
Prediction of Complete Gene Structures in Human
Genomic DNA

Chris Burge* and Samuel Karlin

Department of Mathematics
Stanford University, Stanford
CA, 94305, USA

We introduce a general probabilistic model of the gene structure of
human genomic sequences which incorporates descriptions of the basic
transcriptional, translational and splicing signals, as well as length distri-
butions and compositional features of exons, introns and intergenic
regions. Distinct sets of model parameters are derived to account for the
many substantial differences in gene density and structure observed in
distinct C � G compositional regions of the human genome. In addition,
new models of the donor and acceptor splice signals are described which
capture potentially important dependencies between signal positions. The
model is applied to the problem of gene identi®cation in a computer pro-
gram, GENSCAN, which identi®es complete exon/intron structures of
genes in genomic DNA. Novel features of the program include the ca-
pacity to predict multiple genes in a sequence, to deal with partial as
well as complete genes, and to predict consistent sets of genes occurring
on either or both DNA strands. GENSCAN is shown to have substan-
tially higher accuracy than existing methods when tested on standardized
sets of human and vertebrate genes, with 75 to 80% of exons identi®ed
exactly. The program is also capable of indicating fairly accurately the re-
liability of each predicted exon. Consistently high levels of accuracy are
observed for sequences of differing C � G content and for distinct groups
of vertebrates.
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Introduction

The problem of identifying genes in genomic
DNA sequences by computational methods has at-
tracted considerable research attention in recent
years. From one point of view, the problem is clo-
sely related to the fundamental biochemical issues
of specifying the precise sequence determinants of
transcription, translation and RNA splicing. On the
other hand, with the recent shift in the emphasis of
the Human Genome Project from physical map-
ping to intensive sequencing, the problem has
taken on signi®cant practical importance, and com-
puter software for exon prediction is routinely
used by genome sequencing laboratories (in con-

junction with other methods) to help identify genes
in newly sequenced regions.

Many early approaches to the problem focused
on prediction of individual functional elements,
e.g. promoters, splice sites, coding regions, in iso-
lation (reviewed by Gelfand, 1995). More recently,
a number of approaches have been developed
which integrate multiple types of information in-
cluding splice signal sensors, compositional prop-
erties of coding and non-coding DNA and in some
cases database homology searching in order to pre-
dict entire gene structures (sets of spliceable exons)
in genomic sequences. Some examples of such pro-
grams include: FGENEH (Solovyev et al., 1994),
GENMARK (Borodovsky & McIninch, 1993), Gene-
ID (GuigoÂ et al., 1992), Genie (Kulp et al., 1996),
GeneParser (Snyder & Stormo, 1995), and GRAIL
II (Xu et al., 1994). Fickett (1996) offers an up-to-
date introduction to gene ®nding by computer and
points up some of the strengths and weaknesses of
currently available methods. Two important limi-
tations noted are that the majority of current algor-
ithms assume that the input sequence contains
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exactly one complete gene (so that, when presented
with a sequence containing a partial gene or mul-
tiple genes, the results generally do not make
sense); and that accuracy measured by indepen-
dent control sets may be considerably lower than
was originally thought. The issue of the predictive
accuracy of such methods has recently been ad-
dressed through an exhaustive comparison of
available methods using a large set of vertebrate
gene sequences (Burset & GuigoÂ , 1996). The
authors conclude that the predictive accuracy of all
such programs remains rather low, with less than
50% of exons identi®ed exactly by most programs.
Thus, development of new methods (and/or im-
provement of existing methods) continues to be
important.

Here, we introduce a general probabilistic model
for the (gene) structure of human genomic se-
quences and describe the application of this model
to the problem of gene prediction in a program
called GENSCAN. Our goal in designing the geno-
mic sequence model was to capture the general
and speci®c compositional properties of the dis-
tinct functional units of a eukaryotic gene: exon, in-
tron, splice site, promoter, etc. Emphasis was
placed on those features which are recognized by
the general transcriptional, splicing and transla-
tional machinery which process most or all protein
coding genes, rather than specialized signals re-
lated to transcription or (alternative) splicing of
particular genes or gene families. Thus, for
example, we include the TATA box and cap site
which are present in most eukaryotic promoters,
but not specialized or tissue-speci®c transcription
factor binding sites such as those bound by MyoD
(e.g. Lassar et al., 1989). Similarly, we use a general
three-periodic (inhomogeneous) ®fth-order Markov
model of coding regions rather than using special-
ized models of particular protein motifs or data
base homology information. As a consequence,
predictions made by the program do not depend
on presence of a similar gene in the protein se-
quence databases, but instead provide information
which is independent and complementary to that
provided by homology-based gene identi®cation
methods such as searching the protein databases
with BLASTX (Gish & States, 1993). Additionally,
the model takes into account many of the often
quite substantial differences in gene density and
structure (e.g. intron length) that exist between
different C � G% compositional regions (``iso-
chores'') of the human genome (Bernardi, 1989;
Duret et al., 1995).

Our model is similar in its overall architecture to
the Generalized Hidden Markov Model approach
adopted in the program Genie (Kulp et al., 1996),
but differs from most existing programs in several
important respects. First, we use an explicitly
double-stranded genomic sequence model in
which potential genes occuring on both DNA
strands are analyzed in simultaneous and inte-
grated fashion. Second, while most existing inte-
grated gene ®nding programs assume that in each

input sequence there is exactly one complete gene,
our model treats the general case in which the se-
quence may contain a partial gene, a complete
gene, multiple complete (or partial) genes, or no
gene at all. The combination of the double-
stranded nature of the model and the capacity to
deal with variable numbers of genes should prove
particularly useful for analysis of long human
genomic contigs, e.g. those of a hundred kilobases
or more, which will often contain multiple genes
on one or both DNA strands. Third, we introduce
a novel method, Maximal Dependence Decompo-
sition, to model functional signals in DNA (or pro-
tein) sequences which allows for dependencies
between signal positions in a fairly natural and
statistically justi®able way. This method is applied
to generate a model of the donor splice signal
which captures several types of dependencies
which may relate to the mechanism of donor splice
site recognition in pre-mRNA sequences by U1
small nuclear ribonucleoprotein particle (U1
snRNP) and possible other factors. Finally, we de-
monstrate that the predictive accuracy of GEN-
SCAN is substantially better than other methods
when tested on standardized sets of human and
vertebrate genes, and show that the method can be
used effectively to predict novel genes in long
genomic contigs.

Results

GENSCAN was tested on the Burset/GuigoÂ set
of 570 vertebrate multi-exon gene sequences (Bur-
set & GuigoÂ , 1996): the standard measures of pre-
dictive accuracy per nucleotide and per exon are
shown in Table 1A (see Table legend for details).
Comparison of the accuracy data shows that GEN-
SCAN is signi®cantly more accurate at both the
nucleotide and the exon level by all measures of
accuracy than existing programs which do not use
protein sequence homology information (those in
the upper portion of Table 1A). At the nucleotide
level, substantial improvements are seen in terms
of Sensitivity (Sn � 0.93 versus 0.77 for the next
best program, FGENEH), Approximate Correlation
(AC � 0.91 versus 0.78 for FGENEH) and Corre-
lation Coef®cient (CC � 0.92 versus 0.80 for FGE-
NEH). At the exon level, signi®cant improvements
are seen across the board, both in terms of Sensi-
tivity (Sn � 0.78 versus 0.61 for FGENEH) and
Speci®city (Sp � 0.81 versus 0.64 for FGENEH), as
well as Missed Exons (ME � 0.09 versus 0.15 for
FGENEH) and Wrong Exons (WE � 0.05 versus
0.11 for GRAIL). Surprisingly, GENSCAN was
found to be somewhat more accurate by almost all
measures than the two programs, GeneID� and
GeneParser3, which make use of protein sequence
homology information (Table 1A). Exon-level sen-
sitivity and speci®city values were substantially
higher for GENSCAN and Wrong Exons substan-
tially lower; only in the category of Missed Exons
did GeneID� do better (0.07 versus 0.09 for GEN-
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SCAN). Use of protein sequence homology infor-
mation in conjunction with GENSCAN predictions
is addressed in the Discussion.

Going beyond exons to the level of whole gene
structures, we may de®ne the ``gene-level accu-
racy'' (GA) for a set of sequences as the proportion
of actual genes which are predicted exactly, i.e. all
coding exons predicted exactly with no additional

predicted exons in the transcription unit (in prac-
tice, the annotated GenBank sequence). Gene-level
accuracy was 0.43 (243/570) for GENSCAN in the
Burset/GuigoÂ set, demonstrating that it is indeed
possible to predict complete multi-exon gene struc-
tures with a reasonable degree of success by com-
puter. It should be noted that this proportion
almost certainly overstates the true gene-level ac-

Table 1. Performance comparison for Burset/GuigoÂ set of 570 vertebrate genes
A Comparison of GENSCAN with other gene prediction programs

Accuracy per nucleotide Accuracy per exon
Program Sequences Sn Sp AC CC Sn Sp Avg. ME WE

GENSCAN 570 (8) 0.93 0.93 0.91 0.92 0.78 0.81 0.80 0.09 0.05
FGENEH 569 (22) 0.77 0.88 0.78 0.80 0.61 0.64 0.64 0.15 0.12
GeneID 570 (2) 0.63 0.81 0.67 0.65 0.44 0.46 0.45 0.28 0.24
Genie 570 (0) 0.76 0.77 0.72 n/a 0.55 0.48 0.51 0.17 0.33
GenLang 570 (30) 0.72 0.79 0.69 0.71 0.51 0.52 0.52 0.21 0.22
GeneParser2 562 (0) 0.66 0.79 0.67 0.65 0.35 0.40 0.37 0.34 0.17
GRAIL2 570 (23) 0.72 0.87 0.75 0.76 0.36 0.43 0.40 0.25 0.11
SORFIND 561 (0) 0.71 0.85 0.73 0.72 0.42 0.47 0.45 0.24 0.14
Xpound 570 (28) 0.61 0.87 0.68 0.69 0.15 0.18 0.17 0.33 0.13
GeneID� 478 (1) 0.91 0.91 0.88 0.88 0.73 0.70 0.71 0.07 0.13
GeneParser3 478 (1) 0.86 0.91 0.86 0.85 0.56 0.58 0.57 0.14 0.09

B GENSCAN accuracy for sequences grouped by C � G content and by organism

Accuracy per nucleotide Accuracy per exon
Subset Sequences Sn Sp AC CC Sn Sp Avg. ME WE

C � G <40 86 (3) 0.90 0.95 0.90 0.93 0.78 0.87 0.84 0.14 0.05
C � G 40-50 220 (1) 0.94 0.92 0.91 0.91 0.80 0.82 0.82 0.08 0.05
C � G 50-60 208 (4) 0.93 0.93 0.90 0.92 0.75 0.77 0.77 0.08 0.05
C � G >60 56 (0) 0.97 0.89 0.90 0.90 0.76 0.77 0.76 0.07 0.08
Primates 237 (1) 0.96 0.94 0.93 0.94 0.81 0.82 0.82 0.07 0.05
Rodents 191 (4) 0.90 0.93 0.89 0.91 0.75 0.80 0.78 0.11 0.05
Non-mam. Vert. 72 (2) 0.93 0.93 0.90 0.93 0.81 0.85 0.84 0.11 0.06

A, For each sequence in the test set of 570 vertebrate sequences constructed by Burset & GuigoÂ (1996), the forward-strand exons in
the optimal GENSCAN parse of the sequence were compared to the annotated exons (GenBank ``CDS'' key). The standard measures
of predictive accuracy per nucleotide and per exon (described below) were calculated for each sequence and averaged over all
sequences for which they were de®ned. Results for all programs except GENSCAN and Genie are from Table 1 of Burset & GuigoÂ
(1996); Genie results are from Kulp et al. (1996). Recent versions of Genie have demonstrated substantial improvements in accuracy
over that given here (M. G. Reese, personal communication). To calculate accuracy statistics, each nucleotide of a test sequence is
classi®ed as predicted positive (PP) if it is in a predicted coding region or predicted negative (PN) otherwise, and also as actual posi-
tive (AP) if it is a coding nucleotide according to the annotation, or actual negative (AN) otherwise. These assignments are then com-
pared to calculate the number of true positives, TP � PP\AP (i.e. the number of nucleotides which are both predicted positives and
actual positive); false positives, FP � PP\AN; true negatives, TN � PN\AN; and false negatives, FN � PN\AP. The following mea-
sures of accuracy are then calculated: Sensitivity, Sn = TP/AP; Speci®city, Sp = TP/PP; Correlation Coef®cient,

CC � �TP��TN� ÿ �FP��FN������������������������������������������PP��PN��AP��AN�p ;

and the Approximate Correlation,

AC � 1

2

�
TP

AP
� TP

PP
� TN

AN
� TN

PN

�
ÿ1:

The rationale for each of these de®nitions is discussed by Burset & GuigoÂ (1996). At the exon level, predicted exons (PP) are com-
pared to the actual exons (AP) from the annotation; true positives (TP) is the number of predicted exons which exactly match an
actual exon (i.e. both endpoints exactly correct). Exon-level sensitivity (Sn) and speci®city (Sp) are then de®ned using the same for-
mulas as at the nucleotide level, and the average of Sn and Sp is calculated as an overall measure of accuracy in lieu of a correlation
measure. Two additional statistics are calculated at the exon level: Missed Exons (ME) is the proportion of true exons not overlapped
by any predicted exon, and Wrong Exons (WE) is the proportion of predicted exons not overlapped by any real exon. Under the
heading Sequences, the number of sequences (out of 570) effectively analyzed by each program is given, followed by the number of
sequences for which no gene was predicted, in parentheses. Performance of the programs which make use of amino acid similarity
searches, GeneID� and GeneParser3, are shown separately at the bottom of the Table: these programs were run only on sequences
less than 8 kb in length. B, Results of GENSCAN for different subsets of the Burset/GuigoÂ test set, divided either according to the
C � G% composition of the GenBank sequence or by the organism of origin. Classi®cation by organism was based on the GenBank
``ORGANISM'' key. Primate sequences are mostly of human origin; rodent sequences are mostly from mouse and rat; the non-mam-
malian vertebrate set contains 22 ®sh, 17 amphibian, 5 reptilian and 28 avian sequences.
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curacy of GENSCAN because of the substantial
bias in the Burset/GuigoÂ set towards small genes
(mean: 5.1 kb) with relatively simple intron-exon
structure (mean: 4.6 exons per gene). Nevertheless,
GENSCAN was able to correctly reconstruct some
highly complex genes, the most dramatic example
being the human gastric (H � � K�)-ATPase gene
(accession no. J05451), containing 22 coding exons.
The performance of GENSCAN was found to be
relatively insensitive to C � G content (Table 1B),
with CC values of 0.93, 0.91, 0.92 and 0.90 ob-
served for sequences of < 40, 40 to 50, 50 to 60, and
>60% C � G, respectively, and similarly homo-
geneous values for the AC statistic. Nor did accu-
racy vary substantially for different subgroups of
vertebrate species (Table 1B); CC was 0.91 for the
rodent subset, 0.94 for primates and 0.93 for a di-
verse collection of non-mammalian vertebrate se-
quences.

A feature which may prove extremely useful in
practical applications of GENSCAN is the `` for-
ward-backward '' probability, p, which is calcu-
lated for each predicted exon as described in
Methods. Speci®cally, of the 2678 exons predicted
in the Burset/GuigoÂ set: 917 had p > 0.99 and, of
these, 98% were exactly correct; 551 had p 2 [0.95,
0.99] (92% correct); 263 had p 2 [0.90, 0.95] (88%
correct);337 had p 2 [0.75, 0.90] (75% correct); 362

had p 2 [0.50, 0.75] (54% correct); and 248 had
p 2 [0.00, 0.50], of which 30% were correct. Thus,
the forward-backward probability provides a use-
ful guide to the likelihood that a predicted exon is
correct and can be used to pinpoint regions of a
prediction which are more certain or less certain.
From the data above, about one half of predicted
exons have p > 0.95, with the practical consequence
that any (predicted) gene with four or more exons
will likely have two or more predicted exons with
p > 0.95, from which PCR primers could be de-
signed to screen a cDNA library with very high
likelihood of success.

Since for GENSCAN, as for most of the other
programs tested, there was a certain degree of
overlap between the ``learning'' set and the Bur-
set/GuigoÂ test set, it was important also to test the
method on a truly independent test set. For this
purpose, in the construction of the learning set l,
we removed all genes more than 25% identical at
the amino acid level to the genes of the previously
published GeneParser test sets (Snyder & Stormo,
1995), as described in Methods. Accuracy statistics
for GENSCAN, GeneID, GeneParser2 and GRAIL3
(GRAIL II� `` assembly'' option) on GeneParser
test sets I and II are given in Table 2. In this Table,
exons correct is the proportion of true exons which
were predicted exactly, essentially the same as the

Table 2. Performance comparison for GeneParser Test Sets I, II

Program: GeneID GRAIL3 GeneParser2 GENSCAN

All sequences I II I II I II I II
Correlation (CC) 0.69 0.55 0.83 0.75 0.78 0.80 0.93 0.93
Sensitivity 0.69 0.50 0.83 0.68 0.87 0.82 0.98 0.95
Speci®city 0.77 0.75 0.87 0.91 0.76 0.86 0.90 0.94
Exons correct 0.42 0.33 0.52 0.31 0.47 0.46 0.79 0.76
Exons overlapped 0.73 0.64 0.81 0.58 0.87 0.76 0.96 0.91
High C � G I II I II I II I II
Correlation (CC) 0.65 0.73 0.88 0.80 0.89 0.71 0.94 0.98
Sensitivity 0.72 0.85 0.87 0.80 0.90 0.65 1.00 0.98
Speci®city 0.73 0.73 0.95 0.88 0.93 0.87 0.91 0.98
Exons correct 0.38 0.43 0.67 0.50 0.64 0.57 0.76 0.64
Exons overlapped 0.80 0.86 0.89 0.79 0.96 0.79 1.00 0.93
Medium C � G I II I II I II I II
Correlation (CC) 0.67 0.52 0.83 0.75 0.75 0.82 0.93 0.94
Sensitivity 0.65 0.47 0.86 0.68 0.86 0.84 0.97 0.95
Speci®city 0.77 0.76 0.84 0.91 0.70 0.87 0.90 0.95
Exons correct 0.37 0.29 0.51 0.32 0.41 0.46 0.79 0.79
Exons overlapped 0.67 0.62 0.83 0.38 0.84 0.79 0.96 0.93
Low C � G I II I II I II I II
Correlation (CC) 0.81 0.62 0.62 0.62 0.72 0.67 0.92 0.81
Sensitivity 0.82 0.56 0.51 0.45 0.79 0.71 0.93 0.80
Speci®city 0.85 0.71 0.87 0.89 0.75 0.67 0.94 0.84
Exons correct 0.80 0.47 0.25 0.16 0.40 0.37 0.85 0.68
Exons overlapped 0.85 0.63 0.55 0.42 0.85 0.58 0.85 0.74

GENSCAN was run on GeneParser test sets I (28 sequences) and II (34 sequences), described in Snyder & Stormo (1995). Accuracy
statistics for programs other than GENSCAN are from Table 1 of Snyder & Stormo (1995). For each program, accuracy statistics for
test set I are shown in the left column, for test set II in the right column. Nucleotide-level accuracy statistics Sn, Sp and CC were cal-
culated as described in the legend to Table 1, except that the convention used for averaging the statistics was that of Snyder and
Stormo. In this alternative approach, the raw numbers (PP, PN, AP, AN, TP, etc.) from each sequence are summed and the statistics
calculated from these total numbers rather than calculating separate statistics for each sequence and then averaging. (For large
sequence sets, these two conventions almost always give similar results.) Exon-level accuracy statistics are also calculated in this
fashion. Here, exons correct is the proportion of true exons which were predicted exactly (both endpoints correct), essentially the
same as exon-level sensitivity. Exons overlapped is the proportion of true exons which were at least overlapped by predicted exons,
a less stringent measure of accuracy not requiring exact prediction of splice sites. Each test set was divided into three subsets accord-
ing to the C � G content of the GenBank sequence: low C � G (<45%), medium C � G (45 to 60%), and high C � G (>60%).
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exon-level sensitivity statistic of Burset & GuigoÂ
(1996). Comparison of the GENSCAN accuracy
statistics for the two GeneParser test sets (Table 2)
with each other and with those for the Burset/
GuigoÂ test set (Table 1) show little difference in
predictive accuracy. For example, identical corre-
lation coef®cient values of 0.93 were observed in
both GeneParser test sets versus 0.92 in the Burset/
GuigoÂ test set. Similarly, the proportion of exons
correct was 0.79 and 0.76 in GeneParser test sets I
and II, as compared to 0.78 for the corresponding
value (exon-level sensitivity) in the Burset/GuigoÂ
set. Again, performance of the program is quite ro-
bust with respect to differences in C � G content;
the somewhat larger ¯uctuations observed in
Table 2 undoubtedly relate to the much smaller
size of the GeneParser test sets.

Of course, it might be argued that none of the
accuracy results described above are truly indica-
tive of the program's likely performance on long
genomic contigs, since all three of the test sets used
consist primarily of relatively short sequences con-
taining single genes, whereas contigs currently
being generated by genome sequencing labora-
tories are often tens to hundreds of kilobases in
length and may contain several genes on either or
both DNA strands. To our knowledge, only one
systematic test of a gene prediction program
(GRAIL) on long human contigs has so far been re-
ported in the literature (Lopez et al., 1994), and the
authors encountered a number of dif®culties in car-
rying out this test, e.g. it was not always clear
whether predicted exons not matching the annota-
tion were false positives or might indeed represent
real exons which had not been found by the orig-
inal submitters of the sequence. As a test of the
performance of gene prediction programs on a
large human contig, we ran GENSCAN and
GRAIL II on the recently sequenced CD4 gene re-
gion of human chromosome 12p13 (Ansari-Lari
et al., 1996), a contig of 117 kb in length in which
six genes have been detected and characterized ex-
perimentally.

Annotated genes, GENSCAN predicted genes,
and GRAIL predicted exons in this sequence are
displayed in Figure 1: both programs ®nd most of
the known exons in this region, but signi®cant
differences between the predictions are observed.
Comparison of the GENSCAN predicted genes
(GS1 through GS8) with the annotated (known)
genes showed that: GS1 corresponds closely to the
CD4 gene (the predicted exon at about 1.5 kb is ac-
tually a non-coding exon of CD4); GS2 is identical
to one of the alternatively spliced forms of Gene A;
GS3 contains several exons from both Gene B and
GNB3; GS5 is identical to ISOT, except for the ad-
dition of one exon at around 74 kb; and GS6 is
identical to TPI, except with a different translation
start site. This leaves GS4, GS7 and GS8 as poten-
tial false positives, which do not correspond to any
annotated gene, of which GS7 and GS8 are over-
lapped by GRAIL predicted exons.

A BLASTP (Altschul et al., 1990) search of the
predicted peptides corresponding to GS4, GS7 and
GS8 against the non-redundant protein sequence
databases revealed that: GS8 is substantially identi-
cal (BLAST score 419, P � 2.6 E-57) to mouse 60 S
ribosomal protein (SwissProt accession no.
P47963); GS7 is highly similar (BLAST score 150,
P � 2.8 E-32) to Caenorhabditis elegans predicted
protein C26E6.5 (GenBank accession no. 532806);
and GS4 is not similar to any known protein (no.
BLASTP hit with P < 0.01). Examination of the se-
quence around GS8 suggests that this is probably a
60 S ribosomal protein pseudogene. Predicted gene
GS7 might be an expressed gene, but we did not
detect any hits against the database of expressed
sequence tags (dbEST) to con®rm this. However,
we did ®nd several ESTs substantially identical to
the predicted 30UTR and exons of GS4 (GenBank
accession no. AA070439, W92850, AA055898,
R82668, AA070534, W93300 and others), strongly
implying that this is indeed an expressed human
gene which was missed by the submitters of this
sequence (probably because GRAIL did not detect
it). Aside from the prediction of this novel gene,
this example also illustrates the potential of GEN-
SCAN to predict the number of genes in a se-
quence fairly well: of the eight genes predicted,
seven correspond closely to known or putative
genes and only one (GS3) corresponds to a fusion
of exons from two known genes.

Discussion

As the focus of the human genome project shifts
from mapping to large-scale sequencing, the need
for ef®cient methods for identifying genes in anon-
ymous genomic DNA sequences will increase. Ex-
perimental approaches will always be required to
prove the exact locations, transcriptional activity
and splicing patterns of novel genes, but if compu-
tational methods can give accurate and reliable in-
dications of exon locations beforehand, the
experimental work involved may often be signi®-
cantly reduced. We have developed a probabilistic
model of human genomic sequences which ap-
proximates many of the important structural and
compositional features of human genes, and have
described the implementation of this model in
the GENSCAN program to predict exon/gene
locations in genomic sequences. Novel features of
the method include: (1) use of distinct, explicit, em-
pirically derived sets of model parameters to cap-
ture differences in gene structure and composition
between distinct C � G compositional regions (iso-
chores) of the human genome; (2) the capacity to
predict multiple genes in a sequence, to deal with
partial as well as complete genes, and to predict
consistent sets of genes occuring on either or both
DNA strands; and (3) new statistical models of
donor and acceptor splice sites which capture po-
tentially important dependencies between signal
positions. Signi®cant improvements in predictive
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accuracy have been demonstrated for GENSCAN
over existing programs, even those which use pro-
tein sequence homology information, and we have
shown that the program can be used to detect
novel genes even in sequences previously subjected
to intensive computational and experimental scru-
tiny.

In practice, several distinct types of computer
programs are often used to analyze a newly se-
quenced genomic region. The sequence may ®rst
be screened for repetitive elements with a program
like CENSOR (Jurka et al., 1996). Following this,
GENSCAN and/or other gene prediction pro-
grams could be run, and the predicted peptide
sequences searched against the protein sequence
databases with BLASTP (Altschul et al., 1990) to
detect possible homologs. If a potential homolog

is detected, one might perhaps re®ne the predic-
tion by submitting the genomic region corre-
sponding to the predicted gene together with the
potential protein homolog to the program Pro-
crustes (Gelfand et al., 1996), which uses a
``spliced alignment'' algorithm to match the geno-
mic sequence to the protein. Even in the absence
of a protein homolog, it may be possible to con-
®rm the expression and precise 30 terminus of a
predicted gene using the database of Expressed
Sequence Tags (Boguski, 1995). Finally, a variety
of experimental approaches such as RT-PCR and
30 RACE are typically used (see, e.g., Ansari-Lari
et al., 1996) to pinpoint precise exon/intron
boundaries and possible alternatively spliced
forms. At this stage, computational approaches
may also prove useful, e.g. GENSCAN high

Figure 1. A diagram of GenBank sequence HSU47924 (accession no U47924, length 116,879 bp) is shown with anno-
tated coding exons (from the GenBank CDS features) in black, GENSCAN predicted exons in dark gray, and GRAIL
predicted exons in light gray. Exons on the forward strand are shown above the sequence line; on the reverse (comp-
lementary) strand, below the sequence line. GRAIL II was run through the email server (grail@ornl.gov): ®nal pre-
dicted exons of any quality are shown. Exon sizes and positions are to scale, except for initial, terminal and single-
exon genes, which have an added arrow-head or -tail (see key above) which causes them to appear slightly larger
than their true size. Since GRAIL does not indicate distinct exon types (initial versus internal versus terminal exons),
all GRAIL exons are shown as internal exons. Gene names for the six annotated genes in this region (CD4, Gene A,
Gene B, GNB3, ISOT and TPI) are shown on the annotation line, immediately preceding the ®rst coding exon of the
gene. The GENSCAN predicted genes are labeled GS1 to GS8 as they occur along the sequence.

Gene Structure Prediction 83



probability exons could be used to design PCR
primers. The GENSCAN program has been made
available through the World Wide Web [http://
gnomic.stanford.edu/GENSCANW.html] and by
electronic mail (mail sequence in FastA format to
genscan@gnomic.stanford.edu).

It is hoped that studies of the statistical properties
of genes may yield clues to the sequence depen-
dence of the basic biochemical processes of tran-
scription, translation and RNA splicing which
de®ne genes biologically. As an example of such an
application, we close with a discussion of some of
the statistical properties of donor splice sites
brought out by application of the Maximal Depen-
dence Decomposition (MDD) approach (see
Methods). Overall, the results support the well es-
tablished hypothesis that base-pairing with U1

snRNA, or with other factors of identical speci®city,
is of primary importance in donor site recognition
(e.g. McKeown, 1993). However, the MDD data of
Figure 2 also suggest some fairly subtle properties
of the U1:donor interaction, namely: (1) a 50/30 com-
pensation effect, in which matches to consensus
nucleotides at nearby positions on the same side of
the intron/exon junction are positively associated,
while poor matching on one side of the junction is
almost always compensated by stronger matching
on the other side; (2) an adjacent base-pair effect, in
which base-pairs at the edge of the donor splice site
form only in the presence of adjacent base-pairs;
and (3) a G3 preference effect, in which G is pre-
ferred at position �3 only for a subclass of strongly
U1-binding donor sites. The evidence for each of
these effects is summarized below.

Figure 2. The subclassi®cation of donor splice sites according to the maximal dependence method is illustrated. Each
box represents a subclass of donor splice sites corresponding to a particular pattern of matches and mismatches to
the consensus nucleotide(s) at a set of positions in the donor site, e.g. G5 is the set of donor sites with G at position
�5 and G5Gÿ1 is the set of donors with G at both positions �5 and ÿ1. Here, H indicates A, C or U; B indicates C, G
or U; and V indicates A, C or G. The number of sites in each subset is given in parentheses. The data set and donor
site position conventions are as described in the legend to Table 4. The frequencies (percentages) of each of the four
nucleotides at each variable position are indicated for each subclass immediately adjacent to the corresponding box.
Data for the entire set of 1254 donor sites are given at the bottom of the Figure: the frequencies of consensus
nucleotides are shown in boldface. The sequence near the 50 end of U1 snRNA which base-pairs with the donor site
is shown at the bottom in 30 to 50 orientation.
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50/30 compensation effect

First, Gÿ1 is almost completely conserved (97%)
in H5 donor sites (those with a non-G nucleotide at
position � 5) versus 78% in G5 sites, suggesting that
absence of the G �C base-pair with U1 snRNA at
position �5 can be compensated for by a G �C
base-pair at position ÿ1, with a virtually absolute
requirement for one of these two G �C base-pairs
(only ®ve of 1254 donor sites lacked both G5 and
Gÿ1). Second, the H5 subset exhibits substantially
higher consensus matching at position ÿ2
(Aÿ2 � 85% in H5 versus 56% in G5), while the G5

subset exhibits stronger matching at positions �4
and �6. Similar compensation is also observed in
the G5Gÿ1 versus G5Hÿ1 comparison: the G5Hÿ1

subset exhibits substantially higher consensus
matching at positions �6 (76% versus 42%), �4
(93% versus 70%) and �3 (100% R3 versus 93%). Yet
another example of compensation is observed in
the G5Gÿ1 Aÿ1 versus G5Gÿ1 Bÿ1 comparison, with
the G5Gÿ1Bÿ2 subset exhibiting increased consensus
matching at positions �4 and �6, but somewhat
lower matching at position ÿ3.

Adjacent base-pair effect

H5 splice sites have nearly random (equal) usage
of the four nucleotides at position �6, strongly im-
plying that base-pairing with U1 at position �6
does not occur (or does not aid in donor recog-
nition) in the absence of a base-pair at position �5.
The almost random distribution of nucleotides at
position ÿ3 of the G5Gÿ1Bÿ2 donor sites also
suggests that base-pairing with U1 snRNA at pos-
ition ÿ3 does not occur or is of little import in the
absence of a base-pair at position ÿ2.

G3 preference effect

Comparison of the relative usage of A versus G
at position �3 in the various subsets reveals sev-
eral interesting features. Perhaps surprisingly, G is
almost as frequent as A at position �3 (45% versus
49%) in the entire set of donor sites, despite the ex-
pected increased stability of an A �U versus G �U
base-pair at position �3. Only in subset H5 is a
dramatic preference for A over G at position �3
observed (81% versus 15%), suggesting that only in
the absence of the strong G �C base-pair at position
�5 does the added binding energy of an A �U ver-
sus G �U base-pair at position �3 become critical to
donor site recognition by U1 snRNA. On the other
hand, in the most strongly consensus-matching
donor site subset, G5Gÿ1Aÿ2U6, there is actually a
strong preference for G3 over A3 (59% versus 27%)!
Two possible explanations for this observation
seem reasonable: either (1) there is selection to ac-
tually weaken the U1:donor interaction in these
strongly matching sites so that U1 snRNA can
more easily dissociate from the donor site to per-
mit subsequent steps in splicing; or (2) G3 is pre-

ferred over A3 at some step in splicing subsequent
to donor site selection.

Methods

Sequence sets

The non-redundant sets of human single- and
multi-exon genes constructed by David Kulp and
Martin Reese (22 Aug., 1995) were used as a start-
ing point for database construction [ftp://
ftp.cse.ucsc.edu/pub/dna/genes]. These sets con-
sist of GenBank ®les, each containing a single
complete gene (at least ATG! stop, but often in-
cluding 50 and 30 untranslated and ¯anking re-
gions) sequenced at the genomic level, which have
been culled of redundant or substantially similar
sequences using BLASTP (Altschul et al., 1990). We
further cleaned these sets by removing genes with
CDS or exons annotated as putative or uncertain
(e.g. GenBank ®les HSALDC, HUMADH6), alter-
natively spliced genes (HSCALCAC, HSTCRT3D),
pseudogenes (e.g. HSAK3PS, HSGKP1), and genes
of viral origin (HBNLF1), resulting in a set of 428
sequences. For testing purposes, we further re-
duced this set by removing all genes more than
25% identical at the amino acid level to those of
the GeneParser test sets (Snyder & Stormo, 1995)
using the PROSET program (Brendel, 1992) with
default parameters. The set of 238 multi-exon
genes and 142 single-exon (intronless) genes re-
maining after this procedure are collectively re-
ferred to as the learning set, designated l (gene
list available upon request). The total size of the set
is 2,580,965 bp: the multi-exon genes in l contain
a total of 1492 exons and 1254 introns.

All model parameters, e.g. state transition and
initial probabilities, splice site models, etc. were de-
rived from this data set as described later in this
section, with two notable exceptions: (1) the pro-
moter model, which was based on published
sources; and (2) the coding region model, for
which this set was supplemented with a set of
complete human cDNA sequences derived as fol-
lows. All complete human cDNA sequences corre-
sponding to proteins of at least 100 amino acids in
length (the length minimum was imposed in order
to avoid inclusion of cDNA fragments) were ex-
tracted from GenBank Release 83 (June, 1994). This
set was then cleaned at the amino acid level using
PROSET as above both with respect to itself and
with respect to the GeneParser test sets (gene list
available upon request). This set was then com-
bined with the coding sequences from l to form a
set C of 1999 complete coding sequences totaling
in excess of 3195 kb.

Model of genomic sequence structure

Figure 3 illustrates a general model of the struc-
ture of genomic sequences. In this model, the (hid-
den) states of the model (represented as circles and
diamonds in the Figure) correspond to fundamen-
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tal functional units of a eukaryotic gene, e.g. exon,
intron, intergenic region, etc. (see Figure legend for
details), which may occur in any biologically con-
sistent order. Note that introns and internal exons
in our model are divided according to ``phase'',
which is closely related to the reading frame. Thus,
an intron which falls between codons is considered
phase 0; after the ®rst base of a codon, phase 1;
after the second base of a codon, phase 2, denoted
I0, I1, I2, respectively. Internal exons are similarly
divided according to the phase of the previous in-
tron (which determines the codon position of the
®rst base-pair of the exon, hence the reading
frame). For convenience, donor and acceptor splice
sites, translation initiation and termination signals
are considered as part of the associated exon.

Reverse strand states and forward strand states
are dealt with simultaneously in this model, some-
what similar to the treatment of both strands in the
GENMARK program (Borodovsky & McIninch,
1993); see the legend to Figure 3. Though somewhat
similar to the model described by Kulp et al. (1996),
our model is substantially more general in that it in-
cludes: (1) single as well as multi-exon genes; (2)
promoters, polyadenylation signals and intergenic
sequences; and (3) genes occuring on either or both
DNA strands. In addition, as mentioned previously,
partial as well as complete genes are permitted as is
the occurrence of multiple genes in the same se-
quence. Thus, the essential structure of most ver-
tebrate genomic sequences likely to be encountered
in genome sequencing projects can be described by
this model structure. The most notable limitations
are that overlapping transcription units (probably
rare) cannot be handled and that alternative spli-
cing is not explicitly addressed.

The model, essentially of semi-Markov type, is
conveniently formulated as an explicit state dur-
ation Hidden Markov Model (HMM) of the sort
described by Rabiner (1989). Brie¯y, the model is
though of as generating a ``parse'' f, consisting
of an ordered set of states, ~q � fq1; q2 . . . ; qng,
with an associated set of lengths (durations),
~d � fd1; d2; . . . ; dng which, using probabilistic
models of each of the state types, generates a DNA
sequence S of length L � �n

i � 1 di. The generation
of a parse corresponding to a (pre-de®ned) se-
quence length L is as follows:

(1) An initial state q1 is chosen according to
an initial distribution on the states, ~p, i.e.
pi � P{q1 � Q(i)}, where Q(j)(j � 1, . . . . , 27) is an in-
dexing of the state types (Figure 3).

(2) A length (state duration), d1, corresponding
to the state q1 is generated conditional on the value
of q1 � Q(i) from the length distribution fQ(i).

Figure 3. Each circle or diamond represents a functional
unit (state) of a gene or genomic region: N, intergenic
region; P, promoter; F, 50 untranslated region (extending
from the start of transcription up to the translation in-
itiation signal); Esngl, single-exon (intronless) gene (trans-
lation start! stop codon); Einit, initial exon (translation
start! donor splice site); Ek (0 4 k 4 2), phase k in-
ternal exon (acceptor splice site! donor splice site);
Eterm, terminal exon (acceptor splice site! stop codon);
T, 30 untranslated region (extending from just after the
stop codon to the polyadenylation signal); A, polyade-
nylation signal; and Ik (0 4 k 4 2), phase k intron (see
the text). For convenience, translation initiation/termin-
ation signals and splice sites are included as subcompo-
nents of the associated exon state and intron states are
considered to extend from just after a donor splice site
to just before the branch point/acceptor splice site. The
upper half of the Figure corresponds to the states (desig-
nated with a superscript �) of a gene on the forward
strand, while the lower half (designated with superscript
ÿ) corresponds to a gene on the opposite (complemen-
tary) strand. For example, proceeding in the 50 to 30
direction on the (arbitrarily chosen) forward strand, the
components of an E�k (forward-strand internal exon)
state will be encountered in the order: (1) acceptor site,
(2) coding region, (3) donor site, while the components

of an Eÿk (reverse-strand internal exon) state will be
encountered in the order: (1) inverted complement of
donor site, (2) inverted complement of coding region,
(3) inverted complement of acceptor site. Only the inter-
genic state N is not divided according to strand.
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(3) A sequence segment s1 of length d1 is gener-
ated, conditional on d1 and q1, according to an ap-
propriate sequence generating model for state type
q1.

(4) The subsequent state q2 is generated, con-
ditional on the value of q1, from the (®rst-order
Markov) state transition matrix T, i.e.
Ti,j � P{qk � 1 � Q(j)j qk � Q(i)}.

This process is repeated until the sum, �n
i � 1 di,

of the state durations ®rst equals or exceeds the
length L, at which point the last state duration dn is
appropriately truncated, the ®nal stretch of se-
quence is generated, and the process stops: the se-
quence generated is simply the concatenation of
the sequence segments, S � s1s2. . .sn. Note that the
sequence of states generated is not restricted to cor-
respond to a single gene, but could represent a par-
tial gene, several genes, or no genes at all. The
model thus has four main components: a vector of
initial probabilities ~p, a matrix of state transition
probabilities T, a set of length distributions f, and a
set of sequence generating models P. Assuming for
the moment that these four components have been
speci®ed, the model can be used for prediction in
the following way.

For a ®xed sequence length L, consider the space

 � �L �SL, where �L is the set of (all possible)
parses of length L and SL is the set of (all possible)
DNA sequences of length L. The model M can then
be thought of as a probability measure on this
space, i.e. a function which assigns a probability
density to each parse/sequence pair. Thus, for a
particular sequence S 2SL, we can calculate the
conditional probability of a particular parse fi 2 �L

(under the probability measure induced by M)
using Bayes' Rule as:

PffijSg �
Pffi; Sg

PfSg �
Pffi; SgP

fj2�L
Pffj; Sg �1�

The essential idea is that a precise probabilistic
model of what a gene/genomic sequence looks like
is speci®ed in advance and then, given a sequence,
one determines which of the vast number of poss-
ible gene structures (involving any valid combi-
nation of states/lengths) has highest likelihood
given the sequence. In addition to the optimal
parse, it may also be of interest to study sub-op-
timal parses and/or sub-optimal exons or introns
(to be described elsewhere).

Algorithmic issues

Given a sequence S of length L, the joint prob-
ability, P{fi,S}, of generating the parse fi and the
sequence S is given by:

Pffi; Sg � pq1 fq1�d1�Pfsijq1; d1g

�
Yn

k�2

Tqkÿ1;qk
�dk�Pfskjqk; dkg

�2�

where the states of fi are q1, q2, . . . , qn with associ-

ated state lengths d1, d2, . . . . , dn, which break the
sequence into segments s1, s2, . . . , sn. Here P{skjqk,
dk} is the probability of generating the sequence
segment sk under the appropriate sequence gener-
ating model for a type-qk state of length dk. A re-
cursive algorithm of the sort devised by Viterbi
(Viterbi, 1967; Forney, 1973) may then be used to
calculate fopt, the parse with maximal joint prob-
ability (under M), which gives the predicted gene
or set of genes in the sequence. Variations of this
algorithm have been described and used on several
occasions previously in sequence analysis (e.g.
Sankoff, 1992; Gelfand & Roytberg, 1993). Certain
modi®cations must be made to the standard algor-
ithm for the semi-Markov case used here versus the
simpler Markov case. The speci®c algorithm used
is described by Burge (1997); see also Rabiner
(1989, section IV D).

Calculation of P{S} may be carried out using the
``forward'' algorithm; the ``backward'' algorithm is
also implemented in order to calculate certain ad-
ditional quantities of interest (both algorithms are
described by Burge, 1997; see also Rabiner, 1989).
Speci®cally, consider the event E(k)

[x,y] that a particu-
lar sequence segment [x, y] is an internal exon of
phase k. Under M, this event has probability

P
�
E�k��x;y�jS

	 �
P

fi:E
�k�
�x;y�2fi

Pffi; Sg
PfSg �3�

where the sum is taken over all parses which
contain the given exon E(k)

[x,y]. This sum can be
conveniently calculated using the ``forward-back-
ward'' procedure, which is described in general
by Rabiner (1989) and more speci®cally by Burge
(1997); see also Stormo & Haussler (1994) where
a similar idea was introduced in the context of
exon-intron prediction. This probability has been
shown to be a useful guide to the degree of cer-
tainty which should be ascribed to exons pre-
dicted by the program (see Results). Run time for
the GENSCAN program, though at worst quadra-
tic in the number of possible state transitions, in
practice grows approximately linearly with se-
quence length for sequences of several kb or
more. Typical run time for a sequence of length
X kb on a Sun Sparc10 workstation is about
X � 5 seconds.

Initial and transition probabilities

Since we are attempting to model a randomly
chosen block of contiguous human genomic DNA
as might be generated by a genome sequencing
laboratory, the initial probability of each state
should be chosen proportionally to its estimated
frequency in bulk human (or vertebrate) genomic
DNA. However, even this is not trivial since gene
density and certain aspects of gene structure are
known to vary quite dramatically in regions of dif-
fering C � G% content (so-called ``isochores'') of
the human genome (Bernardi, 1989, 1993; Duret
et al., 1995), with a much higher gene density in
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C � G-rich regions than in A � T-rich regions.
Therefore, separate initial and transition prob-
ability distributions are estimated for sequences in
each of four categories: I (<43% C � G); II
(43 ÿ 51); III (51 ÿ 57); and IV (>57), corresponding
approximately to isochore compartments L1 � L2,
H1 � H2, and two subsets of the H3 isochore, re-
spectively. Details are given in Table 3 and its le-
gend. Note that the differences in estimated initial
probabilities are quite dramatic with, for example,
the probability of hitting an intergenic region
much higher in A � T-rich sequences than for
C � G-rich ones.

The (biologically permissible) state transitions
are shown as arrows in Figure 3. Certain tran-
sitions are obligatory (e.g. P� ! F�) and hence are
assigned probability one; all others are assigned
(maximum likelihood) values equal to the observed
state transition frequency in the learning set l for
the appropriate C � G compositional group. Over-
all, transition frequencies varied to a lesser degree
between groups than did initial probabilities
(Table 3). There was a trend (possibly related to
biases in the dataset toward genes with shorter
genomic length) for A � T-rich genes to have fewer
introns, leading to slightly different estimates for
the I�j ! E�term probabilities.

State length distributions

In general, the states of the model (see Figure 3)
correspond to sequence segments of highly vari-
able length. For certain states, most notably the in-
ternal exon states Ek, length is probably an
important property for proper biological function
(i.e. proper splicing and inclusion in the ®nal pro-
cessed mRNA). For example, it has been shown
in vivo that internal deletions of constitutively re-
cognized internal exons to sizes below about 50 bp
may often lead to exon skipping, i.e. failure to in-
clude the exon in the ®nal processed mRNA (Dom-
inski & Kole, 1991), and there is some evidence
that steric interference between factors recognizing
splice sites may make splicing of small exons more
dif®cult (e.g. Black, 1991). Of course, some very
small exons do exist and are ef®ciently spliced. At
the other end, there is some evidence that spliceo-
somal assembly is inhibited if internal exons are in-
ternally expanded beyond about 300 nucleotides
(Robberson et al., 1990), but con¯icting evidence
also exists (Chen & Chasin, 1994), and the lengths
of ¯anking introns may also be important (Sterner
et al., 1996). Overall, most results have tended to
support the idea that ``medium-sized'' internal
exons (between about 50 and 300 bp in length)
may be more easily spliced than excessively long

Table 3. Gene density and structure as a function of C � G composition: derivation of initial and transition
probabilities

Group I II III IV
C � G% range <43 43-51 51-57 >57
Number of genes 65 115 99 101
Est. proportion single-exon genes 0.16 0.19 0.23 0.16
Codelen: single-exon genes (bp) 1130 1251 1304 1137
Codelen: multi-exon genes (bp) 902 908 1118 1165
Introns per multi-exon gene 5.1 4.9 5.5 5.6
Mean intron length (bp) 2069 1086 801 518
Est. mean transcript length (bp) 10866 6504 5781 4833

Isochore L1 � L2 H1 � H2 H3 H3
DNA amount in genome (Mb) 2074 1054 102 68
Estimated gene number 22100 24700 9100 9100
Est. mean intergenic length 83000 36000 5400 2600

Initial probabilities:
Intergenic (N) 0.892 0.867 0.540 0.418
Intron (I�0 , I�1 , I�2 , Iÿ0 , Iÿ1 , Iÿ2 ) 0.095 0.103 0.338 0.388
50 Untranslated region (F�, Fÿ) 0.008 0.018 0.077 0.122
30 Untranslated region (T�, Tÿ) 0.005 0.011 0.045 0.072

The top portion of the Table shows data from the learning set of 380 genes, partitioned into four groups according to the C � G%
content of the GenBank sequence; the middle portion shows estimates of gene density from Duret et al. (1995) for isochore compart-
ments corresponding to the four groups above; the bottom portion shows the initial probabilities used by GENSCAN for sequences
of each C � G% compositional group, which are estimated using data from the top and middle portions of the Table. All of the
values in the top portion are observed values, except the proportion of single-exon genes. Since single-exon genes are typically much
shorter than multi-exon genes at the genomic level (due to the absence of introns) and hence easier to sequence completely, they are
probably substantially over-represented in the learning set relative to their true genomic frequency; accordingly, the proportion of
single-exon genes in each group was estimated (somewhat arbitrarily) to be one half of the observed fraction. Codelen refers to the
total number of coding base-pairs per gene. Data for subsets III and IV are estimated from the Duret et al. (1995) data for isochore
H3 assuming that one-half of the genes and 60% of the amount of DNA sequence in isochore H3 falls into the 51 to 57% C � G
range. Mean transcript lengths were estimated assuming an average of 769 bp of 50UTR and 457 bp of 30UTR per gene (these values
derived from comparison of the ``prim transcript'' and ``CDS'' features of the GenBank annotation in the genes of the learning set).
To simplify the model, the initial probabilities of the exon, polyadenylation signal and promoter states are set to zero. All other
initial probabilities are estimated from the data shown above, assuming that all features are equally likely to occur on either DNA
strand. The initial probability for all intron states was partitioned among the three intron phases according to the observed fraction
of each phase in the learning set. Transition probabilities were estimated analogously.
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or short exons, and this idea is given substantial
support by the observed distribution of internal
exon lengths (Figure 4(c)), which shows a pro-
nounced peak at around 120 to 150 nucleotides,
with few internal exons more than 300 bp or less
than 50 bp in length. (See also Hawkins (1988) for
an extensive discussion of exon and intron length
distributions.) Initial (Figure 4(b)) and terminal
(Figure 4(d)) exons also have substantially peaked
distributions (possibly multi-modal) but do not ex-
hibit such a steep dropoff in density after 300 bp,
suggesting that somewhat different constraints
may exist for splicing of exons at or near the ends
of the pre-mRNA. Taking these factors into ac-
count, we use separate empirically derived length
distribution functions for initial, internal, and term-
inal exons (Figure 4) and for single-exon genes.
Substantial differences in exon length distributions
were not observed between the C � G compo-
sitional groups (data not shown).

In contrast to exons, intron length does not ap-
pear to be critical to splicing in most cases, e.g. for
rabbit b-globin, intron length was observed to be
unimportant for splicing provided that a certain
minimum threshold of perhaps 70 to 80
nucleotides was exceeded (Wieringa et al., 1984).
The observed distribution of intron lengths
(Figure 4(a)) tends to support this idea: no introns
less than 65 bp were observed, but above this size
the distribution appears to be approximately geo-
metric (exponential), consistent with the absence of
signi®cant functional constraints on intron length.
Consistent with the results of Duret et al. (1995),
dramatic differences were observed in intron (and
intergenic) lengths between the four C � G compo-
sitional groups (Table 3): introns in (A � T-rich)
group I genes averaged 2069 bp, almost four times
the value of 518 bp observed in very C � G-rich
genes (group IV). Thus, intron and intergenic
lengths are modeled as geometric distributions

Figure 4. Length distributions are shown for (a) 1254 introns; (b) 238 initial exons; (c) 1151 internal exons; and (d) 238
terminal exons from the 238 multi-exon genes of the learning set l. Histograms (continuous lines) were derived with
a bin size of 300 bp in (a), and 25 bp in (b), (c), (d). The broken line in (a) shows a geometric (exponential) distri-
bution with parameters derived from the mean of the intron lengths; broken lines in (b), (c) and (d) are the smoothed
empirical distributions of exon lengths used by GENSCAN (details given by Burge, 1997). Note different horizontal
and vertical scales are used in (a), (b), (c), (d) and that multimodality in (b) and (d) may, in part, re¯ect relatively
small sample sizes.
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with parameter q estimated for each C � G group
separately. For the 50UTR and 30UTR states, we use
geometric distributions with mean values of 769
and 457 bp, respectively, derived from comparison
of the ``prim transcript'' and ``CDS'' features of the
GenBank ®les in l. The polyA_signal and promo-
ter model lengths are discussed later. The only
other feature of note is that exon lengths must be
consistent with the phases of adjacent introns. To
account for this, exon lengths are generated in two
steps: ®rst, the number of complete codons is gen-
erated from the appropriate length distribution;
then the appropriate number (0, 1 or 2) of bp is
added to each end to account for the phases of the
preceding and subsequent states. For example, if
the number of complete codons generated for an
initial exon is c and the phase of the subsequent in-
tron is i, then the total length of the exon is:
l � 3c � i.

Signal models

Numerous models of biological signal sequences
such as donor and acceptor splice sites, promoters,
etc. have been constructed in the past ten years or
so. One of the earliest and most in¯uential ap-
proaches has been the weight matrix method
(WMM) introduced by Staden (1984), in which the
frequency p(i)

j of each nucleotide j at each position i
of a signal of length n is derived from a collection
of aligned signal sequences and the product
P{X} � �n

i � 1 p(i)
xi is used to estimate the probability

of generating a particular sequence, X � x1,
x2, . . . . , xn. A generalization of this method, termed
weight array model (WAM), was applied by
Zhang & Marr (1993), in which dependencies be-
tween adjacent positions are considered. In this
model, the probability of generating a particular
sequence is: PrfXg � p�1�x1

�n
i�2 piÿ1;i

xiÿ1;xi
; where p(i ÿ 1,i)

j,k is
the conditional probability of generating nucleotide
Xk at position i, given nucleotide Xj at position
i ÿ 1 (which is estimated from the corresponding
conditional frequency in the set of aligned signal
sequences). Of course, higher-order WAM models
capturing second-order (triplet) or third-order (tet-
ranucleotide) dependencies in signal sequences
could be used in principle, but typically there is in-
suf®cient data available to estimate the increased
number of parameters in such models. Here,
WMM models are used for certain types of signals,
a modi®ed WAM model is derived for acceptor
splice sites, and a new model, termed Maximal De-
pendence Decomposition (MDD), is introduced to
model donor splice sites.

Transcriptional and translational signals

Polyadenylation signals are modeled as a 6 bp
WMM (consensus: AATAAA). A 12 bp WMM
model, beginning 6 bp prior to the initiation
codon, is used for the translation initiation (Kozak)
signal. In both cases, the WMM probabilities
were estimated using the GenBank annotated

``polyA_signal'' and ``CDS'' features from se-
quences of l. (Similer models of these signals
have been used by others, e.g. GuigoÂ et al. (1992),
Snyder & Stormo (1995).) For the translation ter-
mination signal, one of the three stop codons is
generated (according to its observed frequency in
l) and the next three nucleotides are generated ac-
cording to a WMM. For promoters, we use a sim-
pli®ed model of what is undoubtedly an extremely
complex signal often involving combinatorial regu-
lation. Our primary goal was to construct a model
¯exible enough so that potential genes would not
be missed simply because they lacked a sequence
similar to our preconceived notion of what a pro-
moter should look like. Since about 30% of eukary-
otic promoters lack an apparent TATA signal, we
use a split model in which a TATA-containing pro-
moter is generated with probability 0.7 and a
TATA-less promoter with probability 0.3. The
TATA-containing promoter is modeled using a
15 bp TATA-box WMM and an 8 bp cap site
WMM, both borrowed from Bucher (1990). The
length between the WMMs is generated uniformly
from the range of 14 to 20 nucleotides, correspond-
ing to a TATA! cap site distance of 30 to 36 bp,
from the ®rst T of the TATA-box matrix to the cap
site (start of transcription). Intervening bases are
generated according to an intergenic-null model,
i.e. independently generated from intergenic base
frequencies. At present, TATA-less promoters are
modeled simply as intergenic-null regions of 40 bp
in length. In the future, incorporation of improved
promoter models, e.g. perhaps along the lines of
Prestridge (1995), will probably lead to more accu-
rate promoter recognition.

Splice signals

The donor and acceptor splice signals are prob-
ably the most critical signals for accurate exon pre-
diction since the vast majority of exons are internal
exons and therefore begin with an acceptor site
and end with a donor site. Most previous probabil-
istic models of these sites have assumed either in-
dependence between positions, e.g. the WMM
model of Staden (1984) or dependencies between
adjacent positions only, e.g. the WAM model of
Zhang & Marr (1993). However, we have observed
highly signi®cant dependencies between non-adja-
cent as well as adjacent positions in the donor
splice signal (see below), which are not adequately
accounted for by such models and which likely re-
late to details of donor splice site recognition by
U1 snRNP and possibly other factors. The consen-
sus region of the donor splice site comprises the
last 3 bp of the exon (positions ÿ 3 to ÿ 1) and the
®rst 6 bp of the succeeding intron (positions 1
through 6), with the almost invariant GT dinucleo-
tide occuring at positions 1,2: consensus
nucleotides are shown in Figure 2. We have fo-
cused on the dependencies between the consensus
indicator variable, Ci (1 if the nucleotide at position
i matches the consensus at i, 0 otherwise) and the
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nucleotide indicator Xj identifying the nucleotide
at position j. Table 4 shows the w2 statistics for the
variable Ci versus Xj for all pairs i, j with i 6� j in
the set of donor sites from the genes of the learning
set (positions �1 and �2 are omitted since they do
not exhibit variability in this data set). Strikingly,
almost three-quarters (31/42) of the i, j pairs exhi-
bit signi®cant w2 values even at the relatively strin-
gent level of P < 0.001 indicating a great deal of
dependence between positions in the donor splice
site. (The stringent P-value cutoff was used to com-
pensate for the effect of multiple comparisons.) It is
also noteworthy and perhaps surprising that many
non-adjacent pairs of positions as well as most ad-
jacent pairs exhibit signi®cant dependence, e.g.
positions ÿ1 and �6, separated by ®ve intervening
nucleotides, exhibit the extremely high w2 values
of 103.8 for C6 versus Xÿ1 and 96.6 for Cÿ1 versus
X6. In order to account for such dependencies in a
natural way, we introduce a new model-building
procedure, described next.

Maximal Dependence Decomposition (MDD)

The goal of the MDD procedure is to generate,
from an aligned set of signal sequences of moder-
ate to large size (i.e. at least several hundred or
more sequences), a model which captures the most
signi®cant dependencies between positions (allow-
ing for non-adjacent as well as adjacent dependen-
cies), essentially by replacing unconditional WMM
probabilities by appropriate conditional probabil-
ities provided that suf®cient data is available to do
so reliably. Given a data set D consisting of N
aligned sequences of length k, the ®rst step is to as-
sign a consensus nucleotide or nucleotides at each
position. Then, for each pair of positions, the w2

statistic is calculated for Ci versus Xj (as de®ned
above) for each i, j pair with i 6� j. If no signi®cant
dependencies are detected (for an appropriate P-
value), then a simple WMM should be suf®cient. If
signi®cant dependencies are detected, but they are

exclusively or predominantly between adjacent
positions, then a WAM model may be appropriate.
If, however, there are strong dependencies between
non-adjacent as well as adjacent positions, then we
proceed as follows. (1) Calculate, for each position
i, the sum Si �

P
j 6� i w

2(Ci,Xj) (the row sums in
Table 4), which is a measure of the amount of de-
pendence between the variable Ci and the
nucleotides at the remaining positions of the site.
(2) Choose the value i1 such that Si1 is maximal
and partition D into two subsets: Di1 all sequences
which have the consensus nucleotide(s) at position
i1; and Di1

all sequences which do not. Now repeat
steps (1) and (2) on each of the subsets, Di1 and Di1
and on subsets thereof, and so on, yielding a
binary subdivision ``tree'' with (at most) k ÿ 1
levels (see Figure 2). This process of subdivision is
carried out successively on each branch of the tree
until one of the following three conditions occurs:
(1) the (k ÿ 1)th level of the tree is reached (so that
no further subdivision is possible); (2) no signi®-
cant dependencies between positions in a subset
are detected (so that further subdivision is not indi-
cated); or (3) the number of sequences remaining
in a subset becomes so small that reliable WMM
frequencies could not be determined after further
subdivision. Finally, separate WMM models are
derived for each subset of the tree, and these are
combined to form a composite model as described
below.

Figure 2 illustrates the MDD procedure applied
to the set of 1254 donor splice sites from l. The in-
itial subdivision is made according to the consen-
sus (G) at position 5 of the donor signal (see
Table 4), resulting in subsets G5 and H5 (H mean-
ing A, C or U) containing 1057 and 197 intron se-
quences, respectively. We consider the number 175
as a reasonable minimum subset size (correspond-
ing to a parameter estimation error of typically less
than 25%, even for base frequencies as low as
10%), so the subset H5 is not subdivided. The sub-
set G5 is suf®ciently large, and exhibits signi®cant

Table 4. Dependence between positions in human donor splice sites: w2-statistic for consensus indicator variable Ci

versus nucleotide indicator Xj

i Con j: ÿ3 ÿ2 ÿ1 �3 �4 �5 �6 Sum

ÿ3 c/a Ð 61.8* 14.9 5.8 20.2* 11.2 18.0* 131.8*
ÿ2 A 115.6* Ð 40.5* 20.3* 57.5* 59.7* 42.9* 336.5*
ÿ1 G 15.4 82.8* Ð 13.0 61.5* 41.4* 96.6* 310.8*

�3 a/g 8.6 17.5* 13.1 Ð 19.3* 1.8 0.1 60.5*
�4 A 21.8* 56.0* 62.1* 64.1* Ð 56.8* 0.2 260.9*
�5 G 11.6 60.1* 41.9* 93.6* 146.6* Ð 33.6* 387.3*
�6 t 22.2* 40.7* 103.8* 26.5* 17.8* 32.6* Ð 243.6*

Ci and Xj are de®ned in the text. The last three exon bp and ®rst six intron bp were extracted from each of the 1254 donor splice
sites in the learning set: positions in this site are labeled ÿ3 through ÿ1, �1 through �6. The invariant positions �1, �2 (always G,
T in this set) are omitted. The consensus nucleotide(s) at each position are shown in the second column: nucleotides with frequency
greater than 50% are uppercase (see Figure 2). For each pair of distinct positions {i, j}, a 2 by 4 contingency table was constructed
for the indicator variable Ci (1 if the nucleotide at position i matches the consensus, 0 otherwise) versus the variable Xj identifying
the nucleotide at position j, and the value of the w2 statistic for each such table was calculated. Those values exceeding 16.3 (corre-
sponding to P < 0.001, 3 df) are indicated with an asterisk. The last column in the Table lists the sum of the values in each row: this
value is a measure of the dependence between Ci and the vector X(i) of the nucleotides at the six remaining positions. All values
exceeded 42.3 (P < 0.001, 18 df) and are therefore indicated with an asterisk.
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dependence between positions (data not shown),
so it is further subdivided according to the consen-
sus (G) at position ÿ1, yielding subsets G5Gÿ1 and
G5Hÿ1, and so on. The composite MDD model for
generation of donor splice site sequences is then as
follows. (0) The (invariant) nucleotides X1 and X2

are generated. (1) X5 is generated from the original
WMM for all donor sites combined. (2a) If X5 6� G,
then the (conditional) WMM model for subset H5

is used to generate the nucleotides at the remaining
positions in the donor site. (2b) If X5 � G, then Xÿ1

is generated from the (conditional) WMM model
for the subset G5. (3a) If (X5 � G and) Xÿ1 6� G,
then the WMM model for subset G5Hÿ1 is used.
(3b) If (X5 � G and) Xÿ1 � G, Xÿ2 is generated
from the model for G5Gÿ1; and so on, until the en-
tire 9 bp sequence has been generated. Biological
factors related to the MDD model are addressed in
the Discussion.

Acceptor splice site model

The ®rst step in the MDD procedure was also
applied to the 1254 acceptor sites from the multi-
exon genes of l, but dependencies between pos-
itions were found to be much weaker than for
donor sites and those that existed were mostly be-
tween adjacent positions (data not shown). There-
fore, we apply a modi®ed WAM method to model
this signal. Speci®cally, bases ÿ20 to �3 relative to
the intron/exon junction, encompassing the pyri-
midine-rich region and the acceptor splice site it-
self, are modeled by a ®rst-order WAM model as
by Zhang & Marr (1993). The branch point region
is notoriously dif®cult to model, since even the
most degenerate branch point consensus is present
in only a fraction of acceptor sequences. For
example, YYRAY was present in the appropriate
region [ ÿ 40, ÿ21] in only 30% of acceptor se-
quences in our data set; similarly low frequencies
of branch point consensus sequences have been ob-
served previously, e.g. Harris & Senapathy (1990).
To model this region, we introduce a ``windowed
second-order WAM model'' (WWAM), in which
nucleotides are generated conditional on the
nucleotides at the previous two positions. In order
to have suf®cient data to estimate these conditional
probabilities reliably, we averaged the conditional
frequencies over a span of ®ve positions, i.e. the
WAM entries for position i are formed by aver-
aging the appropriate conditional frequencies at
positions i ÿ 2, i ÿ 1, i, i � 1 and i � 2. This
model captures the weak but detectable ten-
dency toward YYY triplets as well as certain
branch point-related triplets such as TGA, TAA,
GAC, and AAC in this region, without requir-
ing the occurrence of any speci®c branch point
consensus sequence.

Exon models, non-coding state models

Coding portions of exons are modeled using an
inhomogeneous 3-periodic ®fth-order Markov
model as by Borodovsky & McIninch (1993); see
also Gelfand (1995). In this approach, separate
®fth-order Markov transition matrices are deter-
mined for hexamers ending at each of the three
codon positions, denoted c1, c2, c3, respectively;
exons are modeled using the matrices c1, c2, c3 in
succession to generate each codon. These transition
probabilities were derived from the set C of com-
plete coding sequences described previously. In re-
gard to this choice of coding sequence model, we
note that Fickett & Tung (1992) have shown that
frame-speci®c hexamer measures are generally the
most accurate compositional discriminator of cod-
ing versus noncoding regions. We found, as have
others, that A � T-rich genes are often not well
predicted using such bulk hexamer-derived par-
ameters. Accordingly, a separate set of ®fth-order
Markov transition matrices was derived for C � G
composition group I regions (<43% C � G). Speci®-
cally, the coding sequences of all group I genes
from l were combined with all cDNAs of <48%
C � G from C (observing that cDNAs are on aver-
age about 5% richer in C � G than the genomic re-
gion from which they derive): this subset
comprised 638 sequences totaling approximately
1.139 Mb.

In our model, the disruption of coding regions
by introns in multi-exon genes is dealt with by
keeping track of intron/exon phase, ensuring that
a consistent reading frame is maintained through-
out a gene. Speci®cally, initial exons begin with
codon position c1 and end with codon position ci

such that j � i mod 3{ is the phase of the sub-
sequent intron state; terminal exons will end with
codon position c3 and begin with codon position
ci � 1, where i is the phase of the previous intron;
and internal exons Ei begin with codon position
ci � 1 and end with codon position cj, where k �
j mod 3 is the phase of the subsequent intron. This
treatment of the coding portions of multi-exon
genes is essentially equivalent to the ``in-frame
scoring'' plus ``in-frame assembly'' approach de-
scribed by Wu (1996), which he has shown gives
somewhat better accuracy than alternative
methods of gene scoring/assembly, e.g. those used
by GeneParser (Snyder & Stormo, 1995) and by
GRAIL II (Xu et al., 1994). The non-coding states F,
T, N and Ik are modeled using a homogeneous
®fth-order Markov model, with transition probabil-
ities derived from the non-coding portions of the
genes in l. As for coding regions, a separate ®fth-
order Markov matrix was derived from the genes
of group I for use in sequences of <43% C � G.

Reverse-strand states

Sequence generating models for the reverse
strand states are derived from the corresponding
forward strand models by the simple operation of

{ i mod 3 indicates the remainder when i is divided
by 3.
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inverse complementation. For example, if the for-
ward strand termination signal model generates
the triplets TAG, TAA and TGA with probabilities
p1, p2 and p3, respectively, then the reverse strand
termination model will generate the triplets CTA
(inverted complement of TAG), TTA and TCA,
with probabilities p1, p2 and p3. Equivalently, the
forward-strand model is used to generate a stretch
of sequence, and then the inverse complement of
the sequence is taken.
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