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Does the circadian system regulate lactation?
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Environmental variables such as photoperiod, heat, stress, nutrition and other external factors have profound effects on quality
and quantity of a dairy cow’s milk. The way in which the environment interacts with genotype to impact milk production is
unknown; however, evidence from our laboratory suggests that circadian clocks play a role. Daily and seasonal endocrine rhythms
are coordinated in mammals by the master circadian clock in the hypothalamus. Peripheral clocks are distributed in every organ
and coordinated by signals from the master clock. We and others have shown that there is a circadian clock in the mammary
gland. Approximately 7% of the genes expressed during lactation had circadian patterns including core clock and metabolic genes.
Amplitude changes occurred in the core mammary clock genes during the transition from pregnancy to lactation and were coordinated
with changes in molecular clocks among multiple tissues. In vitro studlies using a bovine mammary cell line showed that external
stimulation synchronized mammary clocks, and expression of the core clock gene, BMAL1, was induced by lactogens. Female clock/
clock mutant mice, which have disrupted circadian rhythms, have impaired mammary development and their offspring failed to thrive
suggesting that the dam’s milk production was not adequate enough to nourish their young. We envision that, in mammals, during the
transition from pregnancy to lactation the master clock is modified by environmental and physiological cues that it receives, including
photoperiod length. In turn, the master clock coordinates changes in endocrine milieu that signals peripheral tissues. In dairy cows, it is
clear that changes in photoperiod during the dry period and/or during lactation influences milk production. We believe that the
photoperiod effect on milk production is mediated, in part by the ‘setting’ of the master clock with light, which modifies peripheral
circadian clocks including the mammary core clock and subsequently impacts milk yield and may impact milk composition.
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Implications

The circadian system coordinates internal physiological pro-
cesses in mammals and synchronizes these processes to the
animal’s environment. We review the literature and discuss
recent findings from our laboratory and others that suggest the
circadian system regulates lactation, including coordinating
changes in the dam’s physiology needed to initiate and main-
tain lactation and mediating the photoperiod effect on milk
production. Identification of environmental and physiological
inputs that affect genes that control circadian rhythms will
enable development of approaches to alter gene expression to
maximize production efficiency in farm animals.

Introduction

Nearly all physiological and behavioral functions of animals
are rhythmic including secretion patterns of hormones,
sleep—wake cycle, metabolism and core body temperature.
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A circadian rhythm is a roughly 24-h cycle in the biochemical,
physiological or behavioral processes of organisms. Daily
and seasonal endocrine rhythms are coordinated in mammals
by the master circadian clock located in the hypothalamus. The
master clock receives and integrates environmental (e.g.
photoperiod) and physiological (e.g. nutritional status) cues
that set the master clock at the molecular level. Reference
time and rhythms are sent out to peripheral tissues from the
master clock via hormonal and autonomic signals. Peripheral
clocks located in every organ of the body receive these
signals from the master clock, which coordinate and syn-
chronize the timing of rhythms generated by peripheral
clocks across the entire body.

During the transition from pregnancy to lactation home-
orhetic adaptations are coordinated across almost every
organ of the body and are marked by tremendous changes in
hormones and metabolism to accommodate for the increased
energetic demands of lactation (Bauman and Currie, 1980; Bell
et al, 1987; Bell and Bauman, 1997). This transition is the
most stressful period of the cow'’s life and has a large impact
on a cow's lactation production. As a result, ~80% of dairy
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Figure 1 Schematic represents how circadian system coordinates internal physiology with the environment. The primary pacemaker, suprachiasmatic nuclei,
is entrained to solar time through retinal afferents and synchronizes and maintains tissue clocks through endocrine, autonomic and behavioral (feeding-

related) cues. Adapted from Hastings et al. (2007).

cow disease events occur in the first 3 weeks after a cow
delivers a calf (Drackley, 1999; Mulligan and Doherty, 2008;
Grummer et al.,, 2010; LeBlanc, 2010).

Understanding how a cow sets her metabolic and phy-
siological rhythms in response to changes in her physiology,
nutritional status and/or environment will enable the devel-
opment of simple approaches that maximize productive
efficiency and minimize metabolic disturbances in dairy
cows. The circadian system is a likely candidate as it is
believed to have evolved to coordinate the timing of internal
physiological and metabolic processes and synchronize this
timing with the animal’s environment. The effect of the circa-
dian system on milk production is evident in both the variation
of milk composition across the day (Kuhn et al.,, 1980; Nielsen
et al, 2003; Barkova et al,, 2005; Lubetzky et al, 2006 and
2007; Cubero et al., 2007) and the photoperiod effect on milk
quality and quantity in farm animals (Aharoni et al., 2000; Dahl
et al, 2002 and 2004; Dahl and Petitclerc, 2003; Auchtung
etal., 2005; Wall et al, 2005; Bernabucci et al,, 2006; Rius and
Dahl, 2006; Auldist et al, 2007; Oates et al,, 2007; Andrade
et al, 2008; Dahl, 2008; Mikolayunas et al., 2008). In this
paper, we review literature and present novel findings in
support of our hypothesis that the circadian system coordi-
nates the metabolic and endocrine changes needed to initiate
and maintain lactation, and that this system also mediates the
photoperiod effect on lactation.

The circadian system

The circadian system is regulated hierarchically in mammals
by the master clock that lies in the suprachiasmatic nuclei
(SCN; Hastings et al., 2007). The intrinsic rhythmicity of the
SCN is synchronized to the 24-h day by regularly occurring

environmental signals or ‘Zeitgebers' (Welsh et al., 1995).
The light—dark (LD) cycle is the most salient environmental
cue for entraining circadian clocks (Reppert and Weaver,
2002). Non-photic environmental cues including exercise,
food availability, temperature and stress can also directly
and/or indirectly entrain the SCN. The activity of SCN neurons
is also modulated by serotoninergic pathways and melatonin
(Moore et al, 1978; Bosler and Beaudet, 1985; Meyer-
Bernstein and Morin, 1996; Jacobs et al, 2002; Moore and
Speh, 2004; Wirz-Justice, 2006).

The SCN signal is translated into hormonal and autonomic
signals for peripheral organs through its major outputs (i) the
paraventricular nucleus (PVN) of the hypothalamus; and (i)
the pineal gland, where melatonin is synthesized according
to the length of the photophase. Melatonin is the biochem-
ical transducer of photoperiodic information to all cells in the
body (including SCN neurons), and changes in duration and
amplitude of nocturnal secretion serves to signal seasonal
variations of day/night cycle length (for review see Simon-
neaux and Ribelayga, 2003). Autonomic neurons of the PVN
communicate time-of-day signal to different organs, and
corticotrophin-releasing factor, which is secreted by PVN neu-
rons, indirectly communicates time of day through its circadian
rhythmicity entrained by the SCN. Circadian oscillations of core
body temperature are also set by the master clock and serve as
output signals that influence the timing of peripheral clocks
(Buhr et al,, 2010).

Outputs from the master clock regulate and synchronize
peripheral clocks that are located in every tissue of the body
(Damiola, 2000; Yamazaki et al, 2000; Schibler et al, 2003;
Sheward et al, 2007). These tissue clocks in turn drive the
circadian expression of local transcriptomes, thereby coordinat-
ing metabolism and physiology of the entire animal (Figure 1).
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Figure 2 Transcriptional and translational autoregulatory feedback loops that regulate circadian rhythms in cells. The positive loop consists of BMAL1 and
CLOCK gene products or BMAL1 and NPAS2 gene products and the negative loop consists of the Per and Cry gene products. CLOCK and BMALT proteins
heterodimerize to activate transcription of numerous target genes, including their own repressors, PERs and CRYs thus forming a transcriptional feedback
loop. BMAL1 expression is also regulated by two of its transcriptional targets, nuclear receptors Rev-erba and Rore, which repress or activate, respectively,
BMALT1 transcription by competing for the same promoter element and forming a secondary interlocked feedback loop.

Thus, external and internal cues are integrated by pacemaker
neurons within the SCN and set the master clock which in turn
provides a ‘reference time’ for all peripheral tissue clocks. The
role of SCN-synchronized peripheral clocks in coordinating
xenobiotic detoxification, cell division and nutrient metabolism
is important to health, and disturbances to circadian timing are
recognized as factors in major systemic illness (Bass and
Takahashi, 2010).

Core molecular clock genes that drive circadian rhythms
contain positive and negative elements that form auto-
regulatory feedback loops. Control of the circadian clock
consists of oscillatory feedback activities of core molecular
clock genes. In mammals, the core clock genes are con-
served, and the positive loop consists of BMALT (aka ARNTL),
CLOCK and NPAS2 gene products, whereas the negative
loop consists of the Per and Cry gene products (Darlington,
1998; Gekakis, 1998; Kume, 1999; Yagita, 2000). CLOCK
and BMAL1 (or NPAS2 and BMAL1) proteins activate
transcription of numerous target genes, including their own
repressors, Pers and Crys thus forming a transcriptional feed-
back loop. BMALT expression is also regulated by two
of its transcriptional targets, nuclear receptors Rev-erba
(NR1D1) and Rorar (RORA/NR1F1), which repress or activate,
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respectively, BMALT transcription (Preitner et al, 2002;
Guillaumond et al, 2005). The CLOCK/BMAL1 (NPAS2/
CLOCK) complex also drives rhythmic expression of numerous
other genes (Figure 2; Brown and Schibler, 1999; Noshiro
et al, 2007). Both external and internal cues can directly or
indirectly affect the expression of core clocks genes in the
SCN and peripheral clocks, and thus the molecular compo-
nents of circadian control systems provide novel avenues for
therapeutic intervention (Hastings et al,, 2007).

Global temporal expression profiles of SCN, liver, adipose
and heart tissues in mammals revealed that ~ 3% to 10%
of expressed transcripts in the genome are under circadian
control (Akhtar et al., 2002; Panda, 2002; Storch et al., 2002;
Ando et al,, 2005). Many of the tissue-specific clock-regulated
genes were involved in rate-limiting steps critical for organ
function. In the rodent liver, 35% of clock-regulated genes
direct biosynthesis and metabolism and 10% regulate gene
transcription (Akhtar et al, 2002). These include transcription
factors and nuclear hormone receptors that regulate carbohy-
drate and lipid homeostasis (Brewer et al., 2005; Yang et al.,
2006). Thus, many rate-limiting hepatic enzymes controlling
glycolysis, gluconeogenesis, fatty acid metabolism and amino
acid metabolism are regulated by the circadian system (Qishi
et al,, 2000; Froy, 2007).



Recent studies in our laboratory and others have shown the
existence of a circadian clock in the mammary gland (Metz
etal., 2006; Casey et al., 2009; Maningat et al., 2009). Using
transcriptome analysis we investigated coordinated gene
expression changes in mammary, liver and adipose during
the transition from pregnancy to lactation (Casey et al,
2009). For this study total RNA was isolated from mammary,
liver and adipose tissues that were collected from rat dams
on day 20 of pregnancy (P20; n=5) and day 1 of lactation
(L1; n=15). We found that multiple pathways and gene sets
related to energy homeostasis were changed in peripheral
tissues at the onset of lactation. Molecular signatures
of mammary, liver and adipose were enriched with gene
sets associated with central nervous system reception,
integration and response to environmental and internal
stimuli. To gain insight into what was stimulating these
changes, we examined genes commonly upregulated at the
onset of lactation clustered in the gene ontology transcrip-
tion regulator activity. There were 112 genes commonly
upregulated among mammary, liver and adipose during the
transition from pregnancy to lactation in this ontology,
including the core clock genes ARNTL (aka BMALT), NPAS2
and CLOCK, the clock regulator RORA, as well as SREBF2.
SREBF2 is a sterol receptor-binding protein transcription
factor that activates enzymes important to de novo lipid
synthesis. When we examined genes commonly down-
regulated in mammary, liver and adipose tissues during the
pregnancy to lactation transition, we found that rhythmic
process was significantly enriched with downregulated
genes including NR1D1, DBP and BHLHBZ (all three are
well-characterized transcriptional targets of CLOCK/BMALT).
In summary, during the transition from pregnancy to lactation
there was a coordinated induction in expression of the positive
limb core clock genes and their regulators (BMALT(ARNTL),
NPAS2, CLOCK and RORA) and a suppression in expression of
regulators of the negative limb of core clock genes (BHLHB2,
NR1D1, CSNK1E) across all three tissues (Casey et al., 2009).
These data suggest that coordinated changes in the circadian
system occur during the transition from pregnancy to lactation.
Circadian sampling (collecting tissues every 4h over a 24-h
period) to describe temporal changes in gene expression
showed that expression rhythms for BMAL1 (Arntl) and PER1
increased in amplitude during the transition from pregnancy to
lactation in mice (Metz et al, 2006). Changes in amplitude
reflect the relative strength of the underlying pacemaker (Bass
and Takahashi, 2010), and thus suggest that changes in the
mammary core clock reflect the increase in metabolic capacity
of this tissue. Global expression analysis of RNA isolated from
milk fat globules of human breast milk revealed that ~ 7%
of the genes expressed in lactating breast show circadian
patterns including core clock and metabolic genes (Maningat
et al, 2009), suggesting that the mammary core clock,
directly or indirectly, requlates a set of genes important to its
metabolic output, milk.

Preliminary studies in our laboratory suggest that cows
also have functional mammary clocks. Using an approach
pioneered by Balsalobre (Balsalobre et al., 1998), we found
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that treating bovine mammary cells (MAC-T) with media
supplemented with 50% serum for 2 h resulted in a synchro-
nized circadian pattern of expression of the core clock gene
BMALT (Casey, T. and Plaut K, unpublished results). Second,
we found that expression of BMALT was significantly induced
when prolactin was added to bovine mammary explant
culture (unpublished results), suggesting that the mammary
clock is responsive to lactogens. Third, expression of core
clock genes BMALT and PER2 showed circadian patterns of
expression in RNA isolated from milk fat globule crescents of
mid-lactation cows (unpublished results), which correlated
with circadian changes in expression of acetyl-CoA carboxy-
lase (ACACA) as well as percent milk fat (unpublished results).
These findings suggest that the mammary clock in cows
may be responsible for the diurnal variation in milk composi-
tion (Kuhn et al, 1980; Nielsen et al., 2003; Barkova et al,,
2005; Lubetzky et al, 2006; Cubero et al, 2007; Lubetzky
et al,, 2007).

The mammary circadian clock may not only respond
to systemic cues, but may also be regulated by local signals.
Serotonin (5-HT), which acts as both a neurotransmitter
and hormone that entrains circadian clocks, has been pro-
posed to be a feedback inhibitor of lactation (Stull et al.,
2007). The gene coding for tryptophan hydroxylase 1, the
rate-limiting enzyme for serotonin synthesis, is expressed
in bovine mammary epithelial cells and is upregulated by
prolactin in vitro (Matsuda et al, 2004). Addition of ser-
otonin to mammosphere cultures reduced the expression
of a-lactalbumin and casein genes. In contrast, inhibiting
serotonin synthesis or blocking its receptor increased milk
protein gene expression (Hernandez et al., 2008). Further,
intramammary infusion of serotonin reduced milk synthesis,
whereas blocking the receptor increased milk synthesis in
multiparous Holstein cows (Hernandez et al., 2008). Soma-
totropin treatment of mice decreased mammary expression
of tryptophan hydroxylase 1 (Hadsell et al., 2008). Further
studies will be needed to definitively link the mammary
clock with serotonin's effect on milk protein synthesis and
mammary involution.

Metabolic function and circadian clocks are tightly inter-
woven such that clocks drive metabolic processes and
various metabolic parameters affect clocks (Green et al.,
2008). In rodents, peripheral liver clocks are synchronized by
hormones reflecting the integrated nature of the circadian
system (i.e. melatonin and glucocorticoids) and nutrient
status (i.e. glucagon and insulin) (Ruiter et al, 2003;
Kennaway et al.,, 2006; Kohsaka and Bass, 2007; Kohsaka
et al, 2007; Stokkan et al, 2001). This hormonal pattern
coordinates liver metabolism to the appropriate time of day
and nutritional status of the animal. Rodents with clock gene
mutations have dysfunctional glucose homeostasis, insulin
secretion and sensitivity and fat and cholesterol metabolism
(Rudic et al, 2004; Turek et al, 2005). Similarly, single
nucleotide polymorphisms in Clock and Bmall genes in
humans are associated with abnormal hepatic fat and glucose
metabolism (Sookoian et al., 2007; Woon et al., 2007).
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Similar to other organisms the circadian system appears to
play a role in ruminant metabolism. Cows display distinct
circadian patterns of intake (DeVries et al., 2003) and plasma
concentrations of metabolic hormones including insulin,
somatotropin, cortisol, melatonin, and triiodothyronine show
diurnal patterns of secretion (Hedlund et al,, 1977a and 1977b;
Bitman et al, 1994; Lefcourt et al, 1993, 1994, 1995 and
1999). Circadian oscillation in plasma glucose, nonesterified
fatty acids, B-hydroxybutyrate and urea nitrogen have also
been observed in cows (Bitman et al, 1990; Lefcourt et al.,
1999). Studies carried out at the molecular level revealed that
DBP mRNA expression, a clock-regulated transcription factor
that directs hepatocyte metabolism (Oishi et al.,, 2000; Noshiro
et al, 2007), showed a circadian pattern that was altered
when cattle were injected with somatotropin (Eleswarapu and
Jiang, 2005). These daily cycles in hormones and metabolites
likely help coordinate timing of intake with metabolism.

Feed availability is a peripheral clock Zeitgeber. Although the
LD cycle is the most reliable and strongest external signal that
synchronizes (entrains) biological rhythms with the environment,
food availability has also been shown to entrain biological
rhythms of the peripheral clock in the liver (Stokkan et al,, 2001).
When food is available only for a limited time each day, rats
increase their locomotor activity 2 to 4 h before the onset of food
availability (Stokkan et al,, 2001). This food anticipatory behavior
occurs in other mammals, including goats, and is often accom-
panied by increases in body temperature, secretion of corticos-
terone, gastrointestinal motility and activity of digestive enzymes
(Stokkan et al, 2001; Piccione et al., 2003; Mendoza, 2007; Bass
and Takahashi, 2010).

Microarray analysis of the impact of two acute restricted
feeding regimens (4 v. 10 days) with identical body weight
(BW) loss (19%) on hepatic gene expression in rats showed
that the two regimens led to distinct patterns of differentially
expressed genes in liver. Transcription profiles of 4-day
restricted rats suggested that they were in an early phase
of metabolic adaptation to feed restriction. Ten days of feed-
restricting rats induced changes in gene expression asso-
ciated with long-term metabolic adaptation to nutrient
restriction as well as changes in the core clock genes PERT,
PER2 and ARNTL (BMAL1; Pohjanvirta et al., 2008). These
findings suggest that molecular clocks in the liver are reset
to the animal’s nutrient status as well nutrient availability in
their environment.

To systematically dissect the role that food, feeding pat-
tern and the circadian oscillator play in determining rhythmic
gene expression in liver, global transcriptional changes in
response to fasting and re-feeding were measured in wild-
type (WT) C57BI6 mice and oscillator-deficient mice (cry1” -
cy2~'~; Cry mutant). Circadian gene expression profiles of
these mice were examined under three different conditions:
ad libitum, daytime-restricted feeding and prolonged fasting.
In oscillator-deficient Cry mutant mice, restricted feeding
restored 24-h rhythms in gene expression in 617 transcripts,
which were identified as the “food-only" oscillating transcripts.
A total of 368 circadian clock-driven transcripts were identified
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under fasting conditions in WT mice. When WT mice were
restricted to daytime feeding, 4960 transcripts displayed
rhythmic expression (Vollmers et al., 2009), showing that there
is a clear synergy between the circadian and metabolic systems
in the regulation of rhythmic transcription in the liver. These
studies also suggest that there is an independent but inter-
active organization that links metabolic controls with circadian
clocks. This organization likely allows organisms to coordinate
tissue responses to predictable changes in their energy state
(i.e. diurnal variation in fasting-feeding) through peripheral
clocks. In addition, thousands of transcripts can be altered in
response to unpredictable changes in the energy state through
the uncoupling of metabolic and circadian timers.

Photoperiod manipulation has clear physiological and
production effects in cattle. A long-day photoperiod (LDPP),
characterized as 16 h light (L) and 8 h dark (D), has been
shown to hasten puberty and increase BW gain, feed effi-
ciency, mammary parenchyma and prolactin concentration
relative to animals exposed to short-day photoperiod (SDPP;
8L: 16D; Peters et al., 1981; Petitclerc et al., 1984; Zinn et al.,
1986). LDPP also increases milk yield without increased
consumption of feed (Peters et al., 1978), and exposure to
SDPP during the dry period enhances subsequent lactation
performance (Dahl, 2008). Photoperiod effects on lactation
are due in part to changes in mammary cell proliferation
as well as immune and metabolic capacity of the animal
(Dahl et al., 2002; Auchtung et al., 2003 and 2005).

Soay sheep, which maintain many WT characteristics,
show circadian patterns of hepatic BMALT and PER2 mRNA
expression, and photoperiod manipulation resulted in
changes in amplitude of BMALT expression and phase of
PER2 expression (Andersson et al., 2005). The shifting pat-
tern of PER2 mRNA correlated with daily rhythms in plasma
cortisol secretion, suggesting that cortisol regulates timing
of PER2 expression in the ovine liver (Andersson et al.,
2005). Photoperiodic treatment of cattle altered liver mRNA
levels of multiple metabolic enzymes known to show circadian
patterns, including ACACA, phosphoenolpyruvate carboxy-
kinase and fatty acid synthase (Dahl, 2008).

Studies focused on understanding the endocrine effects of
altering photoperiod have shown that circulating levels of
prolactin increased when heifers and dairy cows were
exposed to LDPP, melatonin decreased, but levels of growth
hormone and glucocorticoids did not change (Peters and
Tucker, 1978; Peters et al, 1981). The increased prolactin
concentrations are believed to account in part for the increased
mammary parenchymal weight in prepubertal and post-
pubertal heifers exposed to LDPP compared to heifers exposed
to SDPP, and these effects carried through to production, as
heifers exposed to LDPP produced more milk during their first
lactation than SDPP (Petitclerc et al, 1985; Rius and Dahl,
2006). However, and importantly, when prolactin was admi-
nistered exogenously to dairy cows there was no effect on their
milk production (Plaut et al, 1987) suggesting that other
mechanisms are stimulating the increase in milk yield in lactating
cows exposed to LDPP. Slow-release melatonin implants



administered during LDPP for 12 weeks decreased plasma
prolactin levels and reduced milk yield by 23%. Melatonin
also reduced concentrations of lactose in milk, but increased
concentrations of fat, protein and casein (Auldist et al.,
2007). These results suggest that seasonal variation in milk
quality and quantity may be due to changes in photoperiod
mediated by increased concentrations of plasma melatonin
in association with decreased concentrations of plasma
prolactin.

Increasing exposure to light reduces the duration of mela-
tonin secretion, and thus the duration of melatonin secretion is
shorter during the LDPP. In several species, including sheep and
deer, pinealectomy abolishes the photoperiod effect on pro-
lactin concentrations, suggesting that there is a regulatory
relationship of melatonin on prolactin levels. However, this
regulatory relationship is not as clear cut in cattle. Pinealectomy
or melatonin fed/infusion did not affect prolactin plasma con-
centrations in bull calves (Stanisiewski et al, 1988a and
1988h). In contrast, melatonin fed to prepubertal heifers in
the middle of LDPP lowered mean serum prolactin by 27%,
and decreased DNA content and concentration in mammary
parenchyma (Sanchez-Barcelo et al, 1991). When melatonin
was fed to heifers to mimic an SDPP, Insulin-like growth factor-|
(IGF-1) induction by long days was suppressed, but there was no
effect on milk yield in cows (Dahl et al, 2000). Slow-release
melatonin decreased mean concentrations of plasma prolactin
by 23%, but did not affect IGF-1 concentrations (Auldist et al,
2007). Immediate effects of exogenous melatonin (1 to 4 h) on
dairy cows caused a significant increase in the levels of total
cholesterol and triglycerides, slight increases in glucose and
insulin levels, and a significant decrease in the concentration of
free fatty acids, but had no effect on the activity of liver
enzymes (Darul and Kruczynska, 2004).

IGF-I may also mediate the galactopoietic response to
LDPP. Relative to SDPP, there are higher plasma IGF-I con-
centrations occur during LDPP (Dahl et al, 1997). Higher
basal and rbST-stimulated plasma IGF-I concentrations
occurred in LDPP (i.e. summer months). These increases in
plasma IGF-1 occurred despite large decreases in feed intake
and energy balance due to thermal stress (Collier et al.,
2008). Collier et al. (2008) suggested that the observed
seasonal patterns in plasma IGF-I may be indicative of sea-
sonal differences in the coupling of the somatotropin-IGF
axis, as there was no evidence for an uncoupling of the
somatotropin-IGF-1 axis in summer despite an induced
negative energy balance during thermal stress.

The increase in mammary parenchyma due to LDPP may
also be mediated in part by changes in the mammary clock. In
rodents, expression of core clock genes and c-Myc and Cyclin
D1, which regulate cell division and show circadian patterns
of expression, change with mammary development and dif-
ferentiation. Expression of the clock genes PERT and BMALT
were elevated in differentiated HC-11 cells, whereas PER2
mRNA levels were higher in undifferentiated cells (Metz et al.,
2006). Similarly, in vivo PERT and BMALT mRNA levels were
elevated in late pregnant and lactating mammary tissues from
mice, whereas PER2 expression was higher in proliferating
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Figure 3 lllustration of how molecular clocks affect metabolic output, as
modified from (Casey et al, 2009). We envision that the master clock
receives physiological cues during the transition from pregnancy to
lactation. These cues are integrated and the master clock responds by
sending out signals to peripheral tissues which result in coordinated
changes in hormonal milieu and metabolic rhythms to accommodate for
the increased metabolic demand of lactation. Photoperiod length and
nutrient status of dam serve as inputs to the circadian system as well, and
thus influence the outputs, that is, metabolic capacity of the dam. As long-
day photoperiod (LDPP) is usually coincident with greater feed availability
in nature, ruminants likely evolved with a circadian system pre-
programmed to take advantage of these seasonal changes. Thus, a pre-
set mechanism (that includes seasonal changes in melatonin levels) adjusts
circadian rhythms in a manner that increases mammary metabolic output
during LDPP.

virgin and early pregnant glands. In both HC-11 cells and
mammary glands, elevated Per2 expression was positively
correlated with c-Myc and Cyclin D1 mRNA levels, whereas
Per1 and Bmall expression changed in conjunction with
B-casein mRNA levels (Metz et al, 2006). These data suggest
that circadian clock genes may play a role in mammary gland
development and differentiation.

Endocrine and autonomic changes due to altering photo-
period clearly play a part in the production changes evident
in cattle. These changes in the endocrine system are likely
regulated hierarchically by changes in the master clock of the
circadian system that elicits both endocrine changes and
autonomic outputs that set and synchronize peripheral
clocks to the environment (Figure 3). In turn, peripheral
clocks likely play a key role in setting the metabolic output of
the organ, including mammary, liver and adipose tissue.
Inputs and outputs of the circadian system need to be
identified so that a clear understanding of environment—gene
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interaction can be understood to maximize dairy production in
varying environments.

Conclusion

The circadian system functions to coordinate metabolism
and physiological processes and receive and respond to
environmental cues. In order to initiate lactation coordinated
changes in metabolism and hormonal milieu must occur. We
envision that the master clock receives and responds to
physiological cues during the transition from pregnancy to
lactation to coordinate changes in metabolism and hormonal
milieu necessary to initiate milk synthesis. Altering photo-
period causes changes in feed efficiency, cell proliferation
and endocrine milieu that are indicative of homeostatic
adjustments in response to the animal’s environment. The
SCN functions as a key site for environment—gene interac-
tions in the cow. Changes in photoperiod induces changes in
clock genes, which in turn alters autonomic signals and the
endocrine milieu to prepare the animal for seasonal changes
in feed availability or night/day patterns of nutrient use.
By identifying environmental, physiological and nervous
inputs that affect changes in expression of core clock genes
centrally and/or peripherally we will be able to effectively
alter the clock genes to maximize productive efficiency in the
dairy cow (Figure 3).
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