objects which are identified. For each image segmentation
result, we define the set A’ as objects which have been
identified

(2)

and define the Proportion identified criterion as:

(3)

Goal 3: Minimize Over-segmentation
Each training object ai in the set of training objects A will
have j segmentation objects (bij) whose centers are located
within the boundaries of ai. In addition to meeting the first
two criteria, an optimal segmentation result will produce
one segmentation object that matches the geometry of each
training object (ideally, a 1:1 ratio). For each image segmen-
tation result, we define the set A’ as objects which have
been identified

(4)

and the set B as segmentation objects whose centers are
located within the boundaries of a member of set A’. For each
image segmentation result, we define the Over-segmentation
criterion as:

(5)

Combining these criteria, we can define an objective
metric which can be maximized to indicate the target
segmentation parameters for a given application. Since the
goal is to maximize the areas matched and the proportion

Over - segmentation �
Cardinality1B2
Cardinality1A¿2

A’ � All ai where (Center within(bij, ai))

Proportion identified �
Cardinality1A¿2
Cardinality1A2

A’ � All ai where (Center within( bij, ai))

Area matched � a
m

i�1

a
n

j�1
Area(bij)

Area(ai)
.

identified, while minimizing over-segmentation, the objec-
tive metric is defined as:

(6)

eCognition® 5.0 (Definiens, 2005) was used to conduct
multi-resolution image segmentation, which involves knowl-
edge-free extraction of image objects. Baatz and Schape
(2000) describe the segmentation algorithm used by the
eCognition® software, which begins with single-pixel objects
and employs a region-growing algorithm to merge pixels into
larger objects; pixels are merged based on whether they meet
user-defined homogeneity criteria. Each multi-resolution
segmentation task must be parameterized by the user,
and involves settings of three parameters: Scale, Color-
versus-Shape, and Compactness-versus-Smoothness. As
defined by Baatz and Schape (2000), the Scale parameter
controls the amount of heterogeneity allowed in the segmen-
tation image objects. The Color-versus-Shape parameter
defines the extent to which overall homogeneity is defined
by the spectral homogeneity (as opposed to shape). The
Smoothness-versus-Compactness parameter controls whether
segmentation results are optimized for image objects in
regard to smooth borders, or those which have more
compact shapes. For segmentation training objects, we
used 119 vehicle objects which we digitized from one of
the training images (as previously described). We ran 150
independent segmentation trials using the parameter combi-
nations described in Table 2. For each segmentation result,
a value for the objective metric was calculated. Because
the problem of optimizing segmentation parameters is a
multi-response optimization problem, we also fit models
to test the importance and optimal values of each of the
segmentation parameters (scale, color/shape, and compact-
ness/smoothness). We used JMP statistical software (SAS
Institute) to fit a second-order polynomial model to describe
the sensitivity of each defined segmentation criterion (Area
matched, Proportion identified, and Over-segmentation)
to the segmentation parameters. A nested model was fit to
each response, and then terms that were not significant
were removed to produce a reduced model. Prediction
formulas were saved for each model, and displayed as
overlapping contour profiles to identify a range for each
of the Scale, Color, and Smoothness variables that would
optimize each of the defined segmentation goals.

Optimal segmentation �

AreaMatched *

ProportionIdentified

Oversegmentation

TABLE 2. 150 C OMBINATIONS OF SEGMENTATION PARAMETERS

Parameter Number of Settings Values

10
20

Scale 6 30
40
50
60

0.1/0.9
0.3/0.7

Color/Shape 5 0.5/0.5
0.7/0.3
0.9/0.1
0.1/0.9
0.3/0.7

Compactness/Smoothness 5 0.5/0.5
0.7/0.3
0.9/0.1
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TABLE 3. SIGNIFICANT PARAMETERS FOR REDUCED MODELS FOR EACH
RESPONSE VARIABLE

Proportion Area 
Term Identified Over-segmentation Matched

Scale � � �

Color � � �

Smoothness
Scale * Color � � �

Scale * Smoothness
Color * Smoothness

Scale2 � �

Color2 � �

Smoothness2

TABLE 4. ECOGNITION ® SEGMENTATION PARAMETERS

Parameter Objects

Level Scale Color Compactness Average number

1 10 0.8 0.8 28474
2 36 0.6 0.5 14610

The reduced model provided insight into which seg-
mentation parameters were most influential (Table 3). For
this experiment, the Scale, Color, and (Scale * Color) inter-
action terms were important variables in predicting all three
responses. The Smoothness term was not important. Based
on the results of this analysis, segmentation parameters were
chosen which optimized the objective metric. The selected
parameters for the classification level, as well as a smaller-
scale segmentation used for texture analysis, are described
in Table 4.

Once the street areas were segmented based on the meth-
ods described above, we used a series of spectral difference
segmentations to merge pavement objects in the “Street”
portion of the image. Spectral difference segmentation merges
objects which are below a user-defined threshold of spectral
similarity. This allowed for background subtraction to elimi-
nate objects which met spectral and texture criteria for classi-
fication as pavement, so that only objects which met spectral
and geometric criteria for vehicle objects would be considered
for classification. This process yielded a set of objects in
the street areas of the image which were then considered
as candidates for classification as vehicles.

Feature Space Optimization and Feature Selection
The eCognition® 5.0 software provides the user with many
different feature choices which can be combined to develop
classification rules. These features include spectral, texture,
object shape, and scene descriptions. In order to choose a
subset of these attributes which would be the most effective
for this application, we used the eCognition® Feature Space
Optimization tool (Definiens™) to choose the object features
which would be most effective at separating the vehicle
classes from each other and from surrounding non-vehicle
objects, such as vegetation and pavement. We chose 10 to
15 sample objects for each category of vehicle and non-
vehicle objects. We chose 25 potential classification features,
based on a priori knowledge of likely classification attrib-
utes. These candidate features included geometric properties
of image objects, as well as spectral and texture information
derived from the images. The Feature Space Optimization
tool was used to select the best features for separating the
classes. Based on results from this step, three shape features
(Main Direction, Density, and Rectangular Fit) and two
texture features (Density of sub-objects and Mean of sub-
objects) were identified as being important for separating the
classes; these features are described in detail in Table 5.
In addition to these features, we used the layer values as
well as knowledge about the sizes of different vehicles
(developed during the training object digitization step, and
described in Figure 4) to create fuzzy set memberships for
each of the vehicle classes.

TABLE 5. DESCRIPTION OF VARIABLES SELECTED FOR CLASSIFICATION BASED ON FEATURE OPTIMIZATION
(F EATURE DESCRIPTIONS FROM ECOGNITION ® 5 R EFERENCE MANUAL )

Feature Description

Layer Values

Color: Layer values for Layer mean value calculated from the layer values of all pixels 
R, G, B forming an image object
Standard Deviation: Standard deviation calculated from the layer values of all pixels 
Layer values for R, G, B forming an image object

Shape

Main direction The direction of the eigenvector belonging to the larger of the two 
eigenvalues derived from the covariance matrix of the spatial
distribution of the image object

Density The area covered by the image object divided by its radius
Rectangular Fit Percentage of rectangle that fits inside a rectangular approximation 

of the image object

Texture

Density of sub-objects: Standard deviation calculated from the densities of the subobjects
stddev
Mean of sub-objects: Layer mean values calculated from the subobjects
stddev
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was saved and applied to the four independent validation
images (the images which had not been used to create the
classification hierarchy). The results were assessed to vali-
date the accuracy of the classification scheme, as well as
its performance across several images from different city
neighborhoods and street types. The classified objects were
exported from eCognition® as shapefiles, and evaluated in
ArcGIS® to create error matrices for both the training image
and objects, as well as for the validation images and objects.

Results
For these training images, vehicles were extracted from street
areas with 90 percent accuracy (Table 6). Classification of
vehicles as cars, medium-sized trucks, and buses/heavy trucks
was achieved with 88.7 percent accuracy (Table 7). For
the four images used for independent validation, vehicles
were extracted from street areas with 91.8 percent accuracy
(Table 8). Classification of vehicles as cars, medium-sized
trucks, and buses/heavy trucks was achieved with an overall
accuracy of 87.5 percent. Cars were classified with 78.7
percent accuracy, medium trucks were classified with 64.3
percent accuracy, and heavy trucks and buses were classified
with 57.1 percent accuracy (Table 9).

Discussion
In this study, vehicles were extracted from street areas
with 91.8 percent accuracy, and further separation of
vehicles into classes based on car, medium-sized truck,
and buses/heavy truck definitions was achieved with
87.5 percent accuracy. The remaining confusion between
cars, medium trucks, and heavy trucks/buses can be attrib-
uted to two primary factors. First, the error may be associ-
ated with the relatively small sample size of training
objects for the latter two classes (medium trucks and heavy
trucks/buses), which reflects the average distribution of
different vehicle types in this city (i.e., cars are the preva-
lent vehicle class, and it is more difficult to find numerous
samples of the truck and buses). The classification accuracy
would likely be improved by additional imagery, additional
sampling, and rule-set modification for these vehicle classes.
The development of a “library” of vehicle samples from
different metropolitan areas would also be useful future
work in extending these results.

Secondly, classification error may be related to the poten-
tial for user error in creating the digitized training and testing
sets. In this study, the creation of training and testing data
involved the translation of vehicle class definitions, which
are based on weight and axle size, into photo-interpretation
decisions that are made from an aerial perspective. Particu-
larly for the medium trucks class, it was sometimes difficult to
determine from an aerial view the number of axels and weight
of the vehicle. Other possible vehicle definitions that could be
used include the Federal Highway Administration’s commer-
cial vehicle length and width standards (FHWA, 1996).

Vehicle classification accuracy could be improved by
including additional geospatial, spectral, and temporal
information in the analysis. For example, the time at which
each aerial photograph was taken could be compared with
the time designations for known “no parking” or “tow
away” zones expand or contract the area of analysis for
moving vehicles, as opposed to including only street areas
beyond a fixed distance from the street curb. Secondly,
the identification of shadowed areas could be used to both
adjust classification of vehicles within shadowed areas,
as well as to boost classification of street objects by using
shadows to determine the height of the object (Niu et al.,
2002). Alternately, lidar data can be used to support

Figure 5. Object-oriented classification
hierarchy. At the top level, the images are
classified into City Blocks, Curb Areas, and
Street areas. Within the Street areas, objects
are further identified as Vehicle candidates
based on background subtraction of pavement
areas. These Vehicle candidate objects are
then classified as Cars, Medium Trucks, and
Heavy Trucks or Buses based on attributes
derived from feature space optimization.

Classification and Extraction of Vehicle Shapes
An object-based classification was conducted, using the TNM
vehicle class definitions and fuzzy rulesets that were created
based on the results of feature space optimization. The
eCognition® classification process is object-oriented, which
means that child objects inherit properties from parent
classes. Following this model, the images were first classi-
fied into City Blocks, Sidewalks, and Street areas based on
GIS thematic layers. Objects in the Street areas were then
classified as vehicles based on the fuzzy rulesets that we
developed. Finally, these Vehicles were classified as cars,
medium trucks, and heavy trucks or buses. The classifica-
tion hierarchy is illustrated in Figure 5. The class defini-
tions utilized information about object texture, shape, and
proximity to curb areas. Vehicles were further classified as
either heavy trucks or automobiles/cars based on texture and
vehicle dimension estimates. An example of the classifica-
tion result is shown in Figure 6.

Validation
The segmentation and classification rules were first tested
on the two validation images. After satisfactory cross-
validation results were achieved, the classification hierarchy
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Figure 6. Example of classification results. City blocks and curbs are shown in blue; street areas are
shown in white. Classified vehicles are shown in red (cars), orange (medium trucks) and yellow (heavy
trucks and buses). A color version of this figure is available at the ASPRS website: www.asprs.org .

vehicle-height detection (Toth and Grejner-Brzezinska,
2006). Finally, overlapping images could be used for change
detection, to improve the accuracy of classification for
vehicles versus objects that are actually pavement or non-
moving objects.

We used GIS ancillary data to mask out blocks and curb
areas, which allowed for a focused analysis of the street
areas. However, this ancillary data may not be available in
all situations (e.g., in cities which do not maintain geodata-
bases with block and curb spatial data). In the absence of
this type of pre-existing information, the extraction of roads
networks from aerial photographs or satellite imagery is
possible, as demonstrated by several studies (Gao and Wu,

2004; Gong and Wang, 1997; Haverkamp, 2002; Unsalan
and Boyer, 2004; Xiao, Tan and Tay, 2005). These types of
techniques could be applied as a preliminary step to mask
out non-street areas of the imagery.

Video and infrared monitoring can provide constant-
stream information about traffic flows along selected streets
(Graettinger et al., 2005), but may provide limited spatial
sampling. The methods outlined in this study provide a useful
guideline for conducting traffic distribution analysis over large
study areas. The independent validation demonstrates that this
object-based method can be applied accurately across various
street types and neighborhoods. While the application of
aerial photography for traffic analysis may be limited by its
low temporal resolution, the increasing availability of afford-
able aerial photography and high-spatial resolution satellite
imagery (such as Ikonos and QuickBird) will provide new
opportunities for spatially-comprehensive assessments of noise
and air pollution model parameters, such as traffic counts, as
well as car, truck, and urban bus percentages (Sharma et al.,
2006). Furthermore, the increased availability of high resolu-
tion imagery through technologies like Google™ Earth, com-
bined with detection methods such as those outlined in this
study, can provide a standardized method for comparisons of
traffic across communities around the world.

Conclusions
The results of this study have application in transportation
planning, traffic flow studies, pavement maintenance pro-
grams, environmental justice studies, and the promotion of
pedestrian and bicycle safety. Traffic impacts health through

TABLE 6. VEHICLE TARGET DETECTION RESULTS AND ACCURACY FOR
TRAINING IMAGES

Reference
User’s

Classes Vehicle Other Sum Accuracy

Classification
Vehicle 108 1 109 0.99

results
Other 22 99 120 0.82

Sum 130 100 230

Producer’s 0.831 0.99

Overall 
0.90

Accuracy

accuracy:

Kappa 0.801
value:
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TABLE 7. CLASSIFICATION RESULTS AND ACCURACY FOR TRAINING IMAGES

Reference

Heavy 
Medium Truck / User’s 

Classes Car Truck Bus Other Sum Accuracy

Car 95 2 0 1 98 0.97

Classification Medium Truck 1 5 0 0 6 0.83

results Heavy Truck / Bus 0 0 5 0 5 1
Other 21 1 0 99 121 0.82

Sum 117 8 5 100 230

Producer’s 0.812 0.625 1 0.99
Overall

0.887
Accuracy

Accuracy:

Kappa value: 0.796

TABLE 8. VEHICLE TARGET DETECTION RESULTS AND ACCURACY FOR VALIDATION IMAGES

Reference

Classes Vehicle Other Sum User’s Accuracy

Classification
Vehicle 364 8 373 0.978

results
Other 59 392 451 0.869

Sum 424 400 824

Producer’s 
0.860 0.98

Overall 
0.918

Accuracy
accuracy:

Kappa value: 0.838

TABLE 9. CLASSIFICATION RESULTS AND ACCURACY FOR VALIDATION IMAGES

Reference

Medium Heavy Truck / User’s 
Classes Car Truck Bus Other Sum Accuracy

Classification

Car 311 4 0 2 317 0.981

results

Medium Truck 20 9 6 4 39 0.231

Heavy Truck / 6 0 8 2 16 0.5
Bus

Other 58 1 0 392 451 0.869

Sum 395 14 14 400 823

Producer’s Overall 
0.875Accuracy 0.787 0.642 0.571 0.98 Accuracy:

Kappa value: 0.771

multiple pathways, such as air quality, noise pollution,
pedestrian injuries, and neighborhood walkability. In addition,
the extent of these impacts not only depends upon traffic
volumes but traffic type. Thus, the ability to understand these
impacts at a small scale using detailed vehicle identification is
an important input for identifying community-level health
impacts. This study presents an object-based approach for
detecting and classifying vehicles from high-resolution aerial
photography. The results of this study demonstrate that vehi-
cles can be accurately detected using an object-oriented target

detection approach. The collection of traffic counts is a valu-
able input for planning and environmental analysis; however,
it also represents a costly burden for local and state govern-
ment. The use of remote sensing techniques can reduce cost
associated with traffic analysis, and expand traffic analysis to
both highways and other street types. The increased availabil-
ity of high spatial resolution remotely-sensed data can also
enable more complete analysis of traffic-related urban manage-
ment issues, even in cities or areas where traditional ground-
based methods are not available.
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