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ABSTRACT

This paper presents an adaptive chaotic symbiotic organisms search algorithm (A-CSOS) for finding the solution of optimal reactive power dispatch 
(ORPD) problem which is one of the main issues of power system planning and operations. The most important advantage of symbiotic organisms 
search algorithm (SOS) is that is not need any particular algorithm parameters. However, the SOS algorithm has some features to be enhanced, like 
falling into local minima and sluggish convergence. A-CSOS algorithm with adding new and improved features like adaptivity and chaos to conventional 
SOS algorithm is proposed to solve ORPD problem. The ORPD problem is mainly focused on minimization of transmission loss (Ploss) and total voltage 
deviation (TVD). To determine the optimal set points of control variables including generator bus voltages, tap positions of transformers, and reactive 
power outputs of shunt VAR compensators is very crucial for minimization to Ploss and TVD. The proposed algorithm is implemented on IEEE 30-bus 
test power systems for ascertaining the performance of A-CSOS algorithm on ORPD problem. The results showed that the proposed approach is up to 
10.39% better than many of which the latest algorithms in literature and encourage the researchers to implement A-CSOS algorithm to ORPD problem. 
Keywords: Adaptive chaotic symbiotic organisms search, power loss minimization, reactive power dispatch, symbiotic organisms search, voltage 
deviation minimization

Introduction

Efforts to find the optimum solution for power system planning and operational problems 
continue today. One of these problems is the optimal reactive power dispatch (ORPD) prob-
lem which is a highly nonlinear and non-convex optimization problem [1]. The ORPD can be 
defined as an ideal allocation of reactive power in the power system to minimize predefined 
objective function while satisfying the numerous constraints. Though active power loss (Ploss) 
is mostly preferred as an objective function to be minimized, minimization of absolute value of 
total voltage deviation (TVD) and voltage stability index can be used as an objective functions 
in ORPD studies. Therefore, minimization of Ploss and TVD have been chosen as objective 
functions in this study. The parameters that are controlled to minimize the objective function 
are generator bus voltages, tap settings of transformers and reactive power outputs of shunt 
compensators [2]. 

Up to now, many algorithms from classical optimization techniques to modern optimization 
and hybrid algorithms have been used to determine the ideal values of the control param-
eters. Many different modern optimization techniques such as particle swarm optimization 
(PSO) [3], differential evalution (DE) [4], biogeography based optimization (BBO) [5], gravi-
tational search  algorithm (GSA) [6], artificial bee colony (ABC) [7], firefly algorithm (FA) [7], 
bacteria foraging optimization algorithm (BFOA) [7], bat algorithm (BA) [8], cuckoo  search 
algorithm (CSA) [8], ant lion optimization (ALO) [9], gray wolf optimization (GWO) [9], teaching 
learning based optimization (TLBO) [10], whale optimization algorithm (WOA) [11], quasi-op-
positional chemical reaction optimization (QOCRO) [12] are being developed and applied to 
ORPD and other optimization problems. However, these algorithms also have features that 
can be positive and negative or improved. For this reason, existing algorithms continue to 
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be improved either by hybridization with more than one algo-
rithm or by adding various features to the existing algorithm. 
The comprehensive learning PSO (CLPSO) [3], hybrid parti-
cle swarm optimization and gravitational search algorithm 
(PSOGSA) [6], opposition-based gravitational search algorithm 
(OGSA) [13], hybrid firefly algorithm (HFA) [7], modified ant lion 
optimization (MALO) [8], quasi-oppositional teaching learning 
based optimization (QOTLBO) [10], modified differential evo-
lution (MDE) [14],  improved gravitational  search  algorithm 
with conditional  selection  strategies (IGSA-CSS) [15], chaotic 
improved particle swarm optimization (MOCIPSO) [16], chaotic 
parallel vector evaluated interactive honey bee mating optimi-
zation (CPVEIHBMO) [17], hybrid particle swarm optimization 
and imperialist competitive algorithm (PSO-ICA) [18] can be 
given as example of algorithms developed with this approach 
for solving the ORPD problem. However, most of these modern 
optimization algorithms contain some parameters that must 
be determined sensitively and affecting the result significantly.

As a solution to this problem, Symbiotic Organisms Search 
algorithm (SOS) is introduced [19]. SOS is an algorithm that is 
inspired by the interaction of the organisms in an ecosystem 
and does not contain any particular algorithmic parameters. 
SOS algorithm has been implemented on some power system 
problems such as economic load dispatch by Guvenc et al. [20], 
optimal placement of distributed generations in radial distri-
bution systems by Das et al. [21. However, SOS algorithm offers 
many important advantages but also SOS may suffer from pre-
mature convergence that will lead the optimization falling into 
local optima when it is applied for high dimension large-scale 
problems. For this reason, some researchers such as Secui [22] 
and Saha et al. [23] have achieved better results than standard 
SOS by making some modifications based on the standard 
SOS.  To find a better result in global solution set by improving 
searching capability and avoid falling into local optima, prin-
ciple of chaos approach adapted to algorithms. The making 
some modifications and using hybridization techniques affect 
positively to performance of originals. However, handling the 
constraints within limits cannot be assured when using these 
methods to solve especially complex optimization problems. 
To find global optimum solution for large-scale problems like 
ORPD problem, not only to improve the original methods but 
also to handle constraints have to be required well simulta-
neously. In many studies, quadratic penalty function is used 
to overcome all equality and inequality constraints, but this 
method has some penalty parameters that significantly affect 
the solution and to be needed a large amount of time to de-
termine the optimal values. In addition to this, static penalty 
method also has some coefficients that significantly affect the 
solution and be required time-consuming trial and errors. More 
recently, adaptive penalty schemes have been introduced with 
the goal of eliminating above-mentioned problems and evalu-
ating each candidate solution using specific feedback informa-
tion for every iteration. One of the most promising self-adap-
tive penalty approach is the Global Competitive Ranking (GCR) 
method [24].

In this paper, adaptive chaotic symbiotic organisms search 
algorithm (A-CSOS) is designed by integrating the chaos and 
adaptive penalty features into SOS. The proposed A-CSOS al-
gorithm is applied to ORPD problem comprising the Ploss and 
TVD minimization on IEEE 30-bus test power system. Simula-
tions are performed on four different test cases which are Ploss 
minimization with continuous variables, Ploss minimization 
with discrete variable transformer taps and shunt compensa-
tor outputs, TVD minimization with continuous variables, TVD 
minimization with discrete variable transformer taps and shunt 
compensator outputs. Simulation results show that the pro-
posed algorithm gives substantially better result than the best 
result of many other state-of-art algorithms. Therefore, A-CSOS 
will be one of the most promising algorithm for ORPD and an 
encouraging algorithm for other constrained optimization 
problems. 

Problem Description

The minimization of Ploss which is the first objective function 
in this study, means the amount of active power losses in trans-
mission lines. TVD minimization, which is taken as the second 
objective function in this study, is used for minimizing absolute 
deviations of all the actual PQ bus voltages from their desired 
or set values. The value of set voltage (Vi

set) is considered 1.0 p.u. 
for TVD minimization. The formulation of Ploss and TVD mini-
mization are shown in Eq. (1) and Eq. (2), respectively.

 (1)

 (2)

In Eq. (1) and (2), f 1 and f 2 denote to first and second objec-
tive functions, respectively; x1 and x2 denote to dependent and 
independent variables, respectively; Nbr express the total num-
ber of branches; Gbr is the conductance of line-br connecting 
buses i and j; Vi is the bus voltage magnitude at bus i; δij is the 
phase angle difference between bus-i and j; NPQ is the number 
of PQ-bus.

Subject to equality and inequality constraints are represented 
by Eq. (3) and Eq. (4), respectively.

 (3)

 (4)

The vector of state variable, x1 shown in Eq. (5), compose of 
load bus voltages (V1), generators’ Mvar outputs (QG) and line 
loadings (Sbr), respectively. 

 (5)
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x2, shown in Eq. (6),  represents the control variables including 
bus voltage magnitudes of PV bus (VG), tap ratios of transform-
ers (T) and Mvar output of shunt compensators (Qc), respective-
ly.

 (6)

where NPV is the number of PV-bus, NT is the number of tap 
changing transformers, Nc is the number of VAR compensators.

While both two objective functions are minimized, all equality 
and inequality constraints must be satisfied simultaneously. 

The equality constraints denoted by g in Eq. (3) are shown in 
Eq. (7) and (8).

 (7)

 (8)

where NB is the number of bus, PGi and QGi are the amount of of 
active and reactive power generation for bus i, respectively;  PLi 
and QLi are the amount of of active and reactive power load for 
bus i, respectively.

The inequality constraints denoted by h in Eq. (4) are com-
posed of the maximum and minimum limits of generator and 
load bus voltages, the minimum and maximum reactive power 
outputs of generators and shunt compensators, the minimum 
and maximum ratios of tap changing transformers, the maxi-
mum line capacity expressed in Eq. (9-14), respectively.

 (9)

 (10)

 (11)

 (12)

 (13)

 (14)

Methods

The SOS algorithm has been developed as an important alter-
native to algorithms that have some algorithmic parameters 
that affect solution accuracy significantly and that must be 
specified by the user. Due to this advantage, it has been ap-
plied to many optimization problems to date and successful 
results have been obtained.

However, as the problem of applying the SOS algorithm be-
comes more complicated, the convergence time of the algo-
rithm is prolonged and the accuracy of solution is insufficient. 
Therefore, the exploration and exploitation capabilities, and 
convergence speed of standard SOS should be enhanced.

In this section, the standard SOS algorithm is briefly explained, 
and then the modifications on the SOS are described in the 
subheadings.

SOS Algorithm

Symbiotic Organisms Search algorithm inspired by the sym-
biotic interactions between different organisms living in an 
ecosystem [19]. The mutualism, commensalism, and parasitism 
constitute the basic relations of SOS. 

Mutualism:
Mutualism is a relationship based on the fact that the two organ-
ism in the ecosystem benefit more or less from one another. The 
relationship between bee and flower is an example of this phe-
nomenon. Not only bees get benefited by collecting nectar from 
flower for producing into honey, but also flowers get benefited 
from bees that help to flowers to become fruit by pollination. This 
phase is mathematically expressed as follows in the standard SOS.

 (15)

 (16)

 (17)

 (18)

In above equations, Xi
act represents an organism that corre-

sponds to ith organism in the ecosystem, Xj
act represents a 

randomly selected organism that interacts with Xi
act; Xbest rep-

resents an organism with the minimum fitness value in the eco-
system;  Xi

new and Xj
new denote the new obtained organisms after 

performing mutualism; the rand expression is a random value 
between 0 and 1; BF1 and BF2 are benefit factors which repre-
sent the level of benefit to each organism. If the value of BF is 1, 
organisms are benefitted partially; otherwise one organism is 
benefited fully from this relationship. The new obtained organ-
isms Xi

new and Xj
new are compared with Xi

act and Xj
act according 

to their fitness value and then the organisms that have better 
fitness value are accepted. 
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Commensalism:
Commensalism is the type of relationship in which one organ-
ism in the ecosystem benefits from this relation while the other 
is unaffected. The relationship between shark and remora fish 
is an example of this phenomenon.  Remora fish adhere to the 
shark and feeds by eating residue from shark’s food. Therefore, 
the remora fish get benefit, whereas the shark is not affected by 
the natural process of remora fish. This phase is mathematically 
expressed as follows in standard SOS:

 (19)

where Xi
new  denotes the new obtained organism after perform-

ing commensalism; the expression rand(-1,1) is the random 
value between -1 and 1. The assessment of the obtained new 
organism Xi

new is the same as in the mutualism phase. 

Parasitism:
Parasitism is defined as the type of relationship that one of 
the two organisms in the ecosystem has benefited from this 
relation while the other is harmed. The interaction between a 
plasmodium anopheles and human is an example of this phe-
nomenon. If an infected anopheles mosquito bites at human, 
anopheles gets benefit because of feeding. The human, by con-
trast, is damaged by a fatal parasite that causes malaria. 

Xi
act denotes to parasite vector. To be a parasite vector, modifies 

itself by the help of a random vector. For hosting to the parasite 
vector, an organism Xj

act is randomly selected. The fitness value 
of infected vector Xj

act and parasite vector Xi
act is calculated. If 

the parasite vector has a better fitness value than infected vec-
tor, kills to infected vector and substitute Xj

act, otherwise, Xj
act 

kills to parasite vector and remain the position of Xj
act.

A-CSOS Algorithm

Symbiotic Organisms Search algorithms has some disadvan-
tages such as slow convergence and falling into local optima. 
Therefore, the global and local searching abilities, and conver-
gence capability of standard SOS can be enhanced. 

Chaos maps are known to significantly increase the exploration 
and exploitation proficiencies of the algorithms. On the other 
hand, the success of an algorithm depends not only on its own 
capabilities but also on the chosen constraint handling strate-
gy. Standard SOS is enhanced by incorporating the chaos and 
adaptive penalty features. The modifications are specified in 
following subsections.

Chaos Integration in Mutualism and Commensalism Phases 

In this study, logistic map that is one of the most used chaotic 
maps is preferred. The logistic map is applied to the rand state-
ment in mutualism phase and rand(-1,1) statement in com-
mensalism phase which is expressed in state equation form as:

 (20)

where ci
k

j represents the jth chaotic variable of ith individual in 
the kth iteration; initial value of chaotic variable C0 can take any 
value between 0 and 1 except 0.25, 0.5, and 0.75. The updated 
formulas of the mutualism and commensalism phases after the 
modifications are shown in Eq. (21-23).

 (21)

 (22)

 (23)

Global Compatitive Ranking 

In most studies, if one of the constraints is exceeded, a penalty 
value is added to the objective function for manipulating can-
didate individual from infeasible to feasible region. Commonly 
used fitness function for ORPD problem is given as follow:

(24)

where f(Xi) denotes the objective function value of or organ-
ism-i; kV and kQ are expressed as static penalty factors; Vli

lim and  
VGini

lim are the permissible limits of load bus voltage and Mvar 
output of generators, respectively. These limits are considered 
as follows:

 (25)

 (26)

It is very difficult and time-consuming process to determine 
ideal values of the penalty parameters in static penalty meth-
od. Moreover, the solution is very sensitive to penalty coeffi-
cients. The mentioned drawbacks of the static penalty function 
blight the performance of the SOS algorithm. For this reason, 
Global Competitive Ranking has an important advantage with 
this aspect.
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One of the adaptive penalty methods is Global Competitive 
Ranking (GCR) developed by Runarsson and Yao. GCR is a rank-
ing-based constraint handling method and strikes a balance 
between objective function and the sum of constraints viola-
tions using the following expressions [24]

 (27)

where

 (28)

 

(29)

 (30)

In above equations, N is the number of candidate solution in 
the population; rank(f(Xi)) and rank(∑j=1

m vj(Xi))denote the cur-
rent ranking position of the candidate solution Xi based on 
its objective function value and the sum of its constraint vi-
olations, respectively; vj(Xi) is the amount of violation of the 
j-th constraint for the candidate solution Xi; Pf represents the 
probability that an individual’s fitness function value is deter-
mined according to its objective function value. It is suggest-
ed by the author that a value between 0 and 0.5 for the Pf 
value.

The flow diagram for solving the ORPD problem with the 
A-CSOS algorithm is shown in Figure 1.

Findings

Optimal reactive power dispatch problem is applied on IEEE 
30-bus system. Within this scope, the following four different 
cases are studied in this paper.

Case-1: Ploss minimization with continuous variables 

Case-2: Ploss minimization with discrete variable transformer 
taps and shunt compensator outputs 

Case-3: TVD minimization with continuous variables

Case-4: TVD minimization with discrete variable transformer 
taps and shunt compensator outputs

Figure 1 . The flow diagram of the solution of ORPD problem us-
ing A-CSOS

Table 1. The general description of IEEE-30 bus power systems

Parameters IEEE 30-bus

NB 30

NGen 6

NPQ 24

NT 4

NC 9

Nreactor -

Nbr 41

Pload (MW) 283.2

Qload (Mvar) 126.2

No. of equality contraints 60

No. of inequality contraints 125

No. of continuous variable (Case-1 and 3) 19

No. of discrete variable (Case-1 and 3) -

No. of continuous variable (Case-2 and 4) 6

No. of discrete variable (Case-2 and 4) 13

Initial power loss (MW) 5.5713

Initial TVD (p.u.) 0.8603
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Matpower [25] is used for the test power system data and 
load flow analysis of the simulations. The permissible max-
imum iteration is set to 100. The ecosystem consists of 30 
organisms. The algorithm is tested with 30 runs of each test 
case and the best results are given. The general description 
and initial condition of test power systems are shown in Ta-
ble 1 [26].

The IEEE 30-bus system has 19 control variables which are 
6 generator bus voltages,  4 tap ratios of transformers and 9 
shunt VAR compensators. The limits of control variables are giv-
en in Table 2.

Results of Case-1 using the A-CSOS algorithm

As mentioned earlier, it is assumed that all control variables 
are continuous in Case-1. Table 3 presents the optimal value of 
control variables and the best objective value obtained from 30 
test runs for Case-1. The results of the other well-known algo-
rithms are also given in Table 3.

According to Table 3, A-CSOS are able to reduce the Ploss by 
19% with respect to the base case. In comparison with the best 
result of other algorithms, A-CSOS algorithm gives 0.01621 MW 
better result. 

Table 2. The limits of control variables for IEEE 30-bus

VG
min VG

max Vl
min Vl

max

0.95 p.u. 1.1 p.u. 0.95 p.u. 1.1 p.u.

Tmin Tmax QC
min QC

max

0.9 p.u. 1.1 p.u. 0 Mvar 5 Mvar

Table 3. Optimal settings of the control variables for Case-1

Variable A-CSOS
HFA 
[7]

QOCRO 
[12]

PSOGSA 
[6]

BBO 
[5]

DE 
[4]

QOTLBO 
[10]

CLPSO 
[3]

WOA 
[11]

IGSA-CSS 
[15]

MDE 
[14]

VG1 1.10000 1.1000 NR 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.0813 1.07146

VG2 1.09430 1.0543 NR 1.0944 1.0944 1.0931 1.0942 1.1000 1.0963 1.0722 1.06222

VG5 1.07470 1.0751 NR 1.0749 1.0749 1.0736 1.0745 1.0795 1.0789 1.0501 1.0400

VG8 1.07660 1.0868 NR 1.0767 1.0768 1.0756 1.0765 1.1000 1.0774 1.0502 1.0405

VG11 1.10000 1.1000 NR 1.1000 1.0999 1.1000 1.1000 1.1000 1.0955 1.1000 1.0804

VG13 1.10000 1.1000 NR 1.1000 1.0999 1.1000 1.0999 1.1000 1.0929 1.0688 1.0520

T6-9 1.04320 0.9800 NR 1.0452 1.0435 1.0465 1.0664 0.9154 0.9936 1.0800 1.0834

T6-10 0.90000 0.9500 NR 0.9000 0.9011 0.9097 0.9000 0.9000 0.9867 0.9020 0.9000

T4-12 0.97905 0.9701 NR 0.9794 0.9824 0.9867 0.9949 0.9000 1.0214 0.9900 0.9913

T28-27 0.96472 0.9700 NR 0.9651 0.9692 0.9689 0.9714 0.9397 0.9867 0.9760 0.9769

QC10 5.00000 4.7003 NR 5.0000 5.0000 5.0000 5.0000 4.9265 3.1695 0.0000 5.0000

QC12 5.00000 4.7061 NR 5.0000 4.9870 5.0000 5.0000 5.0000 2.0477 0.0000 5.0000

QC15 4.80690 4.7006 NR 5.0000 4.9910 5.0000 5.0000 5.0000 4.2956 3.8000 5.0000

QC17 4.99990 2.3059 NR 5.0000 4.9970 5.0000 5.0000 5.0000 2.6782 4.9000 5.0000

QC20 4.03010 4.8035 NR 3.9792 4.9900 4.4060 4.4500 5.0000 4.8116 3.9500 4.0670

QC21 5.00000 4.9025 NR 5.0000 4.9950 5.0000 5.0000 5.0000 4.8163 5.0000 5.0000

QC23 2.51700 4.8040 NR 2.4583 3.8750 2.8004 2.8300 5.0000 3.5739 2.7500 3.1570

QC24 5.00000 4.8052 NR 5.0000 4.9870 5.0000 5.0000 5.0000 4.1953 5.0000 5.0000

QC29 2.19760 3.3983 NR 2.1865 2.9100 2.5979 2.5600 5.0000 2.0009 2.4000 2.9840

BOFV 4.51279 4.5290 4.5303 4.5309 4.5510 4.5550 4.5594 4.5615 4.5943 4.7660 4.8728

TVD 2.05630 1.6250 2.0995 2.0504  NR 1.9589 1.9057 0.4773 NR NR 0.9051

BOFV: Best Objective Function Value; TVD: Total Voltage Deviation; NR: not reported
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The convergence profile of A-CSOS algorithm over 100 itera-
tions for Case-1 is shown in Figure 2. It is seen from the conver-
gence performance of Case-1 optimization in Figure 2, the min-
imum value convergence obtained by the proposed algorithm 
is approximately twenty fifth iteration.

Results of Case-2 using the A-CSOS algorithm

In Case-2 optimization, it is assumed that the output of capac-
itors and tap ratios are discrete. The minimum value obtained 
by the A-CSOS algorithm and the other well-known algorithms 
for Case-2 analysis and the control parameter values for the 
best results are presented in Table 4.

Although the optimization problem is more difficult when the 
control parameters are discrete variables, it is seen that the 
A-CSOS algorithm achieves much better values than the results 
obtained with the other algorithms reported in Table 4. 

Figure 2 . The convergence characteristic of A-CSOS for Case-1 
and Case-2

Table 4. Optimal settings of the control variables for Case-2

Variable A-CSOS GSA [7] FA [7] ALO [9] ABC [7] GWO [9] BFOA [7] BA [9] PSO [7] MOCIPSO [16]

VG1 1.1000 1.0999 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000

VG2 1.0943 1.07435 1.0644 1.0953 1.061 1.09380 1.026 1.0940 1.1000 1.1000

VG5 1.0747 1.07498 1.07455 1.0767 1.0711 1.0737 1.0696 1.0740 1.0850 1.1000

VG8 1.0761 1.07682 108690 1.0788 1.0849 1.0797 1.1000 1.0760 1.0838 1.1000

VG11 1.1000 1.0999 1.09164 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000

VG13 1.1000 1.0999 1.0990 1.1000 1.0665 1.0944 1.1000 1.1000 1.1000 0.9000

T6-9 1.0400 1.0000 1.0000 1.0100 0.9700 0.9800 0.9800 0.9500 1.1000 0.9400

T6-10 0.9000 0.9300 0.9000 0.9900 1.0500 0.9700 0.9400 1.0300 0.9000 1.0800

T4-12 0.9800 0.9800 1.0000 1.0200 0.9900 1.0200 1.0500 0.9900 1.0200 1.1000

T28-27 0.9600 0.9700 0.9700 1.0000 0.9900 0.9900 0.9800 0.9700 0.9900 0.9700

QC10 5.0000 3.7000 3.0000 4.0000 5.0000 2.0000 3.1000 5.0000 1.1000 6.0000

QC12 5.0000 4.3000 4.0000 2.0000 5.0000 5.0000 4.6000 0.0000 0.4000 3.0000

QC15 4.8600 3.7000 3.3000 4.0000 5.0000 4.0000 5.0000 5.0000 0.7000 7.0000

QC17 5.0000 2.2000 3.5000 3.0000 5.0000 4.0000 2.1000 5.0000 5.0000 6.0000

QC20 4.0600 3.1000 3.9000 2.0000 4.1000 4.0000 3.7000 0.0000 4.7000 0.0000

QC21 5.0000 3.9000 3.2000 4.0000 3.3000 0.0000 2.3000 0.0000 1.0000 12.000

QC23 2.5300 4.2000 1.3000 3.0000 0.9000 5.0000 1.9000 0.0000 3.0000 3.0000

QC24 5.0000 4.4000 3.5000 5.0000 5.0000 3.0000 2.3000 5.0000 0.8000 7.0000

QC29 1.7700 2.0000 1.4200 5.0000 2.4000 3.0000 0.1000 0.0000 1.2000 3.0000

BOFV 4.51366 4.5400 4.5691 4.5900 4.6022 4.6119 4.6230 4.6280 4.6609 5.1700

TVD 2.0708 1.9410 1.7752 NR 0.7378 NR 1.5300 NR 1.4600 NR

BOFV: Best Objective Function Value; TVD: Total Voltage Deviation; NR: not reported 
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The convergence profile of A-CSOS algorithm for Case-2 opti-
mization is shown in Figure 2. As can be seen in Figure 2, with 
the contributions of chaos and adaptive penalty approaches, 
organisms in the ecosystem find the global minimum or near 
global minimum point in a very short time.

Results of Case-3 using the A-CSOS algorithm

The TVD minimization denoted Case-3 adjusts the values of the 
control parameters so that the voltage magnitudes of the bus-
es can be operated as close as possible to the nominal value 
specified in the grid code of the countries. It is assumed that all 
control variables are continuous in Case-3. 

Table 5 demonstrates the best TVD value and the value of con-
trol parameters within this aim. The TVD value, which is 0.8603 
p.u. according to the base case scenario, is reduced to 0.08679 
p.u. when optimized with the A-CSOS algorithm. Compared 

Table 5. Optimal settings of the control variables for Case-3

Variable A-CSOS
IGSA-CSS 

[15]
QOCRO 

[12]
PSOGSA 

[6]
MDE 
[14]

DE 
[4]

TLBO 
[10]

PSO 
[6]

GSA 
[7]

CPVEI HBMO 
[17]

CLPSO 
[3]

VG1 1.00940 1.0085 NR 1.0153 1.0000 1.0100 1.0121 1.0264 0.9930 1.0728 1.1000

VG2 1.00460 1.0057 NR 1.0122 1.0089 0.9918 0.9806 1.0162 0.9552 1.0408 1.1000

VG5 1.01800 1.0191 NR 1.0185 1.0199 1.0179 1.0207 1.0185 1.0189 1.0379 1.0724

VG8 1.01100 1.0103 NR 1.0107 1.0000 1.0183 1.0163 0.9987 1.0189 1.0401 1.0764

VG11 1.00290 1.0184 NR 0.9889 1.0647 1.0114 1.0293 1.0427 1.0120 1.0841 1.0452

VG13 1.01420 1.0080 NR 1.0083 1.0267 1.0282 1.0323 0.9965 1.0360 1.0220 1.1000

T6-9 1.01760 1.0340 NR 1.0024 1.0852 1.0265 1.0435 1.0598 1.0578 0.9541 1.0177

T6-10 0.90012 0.9000 NR 0.9000 0.9000 0.9038 0.9056 0.9144 1.0500 1.1000 0.9738

T4-12 0.99588 0.9840 NR 0.9791 1.0106 1.0114 1.0195 0.958 0.9000 1.0260 1.0244

T28-27 0.96900 0.9780 NR 0.9737 0.9744 0.9635 0.9492 0.9758 1.0500 1.0000 0.9896

QC10 4.82560 5.0000 NR 4.3048 5.0000 4.9420 4.8400 4.9995 0.9660 0.0000 0.7220

QC12 5.00000 5.0000 NR 2.3931 1.6290 1.0885 0.6600 0.0000 4.5000 0.0000 1.6812

QC15 4.99950 5.0000 NR 5.0000 5.0000 4.9985 5.0000 5.0000 2.5000 4.3906 2.6462

QC17 0.00000 0.0000 NR 0.0000 0.0000 0.2393 0.0900 4.9958 1.4000 3.3020 3.4105

QC20 5.00000 5.0000 NR 5.0000 5.0000 4.9958 5.0000 5.0000 4.0000 3.5085 1.9773

QC21 4.99740 5.0000 NR 5.0000 5.0000 4.9075 5.0000 5.0000 3.8000 0.0000 0.4767

QC23 5.00000 5.0000 NR 5.0000 5.0000 4.9863 4.9500 4.9988 2.9000 2.4534 3.5896

QC24 4.99880 5.0000 NR 5.0000 5.0000 4.9663 4.9300 5.0000 2.5000 5.0000 2.9998

QC29 2.61840 4.9500 NR 4.1670 5.0000 2.2325 0.2400 4.9994 3.1000 1.8260 1.1098

BOFV 0.08679 0.08968 0.0899 0.0904 0.0910 0.0911 0.0913 0.1005 0.1180 0.1988 0.2450

Ploss 5.8668 NR 5.6486 5.7344 5.9991 6.4755 7.1859 5.5192 5.8200 4.9948 4.6969

BOFV: Best Objective Function Value; TVD: Total Voltage Deviation; NR: not reported 

Figure 3. The convergence characteristic of A-CSOS for Case-3 
and Case-4
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with the best results of other algorithms, the A-CSOS algorithm 
solves the optimization problem better than the other algo-
rithms by 3.22%. 

The convergence profile of A-CSOS algorithm for Case-3 opti-
mization is shown in Figure 3.

Results of Case-4 using the A-CSOS algorithm

In Case-4 optimization, it is assumed that the output of capaci-
tors and tap ratios are discrete. The optimal value of control vari-
ables for the obtained minimum TVD value is presented in Table 
6. The convergence profile of A-CSOS is shown in Figure 3.

According to Table 6, TVD is to be reduced by 89.89% (0.77329 
p.u.) with respect to the base case. In comparison with the best 
result of declared state-of-art algorithms, A-CSOS algorithm 
gives 10.39% (0.01009 p.u.) better result. 

It is seen from Figure 3 that A-CSOS finds the minimum and 
feasible TVD solution approximately in fifth iteration. 

Conclusion

In this paper, SOS algorithm is hybridized with chaos theory 
and self-adaptive penalty approach in order to design a novel 
meta-heuristic Adaptive Chaotic Symbiotic Organisms Search 
Algorithm (A-CSOS) for solving highly nonlinear ORPD prob-
lem. The ability of the proposed A-CSOS algorithm is proofed 
by implementing on both continuos and discrete ORPD prob-
lem consisting of active power loss and total voltage deviation 
minimization in IEEE 30-bus.

According to Case-1 results, it is understood that the A-CSOS 
algorithm yields 19% better than the base case and 0.36% 
better than the best results of the other algorithms reported. 
According to Case-2 results, it is seen that the A-CSOS algo-

Table 6. Optimal settings of the control variables for Case-4

Variable A-CSOS MALO [8] HFA [7] CSA [8] FA [7] BA [7] ALO [7] ABC [7] BFO [7]

VG1 1.0079 1.0049 1.0035 0.9658 0.9977 1.0186 1.0131 1.0025 0.9500

VG2 1.0034 0.9504 1.0164 1.0395 1.0217 0.9797 1.0262 1.0162 1.0702

VG5 1.0181 1.0382 1.0195 1.0198 1.0167 1.0193 1.0194 0.9927 0.9645

VG8 1.0110 1.0122 1.0182 0.9993 1.0010 1.0475 1.0264 1.0288 1.0258

VG11 1.0145 1.0406 0.9823 1.0386 1.0481 0.9938 0.9949 1.0647 1.0375

VG13 1.0090 1.0216 1.0155 1.0494 1.0191 0.9753 0.9732 1.0086 0.9914

T6-9 1.0300 1.0700 0.9900 1.0500 1.0400 0.9800 0.9900 0.9700 0.9800

T6-10 0.9000 0.9100 0.9000 0.9200 0.9000 0.9200 0.9200 1.0300 0.9600

T4-12 0.9800 1.0100 0.9800 1.0500 0.9800 0.9600 0.9500 0.9700 1.0200

T28-27 0.9700 0.9600 0.9600 0.9600 0.9600 0.9700 0.9700 0.9500 0.9900

QC10 5.0000 3.8000 3.2000 0.3900 3.6000 3.4700 4.4000 2.5000 4.8000

QC12 3.0400 4.7600 0.5000 2.7900 1.3000 2.4500 4.2000 0.0000 1.3000

QC15 5.0000 5.0000 4.9000 4.7800 2.7000 3.3700 2.6000 5.0000 4.5000

QC17 0.0000 2.2600 0.1000 5.0000 0.9000 3.6300 1.1000 0.0000 2.0000

QC20 5.0000 4.8400 3.8000 4.9600 4.2000 4.3400 3.7000 5.0000 4.3000

QC21 5.0000 5.0000 5.0000 5.0000 2.7000 3.6200 3.4000 5.0000 3.9000

QC23 5.0000 5.0000 5.0000 5.0000 3.0000 3.4100 3.6000 5.0000 4.0000

QC24 5.0000 5.0000 3.9000 4.3000 1.7000 4.0500 3.9000 4.7000 4.5000

QC29 2.8600 0.5800 1.5000 2.7200 1.8000 2.3500 1.9000 0.0000 3.4000

BOFV 0.08701 0.0971 0.0980 0.1116 0.1157 0.1161 0.1177 0.1350 0.1490

TVD 5.9157 5.9020 5.7500 7.9467 6.3400 5.6543 5.9138 5.8800 10.570

BOFV: Best Objective Function Value; TVD: Total Voltage Deviation; NR: not reported
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rithm yields 18.98% better than the base case and 0.58% better 
than the best results of the other latest algorithms. According 
to Case-3 results, it is understood that the A-CSOS algorithm 
yields 89.91% better than the base case and 3.22% better than 
the best results of the other state-of-art algorithms. According 
to Case-4 results, it is inferred that the A-CSOS algorithm yields 
89.89% better than the base case and 10.39% better than the 
best results of the other latest algorithms. Since the ecosystem 
is sorted in terms of the value of the objective functions and 
total constraint violation, the proposed algorithm requires 
more processing and computation time than the standard SOS 
algorithm. Considering the best results obtained with the pro-
posed algorithm and the elimination of the determining pro-
cess of penalty coefficients, the additional computation time 
is acceptable.

The obtained results indicate that the proposed algorithm 
yields a lower Ploss and TVD value than the best result of the 
other algorithms. When the results are evaluated, the proposed 
algorithm yields a lower Ploss and TVD value than the best re-
sult of the other algorithms. 
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