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Crop growth is strongly dependent on environmental 
conditions. It is therefore highly site-specific and there-
fore assessments of agricultural production oppor-

tunities and constraints may need to be done at a high spatial 
resolution. Such assessments often involve the use of mathemati-
cal models. These can be statistical models (Neumann et al., 
2010; Mueller et al., 2012; Hannah et al., 2013) or mechanistic 
crop growth simulation models (Hijmans et al., 2003; van 
Ittersum et al., 2013; Rosenzweig et al., 2014). Crop growth 
simulation models are a mathematical description of the 
response of a cultivar to the environment and management that 
can be used to compute crop yield under different conditions (de 
Wit and van Keulen, 1987; Fischer et al., 2005; Rabbinge and 
van Diepen, 2000). They have been used, for example, to evalu-
ate the effect of changing agricultural technologies (Hijmans 
et al., 2003), to interpret yield variation (Basso et al., 2001), to 
evaluate the effect of temperature variability on crop phenol-
ogy and yield (Wheeler et al., 2000), and to evaluate the effect 
of climate change on production (Hijmans, 2003; Jones and 
Thornton, 2003; Rosenzweig et al., 2014). Crop growth models 
are also commonly used to estimate yield gaps (i.e., the differ-
ence between attainable and actual crop yield) (Lobell et al., 
2009; van Ittersum et al., 2013).

Here, we focus on the spatial estimation of Yp, defined as 
the yield that can be obtained with a cultivar at a particular 
location and time in the absence of biotic (pests, weeds, or dis-
eases) or abiotic stresses not directly caused by temperature or 
solar radiation (i.e., water or nutrient stress). Yield potential is 
determined by the amount of incoming solar radiation, ambient 
temperature, and CO2 and by cultivar traits that govern length 
of growing period, light interception by the crop canopy and 
its conversion to biomass, and partitioning of biomass to the 
harvestable organs (Evans, 1993; van Ittersum and Rabbinge, 
1997). Precipitation and soil data are not required to compute 
Yp. The computation of Yp is useful for evaluating variations in 

Methods for Spatial Prediction of Crop Yield Potential

Camila Bonilla Cedrez* and Robert J. Hijmans

Published in Agron. J. 110:2322–2330 (2018) 
doi:10.2134/agronj2017.11.0664 
Supplemental material available online
Available freely online through the author-supported open access option

Copyright © 2018 by the American Society of Agronomy
5585 Guilford Road, Madison, WI 53711 USA
This is an open access article distributed under the CC BY license 
(https://creativecommons.org/licenses/by/4.0/)

AbsTRAcT
Opportunities for and constraints to crop production can be 
assessed with crop growth simulation models. Most crop simu-
lation models require daily weather data as input but such data 
are generally not available at a high spatial resolution. Several 
approaches have been developed to estimate yield potential (Yp) at 
locations without daily weather data (weather stations) but these 
have not been compared. We used two crop simulation models 
(WOFOST and LINTUL) to compute Yp for two crops for the 
entire world. A global weather database was divided into 856 train-
ing and 12,808 testing sites. We predicted Yp at the testing sites by 
using five main methods (eight methods if one considers within-
method variants): (i) weather interpolation followed by simulation; 
(ii) nearest neighbor interpolation; (iii) thin plate spline interpola-
tion, either with or without covariates; (iv) Random Forest-based 
metamodels with either climatic or bioclimatic variables; and (v) 
weather generation from either climate data or interpolated climate 
data, followed by simulation. The metamodel with bioclimatic vari-
ables performed best [average root mean square error (RMSE) = 
667 ± 111 kg ha–1], followed by weather generation from climate 
data, weather interpolation, and spatial interpolation of yield with 
climatic covariables. The most commonly used method, nearest 
neighbor interpolation, performed worst (RMSE = 1763 ± 472 
kg ha–1). The optimal method for a particular study will depend 
on the simulation model, the region, weather station density, and 
other variables but these results suggest that for estimating Yp, 
alternatives to nearest neighbor interpolation should be considered.
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Abbreviations: GIWTH, weather generator model with the climate 
data interpolated from the training to the testing locations; GWTH, 
weather generator model with the climate data for the testing locations 
was used; INN, nearest neighbor yield interpolation; IXY, yield 
potential interpolated with longitude and latitude as independent 
variables; IXYCLM, yield potential interpolated with longitude, 
latitude, and additional climatic predictor variables; MBIO, metamodel 
with yield potential as function of a set of bioclimatic variables; 
MCLM, metamodel with yield potential as a function of monthly 
climate data; RMSE, root mean square error; Srad, solar radiation; 
TPS, thin plate spline; Tmin, minimum temperature; Tmax, maximum 
temperature; WINT, interpolated weather model; Yp, yield potential. 

core Ideas
•	 We compared five methods for applying crop models to predict yield 

potential.
•	 A global weather database was divided into training and test sites.
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crop yield in the absence of water or nutrient stress, pests, and 
diseases.

Most crop growth simulation models require detailed envi-
ronmental input data, notably long-term daily weather data. 
Such data are available from weather stations but, in most 
regions, the density of stations with sufficient data quantity 
and quality is low (Grassini et al., 2015). Several approaches are 
available to estimate crop yield potential for places where there 
are no weather stations, across space at a high and consistent 
spatial resolution, but these have not all been pursued and the 
methods used have not been described and compared systemati-
cally. We provide such a comparison here, albeit only for Yp, 
leaving the estimation of water-limited yield for future work.

Approaches that are available include (i) estimation of daily 
weather data for all sites through spatial interpolation and then 
computing Yp. A much simpler approach (ii) is to use nearest 
neighbor interpolation, which assigns the yield value obtained 
for the nearest weather station, sometimes to the nearest station 
within an agro-ecological zone, to all other sites (van Bussel 
et al., 2015). Although this is a commonly used approach, this 
method is questionable if weather stations are far apart, par-
ticularly in mountainous areas and other areas with steep envi-
ronmental gradients. An alternative is to use (iii) more refined 
spatial interpolation methods with or without environmental 
covariables (Wu et al., 2006). It is also possible (iv) to use 
metamodels. These are summary models in which the original 
crop simulation model’s output is fitted to aggregated origi-
nal model input (e.g., mean annual temperature). Since such 
aggregated variables are available at a high spatial resolution, 
predictions with these metamodels can then be readily made at 
this spatial resolution (Sparks et al., 2014; Perlman et al., 2013). 
Finally, one can use (v) synthetic weather generators to produce 
daily weather data from data with a lower temporal resolution 
(e.g., monthly weather or climate data) that are available at a 
high spatial resolution (Hijmans, 2003; Jones and Thornton, 
2003) and run the crop model with the simulated weather data.

The goal of this paper was to compare the performance of 
these methods that can be used to estimate Yp in places where 
there are no weather stations. To do so, we computed Yp for 
maize (Zea mays L.) and wheat (Triticum aestivum L.) via two 
crop models (WOFOST and LINTUL). We ran the simulation 
models for all locations in a global weather database to compute 
Yp. We refer to these values as “observed Yp”. We then divided 
the weather station locations into training and testing locations 
and made predictions for the testing locations with data from 
the training locations.

MATeRIALs AnD MeTHODs
crop Growth simulation Models

Crop yields were simulated for maize and wheat using 
WOFOST (World Food STudies) (van Diepen et al., 1989) 
and the current version of LINTUL (Light INTerception and 
Utilization) (van Oijen and Leffelaar, 2014), which is a modi-
fication of the original LINTUL model by Spitters (1990) and 
Spitters and Schapendonk (1990). The two models have been 
widely used and they were chosen because of their differences 
in complexity, and because both models were implemented as 
R packages (R Core Team, 2017), which facilitates their use 
for this type of study. Both models operate on a daily time step 

and require daily solar radiation (Srad) and maximum tem-
perature (Tmin) and minimum temperature (Tmax) to compute 
Yp. LINTUL is a relatively simple model that simulates the 
development of leaf area index as a function of thermal time and 
then uses a fixed radiation use efficiency to estimate biomass 
production. WOFOST is a more complex model based on leaf 
level CO2 assimilation. In both models, storage organ biomass 
(grain yield) is calculated as a function of total daily dry matter 
allocation to different plant organs according to partitioning 
functions depending on the crops’ development stage.

We simulated the growth of a maize and wheat cultivar with 
both models, applying the default crop parameters: LINTUL-
Maize, LINTUL-Wheat, WOFOST-Maize, WOFOST-Wheat 
for an early (typical) and a late variety.

weather Data

The Prediction of Worldwide Energy Resource dataset from 
the National Aeronautics and Space Administration (2018) 
was used as weather input for the crop models. The Prediction 
of Worldwide Energy Resource dataset has daily weather data, 
including incident Srad, Tmax, and Tmin, for a 1° by 1° (~100 
by 100 km) raster of the entire globe starting in 1983. These 
data were derived from satellite observations coupled with the 
Goddard Earth Observing System climate model to obtain 
complete terrestrial coverage. The quality of the Prediction of 
Worldwide Energy Resource data as input for crop models has 
been evaluated, with mixed results (Bai et al., 2010; White et al., 
2008, Van Wart et al., 2013b). We note that these evaluations 
are problematic, as they compared weather station data (at a 
particular site) with the average values for large grid cells but we 
do not dispute that the data have some error and bias. Though 
the quality of these data could be important considerations 
for a particular study, region, or crop model, this is not a major 
concern for our study, as our purpose is not to provide the most 
accurate estimates of Yp, but rather to compare different spatial 
estimation methods that all use the same input data. We treated 
each terrestrial cell (n = 13,664) as a weather station. We also 
computed monthly climate averages from the daily data to use 
as an input for the metamodel and the weather generator.

spatial Prediction Methods and evaluation

We ran the two simulation models for each of the two crops 
for all 18,398 terrestrial weather stations (excluding Antarctica) 
using an emergence day on the 15th of each month for each of 
30 yr (1985–2014). To select a plausible growing season, we then 
computed the average yield for each month, then the maximum 
of the resulting 12 values was used as the observed Yp for a 
crop and model combination. In other words, for each weather 
station, we selected the sowing date that on average, gave the 
highest Yp during the 30-yr period. The weather stations were 
split into a training and testing dataset by taking a spatially 
regular coordinate sample of 856 weather stations (~6%) via the 
R package ‘geosphere’ (Hijmans, 2016). The remaining 12,808 
weather stations south of 60°N were used for model evaluation. 
Stations north of 60°N were not taken into account for testing 
because that would have led to inflated confidence in the meth-
ods, as it would yield very good but irrelevant predictions of Yp 
of (near) zero in the Arctic.
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We evaluated the performance of five main methods to esti-
mate Yp at the testing locations by comparing the results with 
observed Yp, computed with the crop simulation models. We 
computed the RMSE, Pearson’s correlation coefficient between 
predicted and observed long-term average yield potential at each 
location, and bias (the average difference between the observed 
and predicted Yp values). We also evaluated the effect of dis-
tance to the nearest station on RMSE.

Five main spatial estimation methods were used; eight meth-
ods one counts the within-method variations (Fig. 1).

1. Interpolated weather (WINT): Daily weather data were 
interpolated to the testing data sites for which the crop 
model was run. Interpolation was done via thin plate spline 
(TPS) models with longitude, latitude, and elevation as 
independent variables. The TPS model was used here and 
in the interpolations described below, because of its ease of 
use and because it has been successfully used for spatial in-
terpolation of climate data (Hutchinson, 1995; Jarvis and 
Stuart, 2001; Fick and Hijmans 2017). The TPS model 
was implemented via the ‘Tps’ function in the R package 
‘fields’ (Nychka et al., 2015).

2. Nearest neighbor yield interpolation (INN): Yp values at 
the testing sites were set to be the same as the values of the 
nearest neighboring training site via the ‘gstat’ function in 
the R package ‘gstat’ (Pebesma, 2004).

3. Interpolated yield: Simulated Yp at the training sites was 
interpolated via TPS to estimate yield at the testing sites. 
The Yp was interpolated either with longitude and latitude 
as independent variables (IXY), or with additional climatic 
predictor variables (Srad, Tmin, and Tmax) (IXYCLM).

4. Metamodel: Simulated Yp at the training sites was mod-
eled as a function of climate data via the Random Forest 
algorithm (Breiman, 2001) as implemented in the R package 
‘randomForest’ (Liaw and Wiener, 2002). Random Forest 

has the benefit of flexibility for fitting potentially irregular 
surfaces resulting from complex interactions. Two metamod-
els were fitted: first, a model in which Yp was a function 
of monthly climate data (Srad, Tmin, and Tmax) (MCLM) 
obtained by averaging the weather data; second, a model in 
which Yp was a function of a set of ‘bioclimatic’ variables 
(MBIO). We used the ‘biovars’ function in the dismo R-
package (Hijmans et al., 2017) to create 19 bioclimatic vari-
ables from monthly climate data (Srad, Tmin, Tmax). These 
variables have been shown to be of great practical value in 
spatial predictive modeling of the distribution of species 
and in related ecological modeling techniques (Booth et al., 
2014; Elith and Leathwick, 2009). The bioclimatic variables 
represent annual trends (e.g., mean annual temperature and 
radiation), seasonality (e.g., annual range in temperature and 
radiation), and extreme or limiting environmental factors 
(e.g., temperature of the coldest and warmest months).

5. Weather generator: Daily weather data were generated 
from long-term averages in two ways. In Variation A, the 
climate data were first interpolated from the training to the 
testing locations (GIWTH) via TPS with latitude, longi-
tude, and elevation as independent variables. In Variation 
B, the observed climate data for the testing locations were 
used (GWTH). Comparing these two variations allows us 
to separate the effect of the climate interpolation and the 
weather simulation. The weather generator was extremely 
simple. Monthly averages were assigned to the 15th of each 
month (or 14 February) and values for intermediate days 
were obtained by linear interpolation. These generated 
values were used to run the crop model.

ResULTs

The results for predicted Yp at the testing locations were very 
similar for all crop and models’ combinations (WOFOST-
Maize, WOFOST-Wheat, LINTUL-Maize, LINTUL-Wheat) 

Fig. 1. Flow diagram showing different approaches for creating crop model predictions with high spatial resolution from spatially sparse 
weather station data.
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(Supplemental Table S1). Here, we focus on the average results. 
The MBIO model performed best by far. It had an average cor-
relation coefficient of 0.98 and a RMSE of 667 kg ha–1 (Table 1) 
or 8% of the average Yp of 8460 kg ha–1. The next best methods, 
GWTH, WINT, and IXYCLM, also had high correlation coef-
ficients (³0.95) but their RMSE values were lower than that of 
MBIO (between 1124 and 1167 kg ha–1) (Table 1). The INN 
model was the worst methods with an averaged correlation 
coefficient of 0.87 and a RMSE of 1763 kg ha–1. The GIWTH, 
IXY, and MCLM models performed poorly relative to MBIO but 
better than INN.

In general, the methods overestimated the observed yield 
values (Table 1, Supplemental Table S1). Both MBIO and WINT 
predicted well for both low and high values of Yp. The GWTH 
model tended towards underestimation for low observed Yps 
and overestimation for observed Yps higher than about 8000 
kg ha–1 (Fig. 2, Supplemental Fig. S1, Supplemental Fig. S4, 
Supplemental Fig. S7). Poor predictions by IXYCLM, GIWTH, 
and MCLM were mostly observed for low values of observed Yp. 
With the IXY method, for low observed Yp values, higher values 
were often predicted, whereas for high observed values, lower 
values were often predicted.

There were large differences between the variants within the 
main methods. For example, although MBIO preformed best, 
MCLM was one of the poorer performing methods. The choice 
of predictor variables to fit the Random Forest metamodel 
clearly made a big difference between these two variants: GWTH 
performed much better than GIWTH. Thus interpolation of 
the climate had a negative effect in the performance of the 
weather generator method. For the TPS-based Yp interpolation 
methods, the approach that used climatic covariables (IXYCLM) 
performed much better than interpolation with only geographic 
coordinates (IXY).

The maps illustrate the major discrepancies with respect 
to observed Yp for the predictions made via IXY, MCLM 
and INN (Fig. 3, Supplemental Fig. S2S, Supplemental Fig. 
S5, Supplemental Fig. S8). The predictions with IXY are too 
smooth, whereas those with INN show sudden jumps. For the 

poorest performing methods (IXY, MCLM, and INN), the larg-
est differences between the observed and predicted Yp, were 
found in mountains regions such as the Rocky Mountains, 
Andes, and Himalayas, as well as in places where there were 
fewer nearby training sites because of edge effects along the 
coast (Fig. 4, Supplemental Fig. S3, Supplemental Fig. S6S, 
Supplemental Fig. S9).

The INN model was the only method for which there was a 
clear relationship between RMSE and the distance to the near-
est weather station. Unsurprisingly, the performance was better 
at shorter distances. For example, RMSE was 2150 kg ha–1 at 
200 km but 800 kg ha–1 at 50 km and it would be zero at 0 m 
distance to the nearest weather station. In contrast, the RMSE 
of MBIO was 500 ton ha–1 at 50 km and 700 ton ha–1 at 200 
km. A linear regression model between RMSE and distance to 
the nearest station for INN had a slope of 9.2 kg km–1. In other 
words, for each km increase in the distance from a weather sta-
tion, the RMSE will increase by 9.2 kg.

Fig. 2. Correlation between predicted and observed long-
term average yield potential at each location for maize and the 
WOFOST model. MBIO, metamodel with bioclimatic variables; 
GWHT, weather generator; WINT, interpolation of daily weather 
data; IXYCLM, interpolation with geographical and environmental 
covariables; GIWTH, weather generator with interpolated climate 
data; IXY, interpolation with location data only; MCLM, metamodel 
with climate averages; INN, nearest neighbor interpolation.

Table 1. Quality of predicted yield potential for nine prediction 
methods. The numbers are averaged for 12,808 testing sites 
and four model runs: the combination of two simulation models 
(LINTUL and WOFOST) and two crops (maize and wheat).
Method†‡ Correlation coefficient (R2) RMSE Bias

——— kg ha–1 ———
MBIO 0.98 667 ± 111 –27
GWTH 0.98 1141 ± 466 582
WINT 0.96 1167 ± 319 314
IXYCLM 0.95 1124 ± 377 186
GIWTH 0.94 1572 ± 386 205
IXY 0.91 1435 ± 432 18
MCLM 0.90 1522 ± 496 24
INN 0.87 1763 ± 472 –2
† Rankings were based on Pearson’s correlation coefficient.
‡ MBio, metamodel using bioclimatic factors as independent variables; 
GWTH, daily weather simulation; WINT, daily weather interpolation; 
IXYCLM, interpolated simulated yield with latitude, longitude, and 
environmental covariables; GIWTH, daily weather simulation from inter-
polated climate data; IXY, interpolated simulated yield without environ-
mental covariables; MCLM: metamodel with solar radiation, maximum, 
and minimum temperature as independent variables; INN: simulated Yp 
interpolated from the nearest neighbor; RMSE, root mean square error.
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DIscUssIOn

Most crop simulation models require long-term daily weather 
data as input but for many regions, weather station data are 
not available at a high spatial resolution. We compared the per-
formance of five main methods (eight methods if one counts 
the within-method variants) that can be used to estimate yield 
potential in places where there are no weather stations. Of the 
methods considered, the Random-Forest-based metamodel with 
bioclimatic variables (MBIO) performed best. An advantage of 
this approach is that such a metamodel is mathematically much 
simpler than the dynamic crop simulation models and therefore 
is very fast. This can be an important time-saver when model-
ing on the global scale and at a high spatial resolution (e.g., 1 

km2; Perlman et al., 2013), particularly when many model runs 
are needed (e.g., to evaluate the effect of many possible future 
climates). In addition, the quality of the weather input data to 
the crop model is not that important anymore, as the response to 
these data is generalized in a new model. A disadvantage of this 
approach compared with weather generation (GWHT) or weather 
interpolation (WINT) is that a new metamodel may need to be 
developed for each change in the simulation’s model parameters. 
The quality of the metamodeling approach depended very much 
on the predictor variables used. Performance was much better 
with the bioclimatic variables (MBIO), which have been widely 
used in ecological modeling (Booth et al., 2014), than with the 
climate means (MCLM). Metamodels should thus be carefully 

Fig. 3. Maize yield potential (Yp; 103 kg ha–1) simulated with the WOFOST model and predictions based on 856 training sites (black points 
on map) via eight methods. MBIO, metamodel with bioclimatic variables; GWHT, weather generator; WINT, interpolation of daily weather 
data; IXYCLM, Interpolation with geographical and environmental covariables; GIWTH, weather generator with interpolated climate data; 
IXY, interpolation with location data only; MCLM, metamodel with climate averages; INN, nearest neighbor interpolation.
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constructed to assure a good quality model. An alternative to the 
bioclimatic variables would be to use the average climate data for 
a number of months following planting. However, reliable crop 
planting data with a high spatial resolution are not available at 
the global level. In addition to other predictor variables, alterna-
tive algorithmic methods could also be evaluated.

The weather generator method performed well when the 
effect of the interpolated weather data was not introduced 
(GWTH). This is despite the fact that the weather generator was 
extremely simple and extreme temperature events (heat, cold) 
that could alter the modeled crop phenology and growth, were 
not considered. This may be because the simulation models used 

may not be very sensitive to such extremes. In crop simulation 
models, yield is strongly affected by changes in phenology. High 
temperatures increase the rate of crop development, resulting 
in shorter crop duration, which reduces yield. In addition, tem-
perature also affects radiation use efficiency in the WOFOST 
model. Better weather generators are available (Richardson, 
1981; Verdin et al., 2015; Ailliot et al., 2015), but because of 
their stochastic nature, they require several models runs for each 
location. When the effect of interpolating climate data was also 
considered (GIWTH), the results for the weather generator were 
not as good. Obviously, errors have been introduced when cli-
mate data are interpolated but, in our analysis, this was probably 

Fig. 4. Differences between maize yield potential (Yp; 103 kg ha–1) simulated with the WOFOST model and Yp predicted via eight 
different spatial methods using 856 training sites (white points on map). MBIO, metamodel with bioclimatic variables; GWHT, weather 
generator; WINT, interpolation of daily weather data; IXYCLM, interpolation with geographical and environmental covariables; GIWTH, 
weather generator with interpolated climate data; IXY, interpolation with location data only; MCLM, metamodel with climate averages; 
INN, nearest neighbor interpolation.
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exaggerated. For methodological consistency, we used an unre-
alistically low number of weather stations (856 training sites for 
the whole world). In practice, there are many more stations for 
which climate data are available than for which long-term daily 
weather data are available, and we would expect the quality of 
the interpolated climate data to be better. Therefore, we think 
that the weather generation method is an attractive option for 
Yp simulation, as global interpolated climate data are available 
at high spatial resolution (~1 km2; Fick and Hijmans, 2017).

Interpolating daily weather data and then running the crop 
model did not perform as well as we thought. We expected that 
WINT would be the most accurate method because this method 
recreates the ‘best’ situation (i.e., daily weather data for each cell) 
to run the crop model. This approach may, nevertheless, be worth 
pursuing, particularly if a sufficient density of weather stations is 
available across the study area. The results might also be improved 
by more refined weather data interpolation techniques (e.g., by 
using additional high-resolution predictor variables to guide 
the interpolation). However, a drawback of this method is that 
it is very computationally intensive, as it involved predicting 30 
yr × 365 d × 3 weather variables = 32,850 values for each loca-
tion. Interpolated weather data with a high spatial resolution are 
becoming available but their value will depend on the quality of 
the weather interpolation, which will be variable across the world.

To estimate Yp for locations with weather stations, we 
compared nonspatial regressionlike methods (Random Forest 
metamodels: MBIO and MCLM) with spatial interpolation 
methods (TPS and nearest neighbor interpolation: IXY, 
IXYCLM, and INN). In INN, only one sample point is considered 
and any other nearby sampled points are ignored in estimating 
values (Webster and Oliver, 2001). Nearest neighbor approaches 
should generally only be used to interpolate qualitative data 
for which other interpolation methods are not applicable 
(Burrough and McDonnell, 1998). Alternative interpolation 
methods are available (e.g., inverse distance weighting and krig-
ing) but we would expect the results to be similar irrespective of 
the interpolation method, as they are data-driven and based on 
the same principle of computing a local average of sampled data.

Some studies have used interpolation approaches that con-
sider the location of weather stations only, like our IXY model 
(Wu et al., 2006, 2008; Lu and Fan, 2013). Although this may 
work in certain regions, our results illustrate that this can be a 
questionable approach because it ignores the characteristics of 
the terrain (e.g., the presence of mountains), which can strongly 
affect Yp in between weather stations. For IXY and INN, the 
largest differences were found in mountainous regions. It is 
more difficult to obtain good estimates for such topographically 
and climatologically complex areas than it is for plains, which 
have a simple climate gradient. The IXYCLM method uses cli-
mate data and this improved the results in comparison with IXY 
and INN. In the regression-like methods (metamodels), we did 
not explicitly use location. However, it was implicitly considered 
by use of environmental conditions that were derived from the 
location. The IXYCLM model combines both explicit (location) 
and implicit (environmental) spatial data and performed much 
better than IXY. Interpolation with covariables (IXYCLM) is, 
in fact, a hybrid between spatial interpolation and regression 
methods. Other conceptually similar approaches that could be 
explored are available. For example, regression kriging uses a 

nonspatial model to fit the data and then spatial interpolation of 
residuals, which are then added to the prediction of the nonspa-
tial model. Location data could be added to the Random Forest 
metamodel (however, in that case, it can no longer be used to 
predict climate change effects). Spatial interpolation, metamod-
eling, and their hybrids, are relatively simple to do and they are 
not very computationally intense. Future work could look for 
optimal interpolation methods for Yp by using more or better 
covariates and other interpolation techniques.

To evaluate the performance of the methods, we left out the 
oceans and extremely cold environments (by restricting simula-
tions to below 60°N). We could have eliminated more areas 
where climate conditions are marginal for growing crops but 
estimating low Yp can also be of interest (e.g., to explain why a 
crop is not grown in a certain place).

In this study, we have only evaluated methods for estimating 
Yp. Temperature and radiation were the interpolated variables 
and so differences in Yp were a function of the estimation of these 
variables. Therefore, future work should compare different esti-
mation techniques of water- and nutrient-limited yield. For water-
limited yield, precipitation and soil data are needed, and both 
of these data types are relatively difficult to work with. Weather 
generation of realistic precipitation time series is more challeng-
ing (Hartkamp et al., 2003; Ailliot et al., 2015) compared with 
temperature. In the daily weather values, interpolation approach, 
the number of interpolated values would double, whereas spatial 
interpolation of precipitation is associated with much larger errors 
than interpolation of temperature (Fick and Hijmans, 2017).

Several recent studies have used the nearest neighbor inter-
polation method to estimate water-limited yield (Grassini et al., 
2015; van Bussel et al., 2015; van Ittersum et al., 2013; van Wart 
et al., 2013a, 2013c). These studies assumed that locations up to 
100 km away from a weather station are equivalent (unless this 
is across a “climate zone”). Given the additional spatial vari-
ability in rainfall and soil data that affect water-limited yield, 
alternative methods should be evaluated. Our results suggest 
that better approaches than nearest neighbor interpolation may 
be available. With the exception of weather interpolation, such 
methods are computationally simple and do not require “com-
puting power or sophistication of geostatistical methods run-
ning many thousands of simulations” (Grassini et al., 2015).

There was some variation in the results for the different 
models and crops, and between regions. Although our results 
provide general guidance, the actual best method will depend 
on the region, the weather station density, and the model used. 
For example, INN could perform well if station density is very 
high and the climate gradients are relatively shallow, as in the 
Australian wheatbelt (Hochman et al., 2016) and using it only 
within agroecological zones may also improve results (Van Wart 
et al., 2013c; van Bussel et al., 2015). However, it is not guar-
anteed that the use of predefined climate zones will improve 
predictions, as the zones may not be very relevant for the crop in 
question, and because, for any location, the distance to the near-
est station will increase, on average.

Thus the best approach for any particular study is difficult to 
predict. It is clear, however, that metamodels, weather genera-
tion, and interpolation with climate predictors can provide good 
predictions relative to the INN technique that is commonly used. 
We suggest using cross-validation to evaluate different approaches 
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and selecting the method that works best, or to use model averag-
ing to leverage the strengths of the different approaches.
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