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Research

Nitrogen is an essential nutrient required for plant growth 
(Kim et al., 2000). Nitrogen uptake determines crop yield 

and grain quality. An adequate supply of N to crops is fundamental 
for optimizing yields ( Jain et al., 2007). Using less fertilizer may 
result in the reduction in yields due to N deficiency (Haboudance 
et al., 2002). However, excessive N supplies can cause surface 
and ground water contamination (Zhao et al., 2007). Therefore, 
dynamic fertilization is very important for crop yield and envi-
ronment protection. For dynamic fertilization, one of the critical 
technologies is how to determine the N content of crop.

Since most leaf N localized in chlorophyll (Chl) molecules, 
there is a strong relationship between leaf N and leaf Chl content 
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ABSTRACT
Timely assessment of crop N content is critical 
for crop growth diagnosis and precision manage-
ment to generate higher yield and better qual-
ity. The objective of this study was to determine 
the optimal spectral index and build a retrieval 
model for diagnosing shoot N content (SNC) of 
wheat (Triticum aestivum L.) at vegetative stage 
using ground-based hyperspectral reflectance 
data. Hyperspectral indices were investigated to 
evaluate their capabilities for wheat N concen-
tration estimation by the Pearson’s correlation 
analysis. The analysis results showed that green 
normalized difference vegetation index (GNDVI) 
and the combined spectral index the first deriva-
tive of reflectance spectral at 736 nm (D736) × 
the reflectance at 900 nm (R900)/the reflectance 
at 720 nm (R720) were most suitable for wheat 
SNC estimation at vegetative stage. A power 
model with GNDVI and a linear model with D736 
× R900/R720 were appropriate for SNC estima-
tion in vegetative stage. The validation experi-
ments demonstrated that the power model with 
GNDVI was preferable to the linear mode with 
D736 × R900/R720 for SNC estimation until the 
flag leaf stage. However, the linear model with 
D736 × R900/R720 was better after the flag leaf 
stage. For wheat SNC assessment at the whole 
vegetative stage, the linear model with D736 × 
R900/R720 was the most accurate, of which the 
root mean square error was 2.391 g m-2 and the 
correlation coefficient between the measured 
and estimated SNC was 0.934 (n = 79).
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(Tracy et al., 1992; Han et al., 2001). In near-infrared 
wavelengths, leaf reflectance is high as a result of low 
Chl absorption and multiscattering in leaf body. In vis-
ible wavelengths, leaf reflectance is relatively low because 
of high Chl absorption (Curran, 1989). Thus, vegetation 
reflectance is related with N content. Remote sensing 
technology can acquire vegetation reflectance; therefore, 
it could provide inexpensive estimates of N status and be 
used to monitor N status since leaf Chl a content is mainly 
determined by N availability.

Previous studies have shown that vegetation indices 
calculated from reflectance data can be successfully used 
to assess N content of various plants, such as wheat (Filella 
et al., 1995; Sembiring et al., 1998; Zhao et al., 2012), corn 
(Zea mays L.) (Kim et al., 2000), sweet pepper (Capsicum 
annuum L.) (Thomas and Oerther, 1972), bean (Phaseolus 
vulgaris L.) (Thai et al., 1998), cotton (Gossypium hirsutum 
L.) (Tracy et al., 1992), and rice (Oryza sativa L.) (Takebe 
et al., 1990; Inoue et al., 2012. For example, Wright et 
al. (2003) used the difference vegetation index (DVI = 
the reflectance at near-infrared spectral band [RNIR] – the 
reflectance at red spectral band [Rred]) and the ratio veg-
etation index (RVI = RNIR/Rred) to retrieve N in grain 
crop and concluded that DVI obtained the higher r2 with 
N, compared to other vegetation indices. Sembiring et 
al. (1998) used normalized difference vegetation index 
(NDVI) to predict N uptake for winter wheat and con-
cluded that NDVI was a good index to N uptake. Ranjan 

et al. (2012) used green normalized difference vegetation 
index (GNDVI) to predict leaf N content (LNC). Filella 
et al. (1995) used three parameters of the red edge to assess 
total leaf Chl a content and concluded that the use of the 
optical techniques offered a potential for assessing N status 
of wheat. Some new vegetation indices were also devel-
oped to retrieve N, such as normalized difference N index 
(NDNI) (Serrano et al., 2002), optimal vegetation index 
(VIopt) (Reyniers et al., 2006), modified chlorophyll 
absorption in reflectance index (MCARI) (Daughtry et 
al., 2000), transformed chlorophyll absorption in reflec-
tance index (Haboudance et al., 2002), and normalized 
ratio indices (Herrmann et al., 2010). Although these veg-
etation indices were successfully used to predict vegeta-
tion N for the specified studies, it is still hard to select 
a vegetation index that can provide good predictions of 
crop N content under all circumstances. The main rea-
sons are the performances of vegetation indices depend 
on the sensor, canopy closure (soil exposed), vegetation 
characteristics, soil moisture, and environmental effect 
(Reyniers et al., 2006).

Winter wheat is a main crop in the North China 
Plain. Timely and accurate estimation of the N content of 
winter wheat is very important for agricultural manage-
ment in this region. The focus of this study is to estimate 
winter wheat shoot N in the North China Plain using 
remote sensing technology. Various related spectral indi-
ces (Table 1) were investigated to assess wheat shoot N 

Table 1. Summary of spectral indices studied in this paper. 

Spectral indices Formula† Reference

Normalized ratio index NRI1510 = (R1510 – R660)/(R1510 + R) Herrmann et al. (2010)

D�ouble-peak canopy N index (DCNI) DCNI = (R720 – R700) × (R700 – R670)/(R720 – R670 + 0.03) Chen et al. (2010)

N�ormalized difference N index (NDNI) NDNI = [log(1/R1510) – log(1/R1680)]/[log(1/R1510) + log(1/R1680)] Serrano et al. (2002)

O�ptimal vegetation index (VIopt) VIopt = (1 + SAF) × (R8002 + 1)/(R670 + SAF); SAF = 0.45 Reyniers et al. (2006)

G�reen normalized difference vegetation  
index (GNDVI) GNDVI = (R750 – R550)/(R750 + R550) Gitelson et al. (1996)

N�ormalized difference vegetation index 
(NDVI) NDVI = (R800 – R670)/(R800 + R670) Rouse et al. (1974)

Combined index
MCARI/MTVI2: MCARI = [R700 – R670 – 0.2(R700 – R550)] 

(R700/R670) and MTVI2 = 1.5[1.2(R800 – R550) – 2.5(R670 – R550)]/ 
[(2R800 + 1)2 – [6R800 – 5(R670)1/2]1/2 – 0.5)

Eitel et al. (2007)

Ratio spectral index (RSI) RSI (D740, D522) = D740/D522 Inoue et al. (2012)

A�bsorption band depth normalized to the 
area of the absorption feature (NBD) NBD = ABD/A_Area Liu (2002)

N�ormalized difference spectral index (NDSI) NDSI (R860, R720) = (R860 – R720)/(R860 – R720) Yao et al. (2010)

N�ormalized difference spectral index NDSI (D736, D526) = (D736 – D526)/(D736 + D526) Yao et al. (2010)

Ratio spectral index RSI (R990, R720) = R990/R720 Yao et al. (2010)

Ratio spectral index RSI (D725, D516) = (D725 – D516)/(D725 + D516) Yao et al. (2010)

First derivative D736 = (R736 – R735)/1 nm This study

Combined index D736 × R990/R720 This study

Combined index D736 × R900/R720 This study
†A_AREA, area of the absorption feature; ABD, absorption band depth; D516, the first derivative of reflectance spectral at 516 nm; D522, the first derivative of reflectance 
spectral at 522 nm; D526, the first derivative of reflectance spectral at 526 nm; D725, the first derivative of reflectance spectral at 725 nm; D736, the first derivative of 
reflectance spectral at 736 nm; D740, the first derivative of reflectance spectral at 740 nm; NRI1510, the normalized ratio index at 1510 and 660 nm; MCARI, modified 
chlorophyll absorption in reflectance index; MTVI2, modified triangular vegetation index; R550, the reflectance at 550 nm; R660, the reflectance at 660 nm; R670, the 
reflectance at 670 nm; R700, the reflectance at 700 nm; R720, the reflectance at 720 nm; R750, the reflectance at 750 nm; R800, the reflectance at 800 nm; R860, the 
reflectance at 860 nm; R900, R990, the reflectance at 900 nm; R990, the reflectance at 990 nm; R1510, the reflectance at 1510 nm; R1680, the reflectance at 1680 nm; 
SAF, soil adjustment factor.
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measurement were oven dried at 60° until constant weights 
were reached. Leaf dry weight (LDW) and stem dry weight 
(SDW) (g) were measured, and LNC and stem N content 
(STNC) (%) were determined by the Kjeldahl method with a 
B-339 distillation unit (Zhao et al., 2012). Shoot N content (g 
m-2) was defined as the total amount of N present in the shoot 
per unit ground area in this study. Shoot N content was calcu-
lated as an index of LDW, SDW, LNC, STNC, and sample area 
as in Eq. [1] (Liu, 2002):

SNC = �{LDW × [TAP/(TAP – 10)]  
× LNC + SDW × [TAP/(TAP –10)]  
× STNC}/(0.4 × 0.6). [1]

Correlation Analysis and Nitrogen  
Retrieval Model
Various spectral indices, which have been evaluated as the 
optimal vegetation indices for N retrieval in previous studies 
(Filella et al., 1995; Sembiring et al., 1998; Haboudance et al., 
2002; Serrano et al., 2002; Reyniers et al., 2006; Herrmann 
et al., 2010; Yao et al., 2010; Ranjan et al., 2012; Inoue et al., 
2012), were used to analyze the relationship between vegeta-
tion indices and wheat SNC. These spectral indices could be 
classified into four categories: (i) normalized difference indices, 
which used a few wavebands to reduce the influence of errors 
or uncertainty due to sensor specification and background dif-
ferences as well as for enhancing and/or linearizing the spec-
tral response to observed targets (Huete, 1988; Qi et al., 2011), 
(ii) ratio vegetation indices, which were least influenced by soil 
bright at leaf area index greater than three (Major et al., 1990), 
(iii) the first derivative vegetation indices, which could elimi-
nate background signals or noise and enhance weak spectral 
features (Inoue et al., 2012), and (iv) combined index, which 
was built by combining normalized difference indices, ratio 
vegetative indices, and the first derivative vegetation indices. 
These spectral indices were proved to be more suitable to assess 
canopy N content, compared to general vegetation indices such 
as NDVI, structure insensitive pigment index, normalized dif-
ference water index, modified soil-adjusted vegetation index 
(MSAVI), enhanced vegetation index, etc. in previous studies 
(Filella et al., 1995; Sembiring et al., 1998; Haboudance et al., 
2002; Serrano et al., 2002; Reyniers et al., 2006; Herrmann 
et al., 2010; Yao et al., 2010; Ranjan et al., 2012; Inoue et al., 
2012). As discussed in the Results and Discussion section, the 
reflectance difference at different SNC levels is more apparent at 
900 nm than at 990 nm, especially under high SNC condition, 
and the first derivative of reflectance spectral at 736 nm (D736) 
is more suitable to assess SNC at high level compared to other 
wavelengths. Therefore, three new vegetation indices were also 
used to assess SNC. Their definition is shown in Table 1.

Using the measured hyperspectral data, the spectral indices 
of the experimental sites were calculated. The Pearson’s cor-
relation analyses were conducted between the spectral indices 
and SNC at each of the eight stages. As N fertilization is con-
ducted mostly at the vegetative stage, the knowledge of SNC 
at the vegetative stage is more important than at reproductive 
stage. Therefore, the correlation between shoot N concentra-
tion and hyperspectral indices is investigated at the vegetative 
stage. The data from 1 April to 8 May were applied to assess the 

content (SNC). Based on ground-based hyperspectral 
measurement, the spectral indices were calculated and the 
statistical analysis between spectral indices and SNC were 
conducted. The optimal spectral indices were determined 
for wheat shoot N estimation according to the correlation 
coefficients. The best-fitting method was used to build 
the estimation models for SNC estimation. Finally, the 
models were used to estimate wheat N content based on 
ground-based hyperspectral reflectance.

MATERIALS AND METHODS
Experimental Setup
The experimental area was located in the suburban counties of 
Beijing city, China, and belongs to arid and semiarid environ-
ments. A total of 27 winter wheat fields were selected from 
Changping, Shunyi, and Tongxian. The experimental fields 
were located between 115°58¢ to 116°50¢ E long and 39°30¢ 
to 40°33¢ N lat. Each field was a minimum of 4 ha and planted 
with the same variety of wheat under the same sowing, fer-
tilization, and irrigation procedures. The largest latitudinal 
distance among these fields was 53 km, and the largest longi-
tudinal distance was 47 km. The study area was flat, and the 
predominant soil texture was fine clay loam.

Hyperspectral measurement experiments were set up approx-
imately every 15 d during the period from Feekes 4.0 (1 April) 
to Feekes 11.1 (2 June), which is the critical growing period for 
winter wheat. Eight ground campaigns were conducted at Feekes 
4.0 (1 Apr. 2004), Feekes 4.0 (3 Apr. 2005), Feekes 5.0 (16 Apr. 
2004), Feekes 8.0 (21 Apr. 2005), Feekes 10.5.1 (8 May 2005), 
Feekes 10.5.3 (18 May 2004), Feekes 10.5.4 (22 May 2005), and 
Feekes 11.1 (2 June 2004) (Zhao et al., 2012).

Data Acquisition
In the central area of each experimental field, wheat canopy 
spectrum was measured with 25° field of view at a height of 
1.3 m under clear blue sky between 1000 and 1400 h in Beijing 
local time using an ASD FieldSpec Pro spectrometer (Analyti-
cal Spectral Devices, Boulder, CO). The spectral ranges were 
350 to 2500 nm with a sampling interval of 1.4 nm at 350 to 
700 nm and 2 nm at 1050 to 2500 nm (Zhao et al., 2012). Mea-
surements over a 40 by 40 cm BaSO4 calibration panel were 
used to calculate wheat canopy reflectance. Vegetation and 
panel radiance measurements were taken by averaging 20 scans 
at an interval of 1 s, with a dark current correction at every 
spectral measurement (Huang et al., 2004). Spectral reflec-
tance was derived as the ratio of reflected radiance to incident 
radiance estimated by the calibration panel measurement. The 
saved spectrum file contained continuous spectral reflectance at 
1 nm step over the band region of 350 to 2500 nm.

After measuring canopy spectrum at each experiment 
field, a 0.6 by 0.4 m wheat sample at the spectrum observa-
tion location was taken and sealed in a plastic bag. The fresh 
samples were taken back to laboratory, and then some samples 
(10 plants per field) were used for N assay and other plants were 
used to measure dry weight. The total amount of plants (TAP) 
was counted. Leaves and stems (stems include ears after earring 
stage) were separated by hand. Those samples for dry weight 
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relationship between the spectral indices and SNC at vegeta-
tive stage from the erecting to the earring stage. According to 
the correlation coefficients, the optimal spectral indices were 
determined to develop empirical models for SNC estimation.

To assess the predictive ability of various spectral indices 
and methods, curve fitting in least-square method was used to 
build SNC estimation models at vegetative stage based on the 
observation data in 2004 and 2005, and the observation data 
in 2003 (Li et al., 2006) were used to evaluate the estimation 
models using statistical indicators R and root mean square error 
(RMSE). In this study, R is the correlation coefficient between 
the measured and estimated SNC and RMSE is defined as

RMSE = {[∑( ˆiy  – yi)
2]n – 1}1/2,

in which ˆiy  is the predicted values, yi is the measured values, and 
n is the amount of observation data (Willimas and Norris, 1987).

Before developing SNC retrieval models, a quality control 
method was used to select high quality data to build the mod-
els. Statistically, if there is a normal distribution of the control 
values we would have approximately 95% of the points within 
2 SD of the mean. This statistical theory was applied to data 
quality control in this study. The quality control procedure 
included three steps. First, all data at vegetative stage were used 
to best fit the SNC retrieval model with the optimal spectral 
index, and then the model was used to estimate SNC from the 
optimal spectral indices based on the data at vegetative stage. 
Second, the differential between measured and retrieved SNC 
was calculated, and the mean and SD of the differential was also 
calculated. Third, all data within 2 SD of the mean passed the 
quality control test and were used to develop the SNC estima-
tion model. The quality control was based on a hypothesis that 
the optimal spectral indices were able to estimate plant nitrogen 
content with a high accuracy and a high estimation error might 
be from a high measurement error. Those data beyond 2 SD 
of the mean were neglected not to be involved in developing a 
SNC estimation model.

RESULTS AND DISCUSSION
Optimal Hyperspectral Indices  
for Nitrogen Retrieval
Figure 1 shows some typical examples of reflectance spec-
tra of wheat canopies with various levels of SNC at the 
range of 0.555 to 9.087 g m-2. Four spectral absorption 
features, centered at 670, 980, 1190, and 1450 nm, and 
five spectral reflectance features, centered at 560, 900, 
1100, 1280, and 1690 nm, were also shown in Fig. 1. The 
absorption features centered at 670 nm are attributed to 
Chl absorption (Gitelson et al., 1996). The 980 nm band 
is related to leaf water absorption (Strachan et al., 2002). 
Absorption at the 560 nm is associated with the Chl reflec-
tion (Gitelson et al., 1996). The 900 nm reflectance fea-
ture is generated by leaf structural features (Tarpley et al., 
2002). The absorption features of lignin, cellulose, starch, 
and protein appear near 1690 nm (Curran, 1989). Absorp-
tion at the 2230 nm wavelength is associated with oil 

(Hartwig and Hurburgh, 1990). The spectral regions cen-
tered at 1100, 1190, 1280, and 1450 nm were not included 
in the analysis because they are not commonly used to cal-
culate the spectral index for crop N monitoring. Similar 
characteristics were also found about rice canopy reflec-
tance (Inoue et al., 2012) whereas the reflectance of wheat 
canopy was higher than that of rice canopy at early stage. 
The main reason for the difference is that the reflectance 
of soil as background is higher than water at the spectral 
range from visible to near-infrared wavelength region. In 
canopy reflectance curve, there is a discontinuous segment 
near 1350 nm as a result of atmosphere impact.

The reflectance curves apparently depicted the 
responses of canopy spectra to various SNC levels. The 
reflectance spectra showed a clear positive response to 
SNC in the near-infrared wavelength region (approxi-
mately 760–930 nm) and a negative response in an opti-
cal wavelength region (approximately 450–670 nm) and 
a near-infrared wavelength region (approximately 1400–
1530 nm). The positive and negative responses were criti-
cal for determining which wavelength reflectance to select 
to estimate SNC. Since the reflectance features at the 
range of 760 to 930 nm and 450 to 670 nm are associated 
with N content, the reflectance in the two ranges would 
be evaluated to estimate SNC.

Figure 2 shows the first derivative of the reflectance in 
Fig. 1. As seen at Fig. 2, differences of the first derivative 
at different SNC levels are most apparent at red edge (670–
760 nm). In addition, we found that the red edge posi-
tion defined as the position of maximal derivative moved 
approximately from 720 to 736 nm. The similar charac-
teristic was also depicted in a previous study (Liu, 2002). 

Figure 1. Some typical reflectance spectra of wheat canopies in 
visible to near-infrared wavelength regions. These spectra are 
from the ground-based dataset in North China. Numbers indicate 
the shoot N content (g m-2) values.
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reflectance at 900 nm (R900)/R720, D736, or normalized 
difference spectral index (NDSI) (the reflectance at 860 
nm [R860], R720) had the highest correlation coefficients 
with SNC at certain growth stages. Each of NDVI and 
VIopt had a significant correlation at 0.001 at any one of 
Feekes 4.0, Feekes 5.0, Feekes 8.0, and Feekes 11.1 and a 
significant correlation at 0.01 at Feekes 10.5.1. The ratio 
index R990/R720 obtained a significant correlation at 
0.001 at any one of Feekes 4.0, Feekes 5.0, Feekes 8.0, and 
Feekes 11.1 and a significant correlation at 0.01 at any one 
of Feekes 10.5.1 and Feekes 10.5.4. Each of D736 and D736 
× R900/R720 obtained a significant correlation at 0.001 
at any one of the six stages and a significant correlation at 
0.01 at any one of Feekes 10.5.3 and Feekes 10.5.4. The 
last column of Table 2 shows the correlation coefficients 
between the spectral indices and SNC at the vegetative 
stage. As seen at the last column, all spectral indices had 
significant correlations at 0.001 with SNC. However, the 
difference of the correlation coefficients was also apparent.

Since the established techniques for the ratio and 
normalized difference spectral indices could deduce the 
influence of errors or uncertainty due to sensor specifica-
tion or atmospheric and background differences (Huete, 
1988; Qi et al., 2011; Fernandez et al., 1994; Lyon et al., 
1998; Hansen and Schjoerring, 2003; Xue et al., 2004), 
the spectral indices, such as NDNI, NDSI (D736, the 
first derivative of reflectance spectral at 526 nm [D526]), 
NDVI, the normalized ratio index at 1510 and 660 nm 
[NRI1510], GNDVI, ratio spectral index (RSI) (the first 
derivative of reflectance spectral at 725 nm [D725], the 

Compared to 720 nm, 736 nm is more suitable to be used 
to assess SNC at high level (Fig. 3). For LNC or canopy N 
content estimation, high error generally appeared at high 
N status (Yao et al., 2010); therefore, D736 had the poten-
tial to deduce the error of crop N content retrieval.

Table 2 shows the results from Pearson’s correlation 
analysis at the eight growth stages. As seen in Table 2, the 
hyperspectral indices NDVI, VIopt, the reflectance at 990 
nm (R990)/the reflectance at 720 nm (R720), D736 × the 

Figure 2. The first derivative of wheat canopy spectral reflec-
tance at 350 to 1750 nm. Numbers indicate the shoot N content 
(g m-2) values.

Figure 3. Scatter diagrams and regression lines between shoot N content and the optimal spectral indices ([a] the reflectance at 990 nm 
[R990]/the reflectance at 720 nm [R720], [b] green normalized difference vegetation index [GNDVI], and [c] the first derivative of reflec-
tance spectral at 736 nm [D736] × the reflectance at 900 nm (R900)/R720) and scatter diagrams between the measured and estimated 
shoot N content from R990/R720 (d), GNDVI (e), and D736 × R900/R720 (f). The 1:1 line is labeled on the plot. PNC, plant nitrogen 
content; RMSE, root mean square error.
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first derivative of reflectance spectral at 516 nm [D516]), 
and RSI (the first derivative of reflectance spectral at 740 
nm [D740], the first derivative of reflectance spectral at 
522 nm [D522]), obtained high correlation with SNC 
compared to other spectral indices such as double-peak 
canopy N index (DCNI), MCARI/modified triangular 
vegetation index (MTVI2), and absorption band depth 
normalized to the area of the absorption feature (NBD). 
In addition, a critical reason for the high correlation coef-
ficients is that these spectral indices used the spectral bands 
about N content, such as 550 nm (Gitelson et al., 1996), 
1510 nm (Herrmann et al., 2010), and red edge (Liu, 
2002). Since VIopt uses red and near-infrared band associ-
ated with N content and is a stable vegetation index under 
circumstances of changing light conditions and platform 
vibrations (Reyniers et al., 2006), it obtained a high cor-
relation coefficients with SNC.

As seen at last lines in Table 2, those spectral indices 
have very high correlation coefficients (>0.9) with SNC at 
vegetative stage. At the same time, we also found that D736 
is high correlative with SNC and the ratio index R990/
R720 could be used to enhance the response of the first 
derivative index to SNC. Yao et al. (2010) compared all 
ratio spectral indices from 350 to 2500 nm and considered 

the reflectance ratio between 990 and 720 nm to be the 
optimal index. Table 2 also shows the RVI R990/R720 
obtains high correlation coefficients. However, as seen at 
Fig. 1, 990 nm is at canopy water absorption band. When 
canopies were very dense, high canopy water content 
might deduce the response of R990/R720 to SNC. Nine 
hundred nanometers was at the peak of near-infrared 
reflectance (Fig. 1). The reflectance difference at different 
SNC levels is more apparent at 900 nm than at 990 nm, 
especially under high SNC condition. Table 2 also shows 
that wheat SNC is more correlative with D736 × R900/
R720 than with D736 × R990/R720.

Evaluating these excellent spectral indices used in 
previous study, R990/R720 was optimal index for wheat 
SNC retrieval. Comparing the index D736 × R900/R720 
to R990/R720, we found that D736 × R900/R720 had 
more Pearson’s correlation with wheat SNC. The reasons 
for this result were that D736 and R900 could enhance 
the ability of hyperspectral data to assess the SNC at high 
level. This deduction was proved by the correlation coef-
ficients at the last five stages in Table 2. The index D736 × 
R900/R720 obtained the highest correlation coefficients 
with SNC almost at the last five stages.

Table 2. Correlation coefficients between hyperspectral indices and shoot N content.†

Experiment date
1 Apr.  
2004

3 Apr.  
2005

16 Apr. 
2004

21 Apr. 
2005

8 May  
2005

18 May 
2004

22 May 
2005

2 June  
2004

3 Apr.– 
8 May

Phenophase Feekes  
4.0

Feekes  
4.0

Feekes  
5.0

Feekes  
8.0

Feekes  
10.5.1

Feekes 1 
0.5.3

Feekes  
10.5.4

Feekes  
11.1

Vegetative 
stage

No. of experiment sites 19 25 27 27 14 27 27 27 110

Avg. LAI 1.359 0.572 2.860 2.769 2.863 2.510 2.844 1.428

NBD –0.844*** –0.791*** –0.439* –0.583*** 0.077 0.286 0.239 0.243 0.6442***

MCARI/MTVI2 0.261 0.587** 0.505** 0.139 0.320 0.234 0.502** 0.506** 0.6024

DCNI 0.770*** 0.864 0.038 0.439* 0.033 0.099 0.203 0.330 0.5540***

NDNI 0.877*** 0.845*** 0.711*** 0.764*** 0.566* 0.231 0.320 0.689*** 0.8053***

NDSI (D736, D526) 0.802*** 0.874*** 0.849*** 0.805*** 0.695** 0.307 0.562** 0.649*** 0.8200***

NDVI 0.888***‡ 0.888*** 0.841*** 0.801*** 0.711** 0.279 0.430* 0.749*** 0.8391***

NRI1510 0.787*** 0.775*** 0.845*** 0.823*** 0.564* 0.090 0.236 0.452* 0.8572***

GNDVI 0.880*** 0.892*** 0.872*** 0.807*** 0.687** 0.308 0.494** 0.738*** 0.8638***

VIopt 0.885*** 0.893*** 0.844*** 0.806*** 0.661** 0.465 0.483 0.739*** 0.8815***

RSI (D725, D516) 0.851*** 0.893*** 0.870*** 0.800*** 0.551* 0.313 0.484* 0.737*** 0.8869***

D736 0.843*** 0.889*** 0.879*** 0.834*** 0.749** 0.514** 0.547** 0.767*** 0.9033***

NDSI (R860, R720) 0.805*** 0.774*** 0.894*** 0.833*** 0.722** 0.349 0.631** 0.662*** 0.9073***

RSI (D740, D522) 0.853*** 0.878*** 0.892*** 0.806*** 0.643** 0.373 0.569** 0.750*** 0.9106***

R990/R720 0.878*** 0.875*** 0.911*** 0.828*** 0.656** 0.203 0.579** 0.672*** 0.9132***

D736 × R990/R720 0.861*** 0.884*** 0.902*** 0.841*** 0.772** 0.443* 0.447* 0.723*** 0.9188***

D736 × R900/R720 0.859*** 0.881*** 0.906*** 0.843*** 0.784*** 0.510** 0.573** 0.804*** 0.9203***

*Significant at the 0.05 probability level.

**Significant at the 0.01 probability level.

***Significant at the 0.001 probability level.
†LAI, leaf area index; D516, the first derivative of reflectance spectral at 516 nm; D522, the first derivative of reflectance spectral at 522 nm; D526, the first derivative of 
reflectance spectral at 526 nm; D725, the first derivative of reflectance spectral at 725 nm; D736, the first derivative of reflectance spectral at 736 nm; D740, the first derivative 
of reflectance spectral at 740 nm; DCNI, double-peak canopy N index; GNDVI, green normalized difference vegetation index; MCARI, modified chlorophyll absorption in 
reflectance index; MTVI2, modified triangular vegetation index; NBD, absorption band depth normalized to the area of the absorption feature; NDNI, normalized difference 
N index; NDSI, normalized difference spectral index; NDVI, normalized difference vegetation index; NRI1510, the normalized ratio index at 1510 and 660 nm; R720, the 
reflectance at 720 nm; R860, the reflectance at 860 nm; R900, R990, the reflectance at 900 nm; R990, the reflectance at 990 nm; RSI, ratio spectral index; VIopt, optimal 
vegetation index.

‡The bold and underlined data indicates the highest correlation coefficient at each column.
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The last column of Table 2 shows D736 × R900/
R720 has higher correlation with SNC compared to other 
vegetation indices. In addition, D736 × R900/R720 also 
obtained high correlation coefficients with SNC at each 
growth stage from 1 April to 8 May. Therefore, D736 × 
R900/R720 was selected as the optimal spectral index for 
SNC estimation in this study. Among these spectral indi-
ces, NDSI (D736, D526) and GNDVI could be best fitted 
by a power function. In addition, the power function with 
GNDVI got higher determination coefficient R2 than that 
with NDSI (D736, D526). Therefore, ability of GNDVI to 
assess SNC was also investigated. As R990/R720 obtained 
the highest correlation coefficients with SNC compared to 
other published spectral indices used in this study, R990/
R720 were also be evaluated to estimate SNC.

Shoot Nitrogen Concentration Prediction 
Models and Validation
Figure 3 shows the scatter diagrams between SNC and the 
three spectral indices (R990/R720, GNDVI, and D736 
× R900/R720) at the vegetative stage. As seen in Fig. 3, 
R990/R720 and D736 × R900/R720 have linear relation 
with SNC (Fig. 3a and 3c); however, the relation between 
SNC and GNDVI can be best fitted by a power function 
(Fig. 3b). Therefore, two linear and a power function model 
were built for SNC retrieval by the least-squares method, 
using R990/R720, D736 × R900/R720, and GNDVI, 
respectively. Figures 3a, 3b, and 3c indicate the three mod-
els obtained high determinant coefficients (r2), and the lin-
ear model with D736 × R900/R720 has the highest r2. 
In addition, Fig. 3d, 3e, and 3f indicate the linear model 
with D736 × R900/R720 obtains the smallest RMSE. 
Therefore, the linear model with D736 × R900/R720 is 
optimal model for SNC retrieval at whole vegetative stage. 
Comparing the linear mode with D736 × R900/R720 to 
the power model with GNDVI, it is evident that the linear 
model overestimates SNC under low N concentration con-
dition (<1.5 g m-2) and the power model underestimates 
SNC under high N content condition (>9.5 g m m-2).

To validate the results, the three models were applied 
in 2003 experiment data at wheat vegetative stage (Li, 
2005). These data were acquired on 30 March, 7 April, 15 
April, and 1 May in the same experiment region. Figure 
4 shows SNC estimation results using the three models. 
The similar results were found as the results from 2004 
to 2005 experiments: (i) the linear model with D736 × 
R900/R720 obtained the highest correlation coeffi-
cient (r = 0.934) and the smallest RMSE (2.391 g m-2) 
(Fig. 4c); (ii) the linear model with D736 × R900/R720 
overestimated SNC under the low N content condition 
(<1.5 g m-2) and underestimated SNC under the high 
N content condition (>10 g m-2); however, the accuracy 
of SNC estimation under the high N content condition 
is the highest, which is illustrated by the points’ nearest 
approaching the line y = x (Fig. 4c); (iii) the power model 
underestimated SNC under the high SNC (>10 g m-2); 
however, the accuracy of SNC estimation under the N 
content condition (<10 g m-2) is the highest, which is also 
illustrated by the points’ nearest approaching the line y = 
x (Fig. 4b); and (iv) compared to D736 × R900/R720, 
R990/R720 acquired a lower accuracy (lower r and big-
ger RMSE) for SNC estimation (Fig. 4a). As we analyzed 
in advance, D736 and R900 could enhance the ability 
of hyperspectral data to assess SNC; therefore, D736 × 
R900/R720 provided the most accurate and robust assess-
ment of wheat SNC at vegetative stage, especially under 
a high N content condition. The critical reason for the 
excellent performance of GNDVI is using the green band, 
which was proportional to Chl a concentration (Ranjan 
et al., 2012). Furthermore, the established techniques of 
GNDVI can deduce the influence of errors due to sensor 
specification or atmospheric and background differences. 
However, GNDVI is easy to saturate at high SNC values.

Figure 5 shows the SNC retrieval bias of the experi-
ments sites in 2003. As seen at Fig. 5, the estimation error 
from the power model with GNDVI is smallest at most 
experiment sites from 30 March through 15 April; how-
ever, the linear model with D736 × R900/R720 got the 
smallest estimation error on 1 May. Therefore, the power 

Figure 4. Scatter diagrams between the measured and estimated wheat shoot N content from the linear models with the reflectance at 
990 nm (R990)/the reflectance at 720 nm (R720) (a) and the first derivative of reflectance spectral at 736 nm (D736) × the reflectance at 
900 nm (R900)/R720 (b) and the power model (c) with green normalized difference vegetation index (GNDVI). The 1:1 line is labeled on 
the plot. PNC, plant nitrogen content; RMSE, root mean square error.
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model with GNDVI is an optimal model for wheat SNC 
estimation until Feekes 5.0 (around 15 April) whereas 
the linear model with D736 × R900/R720 is an optimal 
model for SNC after Feekes 5.0.

Discussion and Conclusions
In this study, methods for estimation of wheat SNC were 
investigated through ground hyperspectral measurements 
and laboratory experiments. Through statistical analysis 
of various spectral indices and validation, we found that:

1.	Compared to the other hyperspectral indices, 
GNDVI and D736 × R900/R720 were highly cor-
related with wheat SNC at most growth stages. In 
addition, the correlation was higher at the vegeta-
tive stage than at the reproductive stage. This result 
indicated that SNC at vegetative stage could be 
estimated by hyperspectral measurement method 
but the N content at reproductive stage could not be 
estimated with a similar accuracy. For wheat SNC 
estimation at vegetative stage, GNDVI and D736 × 
R900/R720 are the optimal hyperspectral indices.

2. The relationship between D736 × R900/R720 and 
SNC could be depicted by a linear model, and the 
relationship between GNDVI and SNC could be 
best fitted by a power model. The power model 
could acquire a higher accuracy for N content esti-
mation under low and middle N content condition 
(<10 g m-2) whereas the linear model could obtain 
a higher accuracy under high N content condition 
(>10 g m-2). Therefore, the two models could be 
combined to retrieve SNC at vegetative stage. We 
could use the power model with GNDIV to estimate 
SNC until Feekes 5.0 and apply the linear model 
with D736 × R900/R720 to estimate N content 
after the flag leaf.

Compared to vegetative stage, reproductive stage 
obtains low correlation coefficients. The main reason 
could be due to the presence of ears. The combined index 
D736 × R900/R720 shows higher correlation with wheat 
plan N content at maturing stage compared to other indi-
ces. Therefore, D736 × R900/R720 also has a potential 
to estimate the yield of wheat.
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