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Abstract: Multiscale entropy (MSE), as a complexity measurement method of time series, has been
widely used to extract the fault information hidden in machinery vibration signals. However,
the insufficient coarse graining in MSE will result in fault pattern information missing and the
sample entropy used in MSE at larger factors will fluctuate heavily. Combining fractal theory and
fuzzy entropy, the time shift multiscale fuzzy entropy (TSMFE) is put forward and applied to the
complexity analysis of time series for enhancing the performance of MSE. Then TSMFE is used to
extract the nonlinear fault features from vibration signals of rolling bearing. By combining TSMFE
with the Laplacian support vector machine (LapSVM), which only needs very few marked samples
for classification training, a new intelligent fault diagnosis method for rolling bearing is proposed.
Also the proposed method is applied to the experiment data analysis of rolling bearing by comparing
with the existing methods and the analysis results show that the proposed fault diagnosis method
can effectively identify different states of rolling bearing and get the highest recognition rate among
the existing methods.

Keywords: multiscale entropy; fuzzy entropy; time-shift multiscale fuzzy entropy; rolling bearing;
fault diagnosis; Laplacian support vector machine

1. Introduction

Rolling bearing is a typical part for realizing the rotational motion and also prone to broken in the
rotating machinery due to the complexity of working conditions, which will result in the machinery
operation unstable or even unexpected accidents. Hence, it is of significance to timely recognize the
faults for avoiding the loss of machinery life and factory finance. Generally, when the rolling bearing
works with local faults, the non-linearity and non-stationarity are obviously expressed in vibration
signals, which makes the traditional linear analysis methods loss their functions in analyzing these
kinds of signals [1–3].

At present, many nonlinear dynamic analysis methods, such as approximate entropy (ApEn) [4,5],
sample entropy (SampEn) [6,7], fuzzy entropy (FuzzyEn) [8,9] and multiscale entropy (MSE) [10,11]
have been proposed and applied to the complexity measurement of the time series from different
domains. Compared with traditional linear analysis methods, the nonlinear dynamic methods can
effectively extract the nonlinear fault features from vibration signals of rolling bearings and promote
the performance on fault identification and detection of rolling bearing [12]. For example, based on
lifting wavelet packet transform and sample entropy as the method for extracting feature as well
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as binary tree system based classifier ensemble as the classification method, a new fault diagnosis
method for bearing was proposed to automatically identify different fault types and severity levels
in [13] and the experimental data analysis validated the more accuracy and stability performance
of the proposed method on the fault recognition for rolling bearing. By combining empirical mode
decomposition and sample entropy, a fault diagnosis method for rolling bearings was put forward by
Zhong et al. in [14] and the results indicated that the feature information of intrinsic mode functions
(IMFs) can be effectively extracted by calculating sample entropy and applied to fault diagnosis of
rolling bearing. Chen et al. developed FuzzyEn as an enhanced algorithm of SampEn and ApEn and
the analysis on electromyography (EMG) experimental data indicated that compared with SampEn
and ApEn, FuzzyEn has more stronger relation consistence and little dependence on data length
by using fuzzy function to measure the similarity of two vectors [15]. However, the entropy under
unitary scale calculated from the original series is often insufficient for indicating the complexity
of time series. To overcome this, MSE was put forward and developed in [16] by combing the
coarse-grained method of time series. In [17], the MSE and adaptive neuro-fuzzy inference based
fault diagnosis method for rolling bearing was proposed and the researches indicated that comparing
the single scale-based entropy, MSE can be utilized to effectively extract the nonlinear, interaction
and coupling characteristic contained in the mechanical signals and the proposed method could get a
better fault recognition performance on bearing incipient fault diagnosis. Also, the anomaly detection
method based on MSE and principal component analysis was proposed [18] and the simulation results
suggested that MSE can be used to detect gear tooth pitting. However, the MSE method still has some
intrinsic drawbacks. Firstly, the coarse-grained method in nature is a linear filter and the insufficient
coarse-grained procedure will result in missing of pattern information. Secondly, with the increasing
of time scale factors, the SampEns at larger factors will fluctuate heavily and even have no definitions.

By combing the FuzzyEn proposed by Chen et al. [19] and inspired by the idea of time shift
way [20], a new complexity measuring method of time series called time shift multiscale fuzzy entropy
(TSMFE) is proposed in this paper to overcome the above limitations of MSE. Then TSMFE is compared
with MSE and time shift sample entropy (TSME) by simulation signal analysis and is applied to the
complexity feature extraction of vibration signals from faulty rolling bearings. After obtaining the
fault features by using TSMFE, it is necessary to select an intelligent classifier to automatically identify
the fault types and degrees. Support vector machines (SVM) have been widely used in various pattern
classification researches, such as face and figure recognition, fault classification and so on [21–23].
However, SVM requires that the class labels of all training samples should be known. In the real world,
lots of fault samples are easily collected but hardly marked. Combining the manifold learning and
SVM, a semi-supervised learning method called Laplacian support vector machine (LapSVM) was
developed [24,25]. Compared with SVM, LapSVM requires less marked samples for learning [26].
A new fault diagnosis method for rolling bearings was proposed by combining TSMFE with LapSVM
and then was compared with the existing methods by analyzing the experiment data of rolling bearing
and the results verified its effectiveness.

The contents of this paper are constructed as follows. In Section 2, MSE and TSME algorithms
are reviewed and then TSMFE is proposed for complexity measure of time series. The comparison
analysis for 1/f noise and Gaussian white noise is given in Section 3. In Section 4, the new fault
diagnosis method for rolling bearing is proposed by combining TSMFE with LapSVM and applied to
the experimental data analysis of rolling bearing. Finally, the conclusions are given in Section 5.

2. Time Shift Multiscale Fuzzy Entropy and Related Theories

2.1. Multiscale Entropy Method

The MSE method can be calculated as follows [27–29].
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For a determined number τmax, the initial time series X : x1, x2, · · · , xN can be reconstructed as

yj(τ) =
1
τ

jτ

∑
i=(j−1)τ+1

xi, (1 ≤ j ≤ N/τ, τ = 1, 2, · · · , τmax), (1)

where τ is positive integer termed scale factor. The reconstructed time series is the original time series
when τ = 1 in particular and in case τ ≥ 2, the reconstructed time series yj(τ) is called coarse-grained
time series with length no more than N/τ.

For each scale factor τ, the SampEn of yj(τ) is respectively calculated and MSE is expressed as

MSE(m, r, N, τ) = SampEn
τ=1,2,··· ,τmax

(m, r, N) =

[
− ln

Bm+1(r)
Bm(r)

]
, (2)

Actually, the coarse-grained process in MSE is regarded as a linear filter. The insufficient
coarse-grained procedure will lead to the loss of pattern information hidden in time series. To surmount
this problem, based on Higuchi’s fractal dimension (HFD) theory, time shift multiscale sample entropy
was proposed by Tuan [20,30] by redefining the coarse-grained procedure and was applied to process
physiological signals.

2.2. Time Shift Multiscale Sample Entropy

Based on HFD theory, time shift multiscale sample entropy [20] is described as follows.
(1) For the given time series X = {x1, x2, · · · , xN} with length N, the new time series can be

obtained by
Yβ

k = (xβ, xβ+k, xβ+2k, · · · , xβ+∆(β,k)k), (3)

where k and β(β = 1, 2, · · · , k) are positive integer, standing for the initial time point and interval time,
and in particular, ∆(β,k) is a rounding integer for (N − β)/k, and represents the upper boundary.

(2) For each τ, the average of the SampEns of all time shift time series under 1 ≤ β ≤ k is
expressed as TSMEβ

k under single scale (namely k = τ), and for each k (1 ≤ k ≤ τ) the TSMEk with
multiple scale can be described as

TSME
1≤k≤τ k

=
1
k

k

∑
β=1

TSMEβ
k . (4)

TSME has overcame the drawbacks of MSE that the insufficient coarse graining will lead to the
loss of patter information and however, some shortcomings remain to exist. In sample entropy used
in MSE and TSME, the function for measuring similarity of two vectors cannot effectively recognize
the two vectors with fuzzy boundaries in real world and the entropies will fluctuate heavily and even
more have no definition with the increase of scale factor. To overcome this, TSMFE is proposed by
combing TSME with FuzzyEn, by which the similarity of two vectors can be measured more robust
than SampEn used in TSME and MSE.

2.3. Time Shift Multiscale Fuzzy Entropy

According to TSME and FuzzyEn [19], the detailed procedures of the proposed TSMFE method
can be described as follows.

(1) For the given time series X = {x1, x2, · · · , xN}, it can be generated by using Equation (3).
Particularly, when time interval k = 3, the new time series is illustrated in Figure 1.
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(2) For a determined time scale τ, the average of FuzzyEns of all time-shift time series under
1 ≤ β ≤ k is expressed as TSMFEβ

k (namely k = τ), and for each k (1 ≤ k ≤ τ) the TSMFEk with
multiple scale can be described as

TSMFE
1≤k≤τ k

=
1
k

k

∑
β=1

TSMFEβ
k . (5)

TSMFE is a nonlinear dynamic method for complexity measurement of time series. The
comparison will be made in the following sections to verify the superiority of TSMFE.
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3. Comparison of TSME and TSMFE

3.1. Parameter Selection

As shown in Equation (5), the calculation of TSMFE is relative with the embedding dimension m,
similarity tolerance r, gradient parameter n and time series length N. Firstly, with the increase of m,
the more feature information will be extracted from the reconstructed time series, however, a much
longer time series is needed (generally N = 10m ∼ 30m). Hence, generally, we set m as 2. Secondly,
the similarity tolerance r stands for the boundary width of fuzzy function and a too smaller r will
result in too much useless information counted and the entropy will be sensitive to noise, while too
larger r will lead to the loss of much statistical characteristics. Thus generally r ranges from 0.1SD
to 0.25SD (SD is the standard deviation of the original time series) and 0.15SD is set in this paper.
Thirdly, gradient parameter n controls the similarity of two vectors and when n tends to infinite, the
exponential function becomes the unit step function which makes much statistical information missing.
Hence, a smaller integer is suggested [19] and in this paper n is set as 2. Lastly, both the computation of
SampEn and FuzzyEn over different scales are relative with data length and the literature [17] suggests
that compared with SampEn, FuzzyEn need a shorter data length and thus in this paper N is set no
less than 2000.

3.2. Simulation Analysis

To illustrate the influence of data length on TSMFE, the Gaussian white noise and 1/f noise
with data length 1000, 1500, 2000 and 25,000 are respectively used as examples with comparison with
TSME, i.e., TSMEs and TSMFEs of the Gaussian white noises and 1/f noises with different length
are calculated and the results are shown in Figure 2 where m = 2, r = 0.15SD, time internal k = 20
(that is τ = 20). Firstly, as illustrated in Figure 2, both TSMEs and TSMFEs of 1/f noise gradually
increase with the increase of scale factor, while TSMEs and TSMFEs of white noise almost remain to be
a constant value which generally is larger than that of 1/f noise at most scales. This indicates that it
is of importance to conduct multiscale analysis for time series. Secondly, for the time series under a
larger time scale, i.e., with a shorter data length, TSME will have no definition. By contrast, TSMFEs of
1/f noise and white noises vary slightly with the increase of data length and the change of data length
cannot lead to no definition of all time scales, which indicates that compared with TSME, data length
has little influence on TSMFE. The above analysis indicates that both TSMFE and TSME can reflect
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the pattern information and complexity of the two kinds of random signals. By observing the TSME
and TSMFE curves of Gaussian white noise and 1/f noise, we can find that TSMFE is more stable than
TMSE especially in analyzing a shorter time series.
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of 1/f noise; (b) TSME of 1/f noise; (c) TSMFE of Gaussian white noise and (d) TSME of Gaussian
white noise.

To investigate the influence of similarity tolerance on TSMFE and TSME, the TSME and TSMFE of
Gaussian white noises and 1/f noises with N = 2048 are calculated under different similarity tolerances
r = 0.05SD, 0.1SD, 0.15SD, 0.2SD and 0.25SD (where m = 2, τ = 20) and the results are shown in
Figure 3. From the Figure 3, it can be found that for the same similarity tolerance r, with the increase
of scale factor, the TSMFEs of 1/f noise and white noise vary slightly and even tend to a constant,
while TSMEs of the two kinds of noises fluctuate obviously. Besides, with the increase of similarity
tolerance r, the TSMFE and TSME values under the same time scales decrease gradually. However, for
a smaller similarity tolerance, TSMEs have no definition for a larger scale factor while TSMFEs are
always meaningful. Since a larger r will cause much statistic information missing while a smaller r will
result in more unexpected statistical information, generally, we set r = 0.15SD. Therefore, the above
analysis indicate that the TSMFE curves of two kinds of noises are more smooth and have smaller
standard deviation than that of TSME at different similar tolerance.
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4. TSMFE and LapSVM Based Fault Diagnosis Method for Rolling Bearing

4.1. LapSVM Algorithm

A better classifier is needed to fulfill an intelligent identification and classification. SVM, as a
supervised learning method, has been used in many areas [31–33]. However, in SVM too many
samples called training data should be labeled, which is difficult to obtain for the real world data.
To overcome this drawback of SVM, Combining the manifold regularization, Laplacian support
vector machine (LapSVM), a semi-supervised learning, has been proposed and wildly applied on
feature recognition [34–36]. In LapSVM, the recognition performance can be promoted by manifold
regularization and thus much unmarked data are used to estimate the internal data manifold structure
that will be applied to design the classifier.

When a set of marked samples (xi, yE
i ) (i = 1, 2, · · · , l) and kernel function K are determined,

and the hinge loss function is selected as loss function, the manifold regularization framework can be
expressed as

f ∗ = argmin
1
l

l

∑
i−1

(1− yE
i f (xi)) + γA‖ f ‖2

k +
γI

(u + l)2 FT LF, (6)

where F = [ f (x1), f (x2), · · · , f (xl+u)]
T , l and u respectively stand for the number of given marked

samples (xi, yE
i ) and unmarked samples xj, (j = l + 1, l + 2, · · · , l + u), manifold regularization item

is denoted as ‖ f ‖2
I , both γI and γA are manifold regularization parameter, L represents Laplacian

matrix, hinge loss function V(xi, yE
i , f ) = (1− yE

i f (xi))+ = max(0, 1− yE
i f (xi)) is used to measure

the deviation of the desired outputs yE
i ∈ {−1, 1} and real outputs f (xi) of training samples xi.

Combining express theorem, the Equation (6) is solved as

f ∗ =
l+u

∑
i=1

a∗i K(x, xi), (7)

when α∗ = [α1, α2, · · · , αl+u]
T ,

α∗ = [2γA I + 2
γ1

(u + l)2 LK]
−1

JTYβ∗, (8)

in which I
(l+u)(l+u) and L(l+u)(l+u) are respectively unit matrix and Laplacian matrix, nuclear matrix is

denoted as K(l+u)(l+u), Y = diag(yE
1 , yE

2 , · · · , yE
l ) is used to balance the complexity of the experience

loss and function, by quadratic planning β∗ is expressed as

β∗ = max
β∈Rl

l

∑
i=1

βi −
1
2

βTQβ, (9)

when
l

∑
i=1

βiyE
i = 0(0 ≤ βi ≤ 1/l, i = 1, · · · , l),

Q = YJK(2γA I + 2
γ1

(I + u)2 LK)
−1

JTY (10)

Based on the above analysis, the unmarked samples used in LapSVM can be employed to estimate
the internal manifold structure used to the aided learning of marked samples, which obviously
promotes the recognition performance, while in SVM all the samples should be labeled. Considering
the difficulty of sample to be labeled in the real world, LapSVM is applied in this paper.
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4.2. The Proposed Fault Diagnosis Method

The above analysis indicate that TSMFE, as a new complexity and irregularity measuring method
of time series, can get much better performance than TSME. Meanwhile, the data length and similar
tolerance also have less influence on TSMFE than TSME and the entropies, obtained by TSMFE,
are also more stable. Hence, TSMFE is employed to the fault feature extraction and diagnosis for
rolling bearing.

The proposed fault diagnosis method for rolling bearing is described as follows:

(1) For given p kinds of states of rolling bearing, each state has mp samples and thus the number of

whole samples is M = (
p
∑

i=1
mi);

(2) TSMFE of all the M samples are calculated and the feature sets (Tp, p), Tp ∈ Rmp×τmax are
obtained, where Tp represents the p-th feature sets;

(3) The mp samples of the p-th state are randomly divided into h as marked sample sets, i.e.,
Tp

1 ∈ Rh×τmax and (mp − h) as unmarked sample sets, i.e., Tp
2 ∈ R(mp−h)×τmax ;

(4) The sensitive fault features sets of training samples: both Tp
1 ∈ Rh×τmax and Tp

2 ∈ R(mp−h)×τmax

are input to the LapSVM classifier for training, learning and testing.

The procedure of the proposed method can be described as follows (Figure 4).
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4.3. Experimental Data Analysis

In this subsection, the experimental data supported by Case Western Reserve University [37] are
employed to verify the effectiveness of the proposed method. As shown in Figure 5, the experiment
stand is composed of fan end bearing, drive end bearing, torque transducer and dynamometer.
The type of tested rolling bearing is 6205-2RS JEM SKF (SKF, Göteborg, Sweden), in which single
point faults have been machined by electro-discharge. Particularly, the fault diameters are respectively
0.1778 mm, 0.3556 mm and 0.5334 mm with depth 0.2794 mm. There are four states for rolling bearing,
i.e., Normal (Norm), Ball element default (BE), Inner race default (IR) and Outer race default (OR).
The vibration acceleration signals of rolling bearing under four states have been respectively collected
when the motor speeds are 1797 r/min, 1772 r/min, 1750 r/min, and 1730 r/min. The sensors are
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fixed at fan end with sampling frequency 12 kHz and drive end with sampling frequency 12 and
48 kHz. In this paper, the motor speed is 1797 r/min without load, the acceleration signals of rolling
bearings on normal state and three fault states under two fault diameters: 0.1778 mm and 0.5334 mm
are collected from drive end with sampling frequency 12 kHz. They are successively denoted as:
(a)normal state (Norm), (b) ball element fault with fault diameters: 0.1778 mm(BEI), (c) ball element
fault with fault diameters: 0.5334 mm (BEII), (d) inner ring fault with fault diameters: 0.1778 mm (IRI),
(e) inner ring fault with fault diameters: 0.5334 mm (IRII), (e) outer ring fault with fault diameters:
0.1778 mm (ORI) and (f) outer ring fault with fault diameters: 0.5334 mm (ORII). All the time-domain
vibration signals of the seven states of rolling bearings are shown in Figure 6 and it is of difficulty to
entirely distinguish the states of rolling bearing from the time-domain signals.
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Next, 50 samples with length 2048 of each state of rolling bearing were used to test the performance
of TSMFE in vibration signal analysis of rolling bearing. TSMFEs and TSMEs of all the selected samples
were respectively calculated and exhibited in Figure 7. It can be seen that with the increase of scale
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factor, TSMEs of vibration signals of rolling bearing under several categories have no definition at the
larger scale factor and this indicates that TSMFE is more stable and effective to represent the pattern
features than TSME. Besides, at the same time scale, the TSMFEs of vibration signals of rolling bearing
fluctuate slighter than that of TSME and it is beneficial to promote the identification performance.
Finally, as shown in Figure 7, TSMFEs and TSMEs of vibration signals of rolling bearing with ball
element fault are generally larger than that of rolling bearing with inner ring fault, which are larger
than that of rolling bearing with outer ring faults at the most of scale factors. The above analysis
indicates that compared with TSME of vibration signals of rolling bearing, TSMFE can represent the
fault feature more effectively and get much better performance on the fault diagnosis of rolling bearing.
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Next, 50 samples of each states are randomly divided into 10 marked training sample feature
sets and 40 unmarked testing ones. The sensitive fault features subset of samples are correspondingly
input to the LapSVM based multi-fault classifier, where the radial basis function is selected as the
kernel function of LapSVM, and the parameter of the kernel function is set to 0.35. The binary tree
theory is adopted to construct the multi-fault classifier. The detailed results are shown in Table 1
and Figure 8. As shown in Table 1 and Figure 8, in LapSVM1, LapSVM2, LapSVM3, LapSVM4,
LapSVM5 and LapSVM6, all samples are accurately identified and the total identification rate is
100%, which validates that the proposed method for fault diagnosis of rolling bearing has a well
recognition performance.

Table 1. Output results of LapSVM classifier.

Sample Sets Faults LapSVM1 LapSVM2 LapSVM3 LapSVM4 LapSVM5 LapSVM6

T1~T50 Norm +1(50)
T51~T100 BEI −1(50) +1(50)

T101~T150 BEII −1(50) −1(50) +1(50)
T151~T200 IRI −1(50) −1(50) −1(50) +1(50)
T201~T250 IRII −1(50) −1(50) −1(50) −1(50) +1(50)
T251~T300 ORI −1(50) −1(50) −1(50) −1(50) −1(50) +1(50)
T301~T350 ORII −1(50) −1(50) −1(50) −1(50) −1(50) −1(50)
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The above obtained and marked samples also are input to the SVM based multiple fault classifier
with the same parameters set in LapSVM. The outputs are shown in Table 2 and Figure 9. As shown
in Table 2 and Figure 9, the recognition rate is 98.57% in which four samples with BEII are wrongly
divided into that with IRI and IRII respectively and equally in SVM3. Eventually, comparing Tables 1
and 2, the fault type of rolling bearing can be effectively classified by LapSVM when much unmarked
samples are adopted, which indicates that the proposed method has a better recognition performance
on fault diagnosis of rolling bearing.

Table 2. Output results of SVM classifier.

Sample Sets Faults SVM1 SVM2 SVM3 SVM4 SVM5 SVM6

T1~T50 Norm +1(40)
T51~T100 BEI −1(40) +1(40)

T101~T150 BEII −1(40) −1(40) +1(36)
T151~T200 IRI −1(40) −1(40) −1(42) +1(40)
T201~T250 IRII −1(40) −1(40) −1(42) −1(40) +1(40)
T251~T300 ORI −1(40) −1(40) −1(40) −1(40) −1(40) +1(40)
T301~T350 ORII −1(40) −1(40) −1(40) −1(40) −1(40) −1(40)

Entropy 2018, 20, x FOR PEER REVIEW  10 of 16 

 

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

Sample number

O
ut

pu
t

 

 
Ideal results
Output results

Marked 
samples

Unmarked samples

 
Figure 8. Output results of the LapSVM based multi-classifier of test samples. 

The above obtained and marked samples also are input to the SVM based multiple fault 
classifier with the same parameters set in LapSVM. The outputs are shown in Table 2 and Figure 9. 
As shown in Table 2 and Figure 9, the recognition rate is 98.57% in which four samples with BEII are 
wrongly divided into that with IRI and IRII respectively and equally in SVM3. Eventually, 
comparing Table 1 and Table 2, the fault type of rolling bearing can be effectively classified by 
LapSVM when much unmarked samples are adopted, which indicates that the proposed method 
has a better recognition performance on fault diagnosis of rolling bearing. 

Table 2. Output results of SVM classifier. 

Sample Sets Faults SVM1 SVM2 SVM3 SVM4 SVM5 SVM6 
T1~T50 Norm +1(40)      

T51~T100 BEI −1(40) +1(40)     
T101~T150 BEII −1(40) −1(40) +1(36)    
T151~T200 IRI −1(40) −1(40) −1(42) +1(40)   
T201~T250 IRII −1(40) −1(40) −1(42) −1(40) +1(40)  
T251~T300 ORI −1(40) −1(40) −1(40) −1(40) −1(40) +1(40) 
T301~T350 ORII −1(40) −1(40) −1(40) −1(40) −1(40) −1(40) 

0 40 80 120 160 200 240 280
0

1

2

3

4

5

6

7

8

O
ut

pu
t

 

 

Real output Ideal output

 
Figure 9. Output results of the SVM based multi-classifier of test samples. Figure 9. Output results of the SVM based multi-classifier of test samples.

To illustrate the superiority of TSMFE, for comparison, TSME and MSE methods are also used to
extract the feature information by analyzing the above experimental data of rolling bearing. TSMFEs,
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TSMEs and MSEs of all selected vibration signals of rolling bearing are calculated and input to the
LapSVM multi-classifier for multi-fault recognition of rolling bearing. The recognition results are
shown in Figure 10, where the number of marked samples is ten and the number of input features are
varying from 2 to 20. Firstly, when the number of marked samples is determined, with the increase
of the number of selected features, the recognition rate of the MSE, TSME and TSMFE based fault
diagnosis methods all increase and then decrease to some degree, which means that not all of entropies
in MSE, TSME and TSMFE are suitable to reflect the fault feature of rolling bearing and some of them
are redundant information. Secondly, compared with the existing methods, it is obvious that the rate
recognition of the proposed method fluctuates slightly and tend to be 100%, which are always larger
than that of the TSME and LapSVM based fault methods for different numbers of features, as well as
the MSE and LapSVM based fault diagnosis method when the number of input features is smaller than
14. Particularly, when the number of input features is larger than 14, the recognition performance of the
TSME and LapSVM method is decreasing heavily and this is because that the MSE has no definition at
the larger scale factor and the LapSVM cannot classify the fault feature effectively. Although TSME
overcomes the obstacles of MSE that with the increase of time scales, the entropies in TSME tend to
no definition to some degree, this drawback still exist. Finally, the above analysis has validated the
superiority of TSMFE for extracting fault feature of rolling bearing. Compared with TSME and MSE,
the number marked samples have little influence on the performance of TSMFE, which expresses
much more stability. When the numbers are suitable, the identification rate of the proposed method
for extracting fault features by TSMFE tends to 100% in particular.
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Next, to illustrate the superiority of LapSVM, the above calculated entropies of TSMFE, TSME
and MSE are input to SVM based multi-classifier for identification and the recognition results are
shown in Figure 11, where the number of input features are set as 10 and that of the marked samples is
varying from 2 to 30. With the increase of the number of marked samples, the recognition rates of the
TSMFE and SVM based fault diagnosis method increase and tend to be a constant 100% and that of the
TSME and SVM based fault diagnosis method increase with little fluctuation, while the recognition
rates of the MSE and SVM based fault diagnosis method fluctuate severely tending to a constant 84%.
In particular, the recognition rate of the TSMFE and SVM based fault diagnosis method is much larger
than those of the TSME (or MSE) and SVM based methods. Secondly, with the increase of the number
of marked samples, the recognition rates of the TSMFE and LapSVM based fault diagnosis method
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for rolling bearing remains 100%, which is larger than that of the TSME (or MSE) and SVM based
methods. And thus the above analysis validates the superiority of TSMFE. Thirdly, with the increase
of the number of marked samples, the recognition performance of LapSVM is always better than that
of SVM for the same input features. Finally, by observing Figures 10 and 11 we can conclude that the
proposed TSMFE and LapSVM based fault diagnosis method for rolling bearing has much better fault
recognition performance for rolling bearing than the contrasting methods.
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Next, to illustrate the superiority of the proposed method, we also investigate the influence of 
the number of marked samples and input features on the fault recognition rates of the proposed 
method, as well as the existing methods. The recognition results for different methods are shown in 
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Next, to illustrate the superiority of the proposed method, we also investigate the influence of the
number of marked samples and input features on the fault recognition rates of the proposed method, as
well as the existing methods. The recognition results for different methods are shown in Tables 3 and 4
in detail, where the data in the first line stands for the number of marked samples and the first column
represents the number of input features. Table 3 provides the recognition results of the LapSVM based
fault diagnosis methods. When the number of marked samples is determined, with the increase of
the number of extracted features, the recognition rates of the different methods i.e., MSE, TSME and
TSMFE fluctuate obviously which indicates that the number of extracted features have some influence
on the recognition performance. When the number of extracted eigenvalues is determined, with the
increase of the number of marked samples, the recognition rate of the proposed method almost tends
to be a constant that are larger than that of the MSE and TSME based fault diagnosis method with
more obvious fluctuation, which means that the number of marked samples has little influence on the
identification results of the proposed methods comparing the existing methods. The recognition results
of the SVM based methods are shown in Table 4. Comparing with the MSE, TSME and SVM methods,
the TSMFE and SVM based fault diagnosis method for fault diagnosis of rolling bearing has a higher
recognition rater with little fluctuation than the existing methods which also validates the superiority
of TSMFE to MSE and TSME. The comparing of Tables 3 and 4 indicates the LapSVM based methods
have higher identification performance than the SVM based methods. From the two tables, we can
find that for the proposed method generally, we suggest the numbers of marked samples and input
features should be ranging from 4 to 20 and from 8 to 12, respectively to obtain a better recognition
performance. These two tables further indicate the superiority of the proposed methods.
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Table 3. Identification results with LapSVM (%).

Methods 4 6 8 10 12 14 16 18 20 22

4
MSE 86.85 96.57 96.85 96.85 97.42 97.42 97.14 96.85 97.42 97.42

TSME 86 91.43 92 92.57 93.43 96 95.71 96.29 96.29 96.87
TSMFE 99.14 99.14 99.14 99.14 99.14 99.14 99.14 99.14 99.14 99.14

8
MSE 88.28 92.85 92.85 92.85 93.71 94.57 95.42 95.42 94.85 94.85

TSME 96.29 96.57 96.29 96.86 97.14 97.43 97.43 97.71 97.71 97.71
TSMFE 100 100 100 100 100 100 100 100 100 100

12
MSE 87.14 89.14 87.42 88 89.14 92.85 94.57 95.42 95.71 95.71

TSME 92.85 93.42 93.42 94 94.28 94.57 95.14 95.71 96.57 96.28
TSMFE 100 100 100 100 100 100 100 100 100 100

16
MSE 87.71 89.71 88.57 89.14 89.14 90.57 92.85 92.85 94 95.42

TSME 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14 57.14
TSMFE 98.86 98.86 98.86 98.86 98.86 98.86 98.86 98.86 98.86 98.86

20
MSE 87.14 90 88.28 88 88.85 89.42 91.14 91.71 95.14 95.42

TSME 28.57 28.57 28.57 28.57 28.57 28.57 28.57 28.57 28.57 28.57
TSMFE 98.86 98.86 98.86 98.86 98.86 98.86 98.86 98.86 98.86 98.86

Table 4. Identification results with SVM (%).

Methods 4 6 8 10 12 14 16 18 20 22

4
MSE 78.26 87.01 87.07 87.14 86.84 85.31 84.87 84.82 85.23 87.24

TSME 86.95 93.18 93.87 92.50 90.97 92.85 91.59 92.41 93.80 93.36
TSMFE 97.51 97.72 97.61 97.85 98.12 98.41 98.31 98.21 98.09 97.95

8
MSE 79.81 84.41 83.33 85.00 84.21 84.52 84.45 83.92 85.23 85.20

TSME 95.03 95.45 94.21 92.85 95.48 96.03 95.79 96.42 96.66 96.42
TSMFE 98.44 98.70 98.29 98.21 98.49 98.41 98.31 98.21 98.02 97.88

12
MSE 77.32 84.74 85.37 84.28 85.71 83.73 84.03 83.48 83.80 84.18

TSME 93.16 94.15 94.55 93.57 94.73 95.23 94.95 95.53 96.19 95.91
TSMFE 98.13 98.70 98.63 98.57 98.49 98.41 98.31 98.21 98.09 97.95

16
MSE 77.32 83.11 81.63 80.00 81.95 83.73 84.45 83.48 83.33 82.65

TSME 79.81 57.14 57.14 57.14 57.14 57.14 68.48 57.14 57.14 57.14
TSMFE 97.82 98.37 98.29 98.21 98.49 98.41 98.31 98.21 98.09 97.95

20
MSE 77.01 78.57 79.59 80.71 81.57 79.36 81.09 80.35 82.85 81.12

TSME 47.20 41.88 41.83 41.78 47.74 41.66 41.59 28.57 28.57 36.22
TSMFE 97.82 98.37 98.29 98.21 98.49 98.01 98.31 98.21 98.09 97.95

5. Conclusions

In this paper, an improved algorithm of multiscale sample entropy (MSE) called TSMFE is
proposed to measure the complexity of time series. The influence of similar tolerance and data
length on TSMFE are investigated by analyzing Gaussian white noise and 1/f noise signals. The
results indicate that compared with TSME, TSMFE obviously expresses more anti-noise property,
more stable entropies even in shorter time series and slight fluctuation with the increase of time
scale factors. Combining TSMFE and LapSVM, a new fault diagnosis method for rolling bearing is
put forward and applied to analyze experimental data of rolling bearing. The comparison analysis
of the proposed method with the existing methods, i.e., TSMFE with MSE and TSME, LapSVM
with SVM are made and the analysis results validate that the proposed method has much better
performance on fault recognition rate than the used comparison method. At present, the entropy
theories have not been wildly used in mechanical signal processing for digging the nonlinear fault
features hidden in the vibration signals. In this paper, we tried to apply the proposed TSMFE method
to multi-fault diagnosis for rolling bearing and the simulation and experimental data analysis were
also conducted. The following work will be emphasized on optimized feature selection and on-line
multi-fault diagnosis.
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Abbreviations

Nomenclature
AppEn Approximate entropy τ Time scale
SampEn Sample entropy X Initial time series
MSE Multiscale sample entropy N Length of data X
SVM Support vector machine m Embedding dimension
LapSVM Laplace support vector machine r Similar tolerances
FuzzyEn Fuzzy entropy k Initial time point
TSMFE Time shift multiscale fuzzy entropy β Interval time
TSME Time shift multiscale entropy ∆(β,k) Upper rounding boundary
Norm Normal rolling bearing l Number of given marked samples
ORI Outer race fault under fault diameters 0.1778 mm u Number of given unmarked samples
BEI Ball element under fault diameters 0.1778 mm ‖ f ‖2

I Manifold regularization item
IRI Inner race fault under fault diameters 0.1778 mm f ∗ Manifold regularization framework
ORII Outer race fault under fault diameters 0.5334 mm β∗ Quadratic planning
BEII Ball element under fault diameters 0.5334 mm p Number of rolling bearing states
IRII Inner race fault under fault diameters 0.5334 mm M Total number of samples
SD Standard deviation Tp p-th feature sets
L Laplacian Tp

1 Marked sample sets
V Hinge loss function Tp

2 Unmarked sample sets
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